1
|
Tian Y, Chen W, Liu H, Su L, Yang S, Tian W, Zhang H, Zhang T, Niu J. Are adding carbon sources and activated sludge helpful to the full-scale packing-reinforced multistage biological contact oxidation process? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124461. [PMID: 39914207 DOI: 10.1016/j.jenvman.2025.124461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 01/13/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025]
Abstract
The performance of wastewater treatment plants (WWTPs) is closely related to the structure and function of microbial communities which are frequently regulated by inoculating carbon source or new microbes. However, the status of microbial communities may be determined by the homeostasis of the bioreactors or properties of the influent especially in full-scale wastewater treatment plants. In this study, a full-scale packing-reinforced multistage biological contact oxidation process (PMBCOP) was used for investigating the durative impacts of carbon source addition and new sludge inoculation on the structure, stability and metabolic pathways of microbial communities. The results showed that inoculation of carbon sources or new sludge significantly increased the diversity (Chao1 and Shannon index) and reciprocal cooperations among microorganisms which further improved the stability of microbial communities and the COD (by 15%) and NH3-N (by 3%) removal efficiencies. Proteobacteria and Bacteroidota were two dominant phyla in the system and were responsible for the main metabolic pathway, i.e. amino acid metabolism. Nevertheless, the modifications of key genera, stability, up-regulated metabolites and enriched metabolic pathways as well as the improved removal efficiencies were not able to persist. The resistant ability of microbial community declined after stopping adding carbon source and new sludge which resulted in the instability and low removal efficiencies of the PMBCOP and aroused the requirements on exploring deep homeostatic mechanism of microbial communities and new promoting strategies. This study provided new insights on the durative effects on the succession and metabolism of microbial communities combing with the performances of the full-scale wastewater treatment plant which is helpful for the management of full-scale WWTPs.
Collapse
Affiliation(s)
- Yonglan Tian
- Research Center for Engineering Ecology and Nonlinear Science (College of Environmental Science and Engineering, College of Water Resources and Hydropower Engineering), North China Electric Power University, Beijing, 102206, China
| | - Wenjing Chen
- Research Center for Engineering Ecology and Nonlinear Science (College of Environmental Science and Engineering, College of Water Resources and Hydropower Engineering), North China Electric Power University, Beijing, 102206, China
| | - Hongwei Liu
- Institute of Biology, Hebei Academy of Sciences, Shijiazhuang, Hebei, 050011, China
| | - Liangfeng Su
- Research Center for Engineering Ecology and Nonlinear Science (College of Environmental Science and Engineering, College of Water Resources and Hydropower Engineering), North China Electric Power University, Beijing, 102206, China
| | - Shaoxia Yang
- Research Center for Engineering Ecology and Nonlinear Science (College of Environmental Science and Engineering, College of Water Resources and Hydropower Engineering), North China Electric Power University, Beijing, 102206, China
| | - Wang Tian
- Research Center for Engineering Ecology and Nonlinear Science (College of Environmental Science and Engineering, College of Water Resources and Hydropower Engineering), North China Electric Power University, Beijing, 102206, China
| | - Huayong Zhang
- Research Center for Engineering Ecology and Nonlinear Science (College of Environmental Science and Engineering, College of Water Resources and Hydropower Engineering), North China Electric Power University, Beijing, 102206, China
| | - Tian Zhang
- Research Center for Engineering Ecology and Nonlinear Science (College of Environmental Science and Engineering, College of Water Resources and Hydropower Engineering), North China Electric Power University, Beijing, 102206, China
| | - Junfeng Niu
- Research Center for Engineering Ecology and Nonlinear Science (College of Environmental Science and Engineering, College of Water Resources and Hydropower Engineering), North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
2
|
Zhu X, Fang Z, Cheng S, Zhen G, Lu X, Liu H, Qi J, Wu Z, Zhang X, Zhou Z, Sillanpää M. Characteristics of dissolved organic matter and their role in membrane fouling during simultaneous sludge thickening and reduction using flat-sheet membranes. CHEMOSPHERE 2024; 368:143740. [PMID: 39547294 DOI: 10.1016/j.chemosphere.2024.143740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/28/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Four parallel simultaneous sludge thickening and reduction reactors using flat-sheet membranes were employed for the aerobic digestion of sludge to explore the characteristics of dissolved organic matter and its membrane fouling effect. During the initial 8 days of using flat-sheet membranes for simultaneous sludge thickening and reduction (MSTR), a notable increase was observed in the concentrations of humic acids and compounds that resemble soluble microbial by-products in the effluent. Subsequently, a fluctuating trend in humic acid levels ensued, accompanied by a gradual decline in soluble microbial by-product-like substances. Post the initial 8-day period, the capillary suction time (CST) rose from approximately 400 s to over 800 s, the viscosity increased from 20 mPa s to 38 mPa s, and the membrane resistance increased from roughly 6.0e+ 11 m-1 to approximately 9.0e+11 m-1. This phenomenon can be attributed to the clogging of pores by foulants whose size is similar to that of the membrane pores leading to the accumulation and deposition of macromolecules and larger particulates forming gel layers and cake layers. The interplay among diverse microorganisms engenders functional modules, collectively influencing the distribution and characteristics of dissolved organic matter within the MSTR. These microorganisms exert their metabolic effects individually and interact reciprocally, creating synergistic and inhibitory mechanisms. Notably, the synergistic interactions among microorganisms predominated, culminating in an enhanced effluent quality within the system.
Collapse
Affiliation(s)
- Xuefeng Zhu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
| | - Zexian Fang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Shicai Cheng
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Hongbo Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Jing Qi
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Zhichao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Xuedong Zhang
- Department of Environmental Engineering, Faculty of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Zhen Zhou
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, PR China
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa.
| |
Collapse
|
3
|
Pino-Otín MR, Gan C, Terrado E, Sanz MA, Ballestero D, Langa E. Antibiotic properties of Satureja montana L. hydrolate in bacteria and fungus of clinical interest and its impact in non-target environmental microorganisms. Sci Rep 2022; 12:18460. [PMID: 36323748 PMCID: PMC9630514 DOI: 10.1038/s41598-022-22419-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/14/2022] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to analyse the microbicidal and microbiostatic activity of S. montana hydrolate L., the water-soluble fraction of the hydro-distillation process used to obtain the essential oil, on 14 Gram-positive and Gram-negative bacteria and a fungus of clinical interest. To consider whether this hydrolate is a more environmentally friendly alternative to traditional antibiotics, its effect on non-target microorganisms in the aquatic and terrestrial environment was analysed using natural soil and river microorganism communities, characterized through 16S rRNA gene sequencing. Results showed that S. montana hydrolate was especially effective (25% v/v concentration) against Pasteurella aerogenes, Streptococcus agalactiae and Acinetobacter baumannii (priority 1, WHO). It was also a microbicide for a further 7 bacterial strains and the fungus Candida albicans (50% v/v concentration). The river and soil communities exposed to the hydrolate showed a decrease in their growth, as well as a decrease in their ability to metabolize polymers and carbohydrates (soil microorganisms) and polymers, carboxylic and ketone acids (river microorganisms). Hydrolates could be an alternative to conventional antibiotics, but their impact on the environment must be taken into account.
Collapse
Affiliation(s)
- María Rosa Pino-Otín
- Universidad San Jorge, Campus Universitario Villanueva de Gállego Autovía A-23 Zaragoza-Huesca, Km. 510, Villanueva de Gállego, 50830, Zaragoza, Spain.
| | - Cristina Gan
- Universidad San Jorge, Campus Universitario Villanueva de Gállego Autovía A-23 Zaragoza-Huesca, Km. 510, Villanueva de Gállego, 50830, Zaragoza, Spain
| | - Eva Terrado
- Universidad de Zaragoza, C. de Pedro Cerbuna, 12, 50009, Zaragoza, Spain
| | - María Angeles Sanz
- CITA, Área de Laboratorios de Análisis y Asistencia Tecnológica, Avda. Montañana 930, 50059, Zaragoza, Spain
| | - Diego Ballestero
- Universidad San Jorge, Campus Universitario Villanueva de Gállego Autovía A-23 Zaragoza-Huesca, Km. 510, Villanueva de Gállego, 50830, Zaragoza, Spain
| | - Elisa Langa
- Universidad San Jorge, Campus Universitario Villanueva de Gállego Autovía A-23 Zaragoza-Huesca, Km. 510, Villanueva de Gállego, 50830, Zaragoza, Spain
| |
Collapse
|
4
|
Predation increases multiple components of microbial diversity in activated sludge communities. THE ISME JOURNAL 2022; 16:1086-1094. [PMID: 34853477 PMCID: PMC8941047 DOI: 10.1038/s41396-021-01145-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/01/2021] [Accepted: 10/18/2021] [Indexed: 01/04/2023]
Abstract
Protozoan predators form an essential component of activated sludge communities that is tightly linked to wastewater treatment efficiency. Nonetheless, very little is known how protozoan predation is channelled via bacterial communities to affect ecosystem functioning. Therefore, we experimentally manipulated protozoan predation pressure in activated-sludge communities to determine its impacts on microbial diversity, composition and putative functionality. Different components of bacterial diversity such as taxa richness, evenness, genetic diversity and beta diversity all responded strongly and positively to high protozoan predation pressure. These responses were non-linear and levelled off at higher levels of predation pressure, supporting predictions of hump-shaped relationships between predation pressure and prey diversity. In contrast to predation intensity, the impact of predator diversity had both positive (taxa richness) and negative (evenness and phylogenetic distinctiveness) effects on bacterial diversity. Furthermore, predation shaped the structure of bacterial communities. Reduction in top-down control negatively affected the majority of taxa that are generally associated with increased treatment efficiency, compromising particularly the potential for nitrogen removal. Consequently, our findings highlight responses of bacterial diversity and community composition as two distinct mechanisms linking protozoan predation with ecosystem functioning in activated sludge communities.
Collapse
|
5
|
Bezsenyi A, Sági G, Makó M, Wojnárovits L, Takács E. The effect of hydrogen peroxide on the biochemical oxygen demand (BOD) values measured during ionizing radiation treatment of wastewater. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2021.109773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
6
|
Matar GK, Ali M, Bagchi S, Nunes S, Liu WT, Saikaly PE. Relative Importance of Stochastic Assembly Process of Membrane Biofilm Increased as Biofilm Aged. Front Microbiol 2021; 12:708531. [PMID: 34566913 PMCID: PMC8461090 DOI: 10.3389/fmicb.2021.708531] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
The relative importance of different ecological processes controlling biofilm community assembly over time on membranes with different surface characteristics has never been investigated in membrane bioreactors (MBRs). In this study, five ultrafiltration hollow-fiber membranes - having identical nominal pore size (0.1μm) but different hydrophobic or hydrophilic surface characteristics - were operated simultaneously in the same MBR tank with a constant flux of 10 liters per square meter per hour (LMH). In parallel, membrane modules operated without permeate flux (0 LMH) were submerged in the same MBR tank, to investigate the passive microbial adsorption onto different hydrophobic or hydrophilic membranes. Samples from the membrane biofilm were collected after 1, 10, 20, and 30days of continuous filtration. The membrane biofilm microbiome were investigated using 16S rRNA gene amplicon sequencing from DNA and cDNA samples. Similar beta diversity trends were observed for both DNA- and cDNA-based analyses. Beta diversity analyses revealed that the nature of the membrane surface (i.e., hydrophobic vs. hydrophilic) did not seem to have an effect in shaping the bacterial community, and a similar biofilm microbiome evolved for all types of membranes. Similarly, membrane modules operated with and without permeate flux did not significantly influence alpha and beta diversity of the membrane biofilm. Nevertheless, different-aged membrane biofilm samples exhibited significant differences. Proteobacteria was the most dominant phylum in early-stage membrane biofilm after 1 and 10days of filtration. Subsequently, the relative reads abundance of the phyla Bacteroidetes and Firmicutes increased within the membrane biofilm communities after 20 and 30days of filtration, possibly due to successional steps that lead to the formation of a relatively aged biofilm. Our findings indicate distinct membrane biofilm assembly patterns with different-aged biofilm. Ecological null model analyses revealed that the assembly of early-stage biofilm community developed after 1 and 10days of filtration was mainly governed by homogenous selection. As the biofilm aged (days 20 and 30), stochastic processes (e.g., ecological drift) started to become important in shaping the assembly of biofilm community.
Collapse
Affiliation(s)
- Gerald K Matar
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Muhammad Ali
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Samik Bagchi
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Suzana Nunes
- Biological and Environmental Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Wen-Tso Liu
- 3207 Newmark Civil Engineering Laboratory, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Pascal E Saikaly
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
7
|
Different Engineering Designs Have Profoundly Different Impacts on the Microbiome and Nitrifying Bacterial Populations in Municipal Wastewater Treatment Bioreactors. Appl Environ Microbiol 2021; 87:e0104421. [PMID: 34232710 DOI: 10.1128/aem.01044-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Numerous wastewater treatment processes are designed by engineers to achieve specific treatment goals. However, the impact of these different process designs on bacterial community composition is poorly understood. In this study, 24 different municipal wastewater treatment facilities (37 bioreactors) with various system designs were analyzed by sequencing of PCR-amplified 16S rRNA gene fragments. Although a core microbiome was observed in all of the bioreactors, the overall microbial community composition (analysis of molecular variance; P = 0.001) as well as that of a specific population of Nitrosomonas spp. (P = 0.04) was significantly different between A/O (anaerobic/aerobic) systems and conventional activated sludge (CAS) systems. Community α-diversity (number of observed operational taxonomic units [OTUs] and Shannon diversity index) was also significantly higher in A/O systems than in CAS systems (Wilcoxon; P < 2 × 10-16). In addition, wastewater bioreactors with short mean cell residence time (<2 days) had very low community α-diversity and fewer nitrifying bacteria compared to those of other system designs. Nitrospira spp. (0.71%) and Nitrotoga spp. (0.41%) were the most prominent nitrite-oxidizing bacteria (NOB); because these two genera were rarely prominent at the same time, these populations appeared to be functionally redundant. Weak evidence (AOB:NOB « 2; substantial quantities of Nitrospira sublineage II) was also obtained suggesting that complete ammonia oxidation by a single organism was occurring in system designs known to impose stringent nutrient limitation. This research demonstrates that design decisions made by wastewater treatment engineers significantly affect the microbiome of wastewater treatment bioreactors. IMPORTANCE Municipal wastewater treatment facilities rely on the application of numerous "activated sludge" process designs to achieve site-specific treatment goals. A plethora of microbiome studies on municipal wastewater treatment bioreactors have been performed previously; however, the role of process design on the municipal wastewater treatment microbiome is poorly understood. In fact, wastewater treatment engineers have attempted to control the microbiome of wastewater bioreactors for decades without sufficient empirical evidence to support their design paradigms. Our research demonstrates that engineering decisions with respect to system design have a significant impact on the microbiome of wastewater treatment bioreactors.
Collapse
|
8
|
Sapireddy V, Katuri KP, Muhammad A, Saikaly PE. Competition of two highly specialized and efficient acetoclastic electroactive bacteria for acetate in biofilm anode of microbial electrolysis cell. NPJ Biofilms Microbiomes 2021; 7:47. [PMID: 34059681 PMCID: PMC8166840 DOI: 10.1038/s41522-021-00218-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/07/2021] [Indexed: 02/04/2023] Open
Abstract
Maintaining functional stability of microbial electrolysis cell (MEC) treating wastewater depends on maintaining functional redundancy of efficient electroactive bacteria (EAB) on the anode biofilm. Therefore, investigating whether efficient EAB competing for the same resources (electron donor and acceptor) co-exist at the anode biofilm is key for the successful application of MEC for wastewater treatment. Here, we compare the electrochemical and kinetic properties of two efficient acetoclastic EAB, Geobacter sulfurreducens (GS) and Desulfuromonas acetexigens (DA), grown as monoculture in MECs fed with acetate. Additionally, we monitor the evolution of DA and GS in co-culture MECs fed with acetate or domestic wastewater using fluorescent in situ hybridization. The apparent Monod kinetic parameters reveal that DA possesses higher jmax (10.7 ± 0.4 A/m2) and lower KS, app (2 ± 0.15 mM) compared to GS biofilms (jmax: 9.6 ± 0.2 A/m2 and KS, app: 2.9 ± 0.2 mM). Further, more donor electrons are diverted to the anode for respiration in DA compared to GS. In acetate-fed co-culture MECs, DA (98% abundance) outcompete GS for anode-dependent growth. In contrast, both EAB co-exist (DA: 55 ± 2%; GS: 24 ± 1.1%) in wastewater-fed co-culture MECs despite the advantage of DA over GS based on kinetic parameters alone. The co-existence of efficient acetoclastic EAB with high current density in MECs fed with wastewater is significant in the context of functional redundancy to maintain stable performance. Our findings also provide insight to future studies on bioaugmentation of wastewater-fed MECs with efficient EAB to enhance performance.
Collapse
Affiliation(s)
- Veerraghavulu Sapireddy
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Krishna P Katuri
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.
| | - Ali Muhammad
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Pascal E Saikaly
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
9
|
Ali M, Shaw DR, Albertsen M, Saikaly PE. Comparative Genome-Centric Analysis of Freshwater and Marine ANAMMOX Cultures Suggests Functional Redundancy in Nitrogen Removal Processes. Front Microbiol 2020; 11:1637. [PMID: 32733431 PMCID: PMC7358590 DOI: 10.3389/fmicb.2020.01637] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/23/2020] [Indexed: 11/24/2022] Open
Abstract
There is a lack of understanding of the interaction between anammox bacteria and the flanking microbial communities in both freshwater (non-saline) and marine (saline) ecosystems. Here, we present a comparative genome-based exploration of two different anammox bioreactors, through the analysis of 23 metagenome-assembled genomes (MAGs), 12 from freshwater anammox reactor (FWR), and 11 from marine anammox reactor (MWR). To understand the contribution of individual members to community functions, we applied the index of replication (iRep) to determine bacteria that are actively replicating. Using genomic content and iRep information, we provided a potential ecological role for the dominant members of the community based on the reactor operating conditions. In the non-saline system, anammox (Candidatus Brocadia sinica) and auxotrophic neighboring bacteria belonging to the phyla Ignavibacteriae and Chloroflexi might interact to reduce nitrate to nitrite for direct use by anammox bacteria. Whereas, in the saline reactor, anammox bacterium (Ca. Scalindua erythraensis) and flanking community belonging to phyla Planctomycetes (different than anammox bacteria)—which persistently growing in the system—may catabolize detritus and extracellular material and recycle nitrate to nitrite for direct use by anammox bacteria. Despite different microbial communities, there was functional redundancy in both ecosystems. These results signify the potential application of marine anammox bacteria for treating saline N-rich wastewaters.
Collapse
Affiliation(s)
- Muhammad Ali
- Water Desalination and Reuse Center (WDRC), Biological and Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Dario Rangel Shaw
- Water Desalination and Reuse Center (WDRC), Biological and Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mads Albertsen
- Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Pascal E Saikaly
- Water Desalination and Reuse Center (WDRC), Biological and Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
10
|
Effects of exogenous quorum quenching on microbial community dynamics and biofouling propensity of activated sludge in MBRs. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107534] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
de Celis M, Belda I, Ortiz-Álvarez R, Arregui L, Marquina D, Serrano S, Santos A. Tuning up microbiome analysis to monitor WWTPs' biological reactors functioning. Sci Rep 2020; 10:4079. [PMID: 32139809 PMCID: PMC7057949 DOI: 10.1038/s41598-020-61092-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/18/2020] [Indexed: 11/09/2022] Open
Abstract
Wastewater treatment plants (WWTPs) are necessary to protect ecosystems quality and human health. Their function relies on the degradation of organic matter and nutrients from a water influent, prior to the effluent release into the environment. In this work we studied the bacterial community dynamics of a municipal WWTP with a membrane bioreactor through 16S rRNA gene sequencing. The main phyla identified in the wastewater were Proteobacteria, Bacteroidetes, Chloroflexi, Planctomycetes and Actinobacteria. The WWTP is located in Spain and, like other studied WWTP in temperate climate zones, the temperature played a major role in community assembly. Seasonal community succession is observed along the two years sampling period, in addition to a continual annual drift in the microbial populations. The core community of the WWTP bioreactor was also studied, where a small fraction of sequence variants constituted a large fraction of the total abundance. This core microbiome stability along the sampling period and the likewise dissimilarity patterns along the temperature gradient makes this feature a good candidate for a new process control in WWTPs.
Collapse
Affiliation(s)
- Miguel de Celis
- Department of Genetics, Physiology and Microbiology, - Unit of Microbiology, Complutense University of Madrid, 28040, Madrid, Spain
| | - Ignacio Belda
- Department of Biology, Geology, Physics and Inorganic Chemistry - Area of Biodiversity and Conservation, Rey Juan Carlos University, 28933, Móstoles, Spain
| | - Rüdiger Ortiz-Álvarez
- Integrative Freshwater Ecology Group, Center for Advanced Studies of Blanes (CEAB - CSIC), 17300, Blanes, Catalonia, Spain
| | - Lucía Arregui
- Department of Genetics, Physiology and Microbiology, - Unit of Microbiology, Complutense University of Madrid, 28040, Madrid, Spain
| | - Domingo Marquina
- Department of Genetics, Physiology and Microbiology, - Unit of Microbiology, Complutense University of Madrid, 28040, Madrid, Spain
| | - Susana Serrano
- Department of Genetics, Physiology and Microbiology, - Unit of Microbiology, Complutense University of Madrid, 28040, Madrid, Spain
| | - Antonio Santos
- Department of Genetics, Physiology and Microbiology, - Unit of Microbiology, Complutense University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|
12
|
Ali M, Shaw DR, Saikaly PE. Application of an enrichment culture of the marine anammox bacterium "Ca. Scalindua sp. AMX11" for nitrogen removal under moderate salinity and in the presence of organic carbon. WATER RESEARCH 2020; 170:115345. [PMID: 31805498 DOI: 10.1016/j.watres.2019.115345] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/20/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
Seawater can be directly used for toilet flushing in coastal areas to reduce our dependence on desalination and freshwater resources. The presence of high-salt content in the generated wastewater from seawater toilet flushing could limit the performance of conventional biological nitrogen removal processes. Anaerobic ammonium oxidation (anammox) process is regarded as one of the most energy-efficient process for nitrogen removal from N-rich waste streams. In this study, we demonstrated the application of a novel marine anammox bacterium (Candidatus Scalindua sp. AMX11) in a membrane bioreactor (MBR) to treat moderate-saline (∼1.2% salinity) and N-rich organic (2 mM acetate) solution, prepared using real seawater. The MBR showed stable performance with nitrogen removal rate of 0.3 kg-N m-3 d-1 at >90% N-removal efficiency. Furthermore, results of 15N stable isotope experiments revealed that anammox bacteria was mainly responsible for respiratory ammonification through NO3- reduction to NH4+ via NO2-, and the by-products of respiratory ammonification were used as substrates by anammox bacteria. The dominant role of anammox bacteria in nitrogen removal under saline and organic conditions was further confirmed by genome-centric combined metagenomics and meta-transcriptomic approach. Taken together, these results highlight the potential application of marine anammox bacteria for treating saline wastewater generated from seawater toilet flushing practices.
Collapse
Affiliation(s)
- Muhammad Ali
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Dario Rangel Shaw
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Pascal E Saikaly
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
13
|
Zheng W, Wen X. How exogenous influent communities and environmental conditions affect activated sludge communities in the membrane bioreactor of a wastewater treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:622-630. [PMID: 31539970 DOI: 10.1016/j.scitotenv.2019.07.310] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
In this study, the residual population of influent and activated sludge (AS) communities was defined based on their occurrence frequency and relative abundance through long-term and fine-scale sampling from the membrane bioreactor (MBR) of a wastewater treatment plant (WWTP). There were 481 OTUs defined as the residual OTUs, which taken up 67.90 ± 9.36% of relative abundance in the influent community. Besides, 6.76 ± 5.71% of the residual population migrated to and remained in the AS community. Additionally, the residual populations were more likely to be anaerobes and microaerobes. As the most predominant genus from residual community, the relative abundance of Arcobacter was reduced from 15.78 ± 3.58% in the influent to 1.15 ± 1.35% in the AS. The residues that migrated from the influent have increased the richness and evenness of AS community, as well as the dissimilarities among samples over long-term. The rank-abundance distribution showed identical pattern for the residual species between influent and AS. By adopting the analysis of neutral model, 2766 out of 7491 shared OTUs between influent and AS communities were identified as neutral OTUs, which respectively made up 53.9% and 41.8% of the total relative abundance of influent and AS communities. These indicated that the AS community was to some extent, but not entirely assembled by neutral process. For the residual community in the AS, dissolved oxygen (DO) was positively associated with several aerobic genera, meanwhile influent chemical oxygen demand (COD) had positive relationship with genus Pseudomonas. Last but most importantly, the influent community could not inoculate the nitrifiers in the AS, but instead, was able to inoculate the denitrifiers; as well as enhance the biodiversity and the ability of resisting external disturbance for the AS community in MBR.
Collapse
Affiliation(s)
- Wanlin Zheng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xianghua Wen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
14
|
Ali M, Wang Z, Salam KW, Hari AR, Pronk M, van Loosdrecht MCM, Saikaly PE. Importance of Species Sorting and Immigration on the Bacterial Assembly of Different-Sized Aggregates in a Full-Scale Aerobic Granular Sludge Plant. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8291-8301. [PMID: 31194515 DOI: 10.1021/acs.est.8b07303] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In aerobic granular sludge (AGS) systems, different-sized microbial aggregates having different solids retention time (SRT) coexist in the same reactor compartment and are subjected to the same influent wastewater. Thus, the AGS system provides a unique ecosystem to study the importance of local (species sorting) and regional (immigration) processes in bacterial community assembly. The microbial communities of different-sized aggregates (flocs <0.2 mm, small granules (0.2-1.0 mm) and large granules >1.0 mm), influent wastewater, excess sludge and effluent of a full-scale AGS plant were characterized over a steady-state operation period of 6 months. Amplicon sequencing was integrated with mass balance to determine the SRT and net growth rate of operational taxonomic units (OTUs). We found strong evidence of species sorting as opposed to immigration, which was significantly higher at short SRT (i.e., flocs and small granules) than that at long SRT (large granules). Rare OTUs in wastewater belonging to putative functional groups responsible for nitrogen and phosphorus removal were progressively enriched with an increase in microbial aggregates size. In contrast, fecal- and sewage infrastructure-derived microbes progressively decreased in relative abundance with increase in microbial aggregate size. These findings highlight the importance of AGS as a unique model ecosystem to study fundamental microbial ecology concepts.
Collapse
Affiliation(s)
- Muhammad Ali
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center , King Abdullah University of Science and Technology , Thuwal 23955-6900 , Saudi Arabia
| | - Zhongwei Wang
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center , King Abdullah University of Science and Technology , Thuwal 23955-6900 , Saudi Arabia
| | - Khaled W Salam
- Department of Civil and Environmental Engineering , University of Washington , Seattle 98195 , United States
| | - Ananda Rao Hari
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center , King Abdullah University of Science and Technology , Thuwal 23955-6900 , Saudi Arabia
| | - Mario Pronk
- Department of Biotechnology , Delft University of Technology , Delft 2629 HZ , The Netherlands
| | - Mark C M van Loosdrecht
- Department of Biotechnology , Delft University of Technology , Delft 2629 HZ , The Netherlands
| | - Pascal E Saikaly
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center , King Abdullah University of Science and Technology , Thuwal 23955-6900 , Saudi Arabia
| |
Collapse
|
15
|
Mansfeldt C, Achermann S, Men Y, Walser JC, Villez K, Joss A, Johnson DR, Fenner K. Microbial residence time is a controlling parameter of the taxonomic composition and functional profile of microbial communities. ISME JOURNAL 2019; 13:1589-1601. [PMID: 30787397 DOI: 10.1038/s41396-019-0371-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 12/22/2022]
Abstract
A remaining challenge within microbial ecology is to understand the determinants of richness and diversity observed in environmental microbial communities. In a range of systems, including activated sludge bioreactors, the microbial residence time (MRT) has been previously shown to shape the microbial community composition. However, the physiological and ecological mechanisms driving this influence have remained unclear. Here, this relationship is explored by analyzing an activated sludge system fed with municipal wastewater. Using a model designed in this study based on Monod-growth kinetics, longer MRTs were shown to increase the range of growth parameters that enable persistence, resulting in increased richness and diversity in the modeled community. In laboratory experiments, six sequencing batch reactors treating domestic wastewater were operated in parallel at MRTs between 1 and 15 days. The communities were characterized using both 16S ribosomal RNA and non-target messenger RNA sequencing (metatranscriptomic analysis), and model-predicted monotonic increases in richness were confirmed in both profiles. Accordingly, taxonomic Shannon diversity also increased with MRT. In contrast, the diversity in enzyme class annotations resulting from the metatranscriptomic analysis displayed a non-monotonic trend over the MRT gradient. Disproportionately high abundances of transcripts encoding for rarer enzymes occur at longer MRTs and lead to the disconnect between taxonomic and functional diversity profiles.
Collapse
Affiliation(s)
- Cresten Mansfeldt
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Überlandstrasse 133, 8600, Dübendorf, Switzerland.
| | - Stefan Achermann
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Überlandstrasse 133, 8600, Dübendorf, Switzerland.,Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092, Zürich, Switzerland
| | - Yujie Men
- Department of Civil and Environmental Engineering, University of Illinois, 205N. Mathews Ave., Urbana, IL, 61801, USA
| | - Jean-Claude Walser
- Department of Environmental Systems Science, Genetic Diversity Centre, ETH Zürich, Universitätstrasse 16, 8006, Zürich, Switzerland
| | - Kris Villez
- Department of Process Engineering, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Überlandstrasse 133, 8600, Dübendorf, Switzerland
| | - Adriano Joss
- Department of Process Engineering, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Überlandstrasse 133, 8600, Dübendorf, Switzerland
| | - David R Johnson
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Überlandstrasse 133, 8600, Dübendorf, Switzerland
| | - Kathrin Fenner
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Überlandstrasse 133, 8600, Dübendorf, Switzerland.,Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092, Zürich, Switzerland.,Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| |
Collapse
|
16
|
Diversity and assembly patterns of activated sludge microbial communities: A review. Biotechnol Adv 2018; 36:1038-1047. [DOI: 10.1016/j.biotechadv.2018.03.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 02/11/2018] [Accepted: 03/11/2018] [Indexed: 11/22/2022]
|
17
|
Wang Z, Dunne A, van Loosdrecht MCM, Saikaly PE. Effect of Salt on the Metabolism of ' Candidatus Accumulibacter' Clade I and II. Front Microbiol 2018; 9:479. [PMID: 29616002 PMCID: PMC5865004 DOI: 10.3389/fmicb.2018.00479] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/28/2018] [Indexed: 11/29/2022] Open
Abstract
Saline wastewater is known to affect the performance of phosphate-accumulating organisms (PAOs) in enhanced biological phosphorus removal (EBPR) process. However, studies comparing the effect of salinity on different PAO clades are lacking. In this study, ‘Candidatus Accumulibacter phosphatis’ Clade I and II (hereafter referred to as PAOI and PAOII) were highly enriched (∼90% in relative abundance as determined by quantitative FISH) in the form of granules in two sequencing batch reactors. Anaerobic and aerobic batch experiments were conducted to evaluate the effect of salinity on the kinetics and stoichiometry of PAOI and PAOII. PAOI and PAOII communities showed different priority in using polyphosphate (poly-P) and glycogen to generate ATP in the anaerobic phase when exposed to salt, with PAOI depending more on intracellular poly-P degradation (e.g., the proportion of calculated ATP derived from poly-P increased by 5–6% at 0.256 mol/L NaCl or KCl) while PAOII on glycolysis of intracellularly stored glycogen (e.g., the proportion of calculated ATP derived from glycogen increased by 29–30% at 0.256 mol/L NaCl or KCl). In the aerobic phase, the loss of phosphate uptake capability was more pronounced in PAOII due to the higher energy cost to synthesize their larger glycogen pool compared to PAOI. For both PAOI and PAOII, aerobic conversion rates were more sensitive to salt than anaerobic conversion rates. Potassium (K+) and sodium (Na+) ions exhibited different effect regardless of the enriched PAO culture, suggesting that the composition of salt is an important factor to consider when studying the effect of salt on EBPR performance.
Collapse
Affiliation(s)
- Zhongwei Wang
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Aislinn Dunne
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Delft, Netherlands
| | - Pascal E Saikaly
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
18
|
Lee J, Shin SG, Han G, Koo T, Hwang S. Bacteria and archaea communities in full-scale thermophilic and mesophilic anaerobic digesters treating food wastewater: Key process parameters and microbial indicators of process instability. BIORESOURCE TECHNOLOGY 2017; 245:689-697. [PMID: 28917104 DOI: 10.1016/j.biortech.2017.09.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/02/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
In this study, four different mesophilic and thermophilic full-scale anaerobic digesters treating food wastewater (FWW) were monitored for 1-2years in order to investigate: 1) microbial communities underpinning anaerobic digestion of FWW, 2) significant factors shaping microbial community structures, and 3) potential microbial indicators of process instability. Twenty-seven bacterial genera were identified as abundant bacteria underpinning the anaerobic digestion of FWW. Methanosaeta harundinacea, M. concilii, Methanoculleus bourgensis, M. thermophilus, and Methanobacterium beijingense were revealed as dominant methanogens. Bacterial community structures were clearly differentiated by digesters; archaeal community structures of each digester were dominated by one or two methanogen species. Temperature, ammonia, propionate, Na+, and acetate in the digester were significant factors shaping microbial community structures. The total microbial populations, microbial diversity, and specific bacteria genera showed potential as indicators of process instability in the anaerobic digestion of FWW.
Collapse
Affiliation(s)
- Joonyeob Lee
- School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Seung Gu Shin
- Department of Energy Engineering, Gyeongnam National University of Science and Technology (GNTECH), Jinju, Gyeongnam, Republic of Korea
| | - Gyuseong Han
- School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Taewoan Koo
- School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Seokhwan Hwang
- School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea.
| |
Collapse
|
19
|
Matar GK, Bagchi S, Zhang K, Oerther DB, Saikaly PE. Membrane biofilm communities in full-scale membrane bioreactors are not randomly assembled and consist of a core microbiome. WATER RESEARCH 2017; 123:124-133. [PMID: 28658633 DOI: 10.1016/j.watres.2017.06.052] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/12/2017] [Accepted: 06/19/2017] [Indexed: 05/13/2023]
Abstract
Finding efficient biofouling control strategies requires a better understanding of the microbial ecology of membrane biofilm communities in membrane bioreactors (MBRs). Studies that characterized the membrane biofilm communities in lab-and pilot-scale MBRs are numerous, yet similar studies in full-scale MBRs are limited. Also, most of these studies have characterized the mature biofilm communities with very few studies addressing early biofilm communities. In this study, five full-scale MBRs located in Seattle (Washington, U.S.A.) were selected to address two questions concerning membrane biofilm communities (early and mature): (i) Is the assembly of biofilm communities (early and mature) the result of random immigration of species from the source community (i.e. activated sludge)? and (ii) Is there a core membrane biofilm community in full-scale MBRs? Membrane biofilm (early and mature) and activated sludge (AS) samples were collected from the five MBRs, and 16S rRNA gene sequencing was applied to investigate the bacterial communities of AS and membrane biofilms (early and mature). Alpha and beta diversity measures revealed clear differences in the bacterial community structure between the AS and biofilm (early and mature) samples in the five full-scale MBRs. These differences were mainly due to the presence of large number of unique but rare operational taxonomic units (∼13% of total reads in each MBR) in each sample. In contrast, a high percentage (∼87% of total reads in each MBR) of sequence reads was shared between AS and biofilm samples in each MBR, and these shared sequence reads mainly belong to the dominant taxa in these samples. Despite the large fraction of shared sequence reads between AS and biofilm samples, simulated biofilm communities from random sampling of the respective AS community revealed that biofilm communities differed significantly from the random assemblages (P < 0.001 for each MBR), indicating that the biofilm communities (early and mature) are unlikely to represent a random sample of the AS community. In addition to the presence of unique operational taxonomic units in each biofilm sample (early or mature), comparative analysis of operational taxonomic units and genera revealed the presence of a core biofilm community in the five full-scale MBRs. These findings provided insight into the membrane biofilm communities in full-scale MBRs. More comparative studies are needed in the future to elucidate the factors shaping the core and unique biofilm communities in full-scale MBRs.
Collapse
Affiliation(s)
- Gerald K Matar
- King Abdullah University of Science and Technology, Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Research Center, Thuwal 23955-6900, Saudi Arabia
| | - Samik Bagchi
- King Abdullah University of Science and Technology, Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Research Center, Thuwal 23955-6900, Saudi Arabia
| | - Kai Zhang
- Baswood Corporation, Allen, TX 75013, USA
| | - Daniel B Oerther
- Department of Civil, Architectural, and Environmental Engineering, And Environmental Research Center, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Pascal E Saikaly
- King Abdullah University of Science and Technology, Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Research Center, Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
20
|
The persistence and performance of phosphate-solubilizing Gluconacetobacter liquefaciens qzr14 in a cucumber soil. 3 Biotech 2017; 7:294. [PMID: 28868221 DOI: 10.1007/s13205-017-0926-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 08/22/2017] [Indexed: 10/19/2022] Open
Abstract
The persistence and performance of plant growth-promoting microorganisms (PGPMs) in soil are considered critical features for effectiveness, yet they are poorly understood. Here, we investigated the colonization and activity of a new PGPM, phosphate-solubilizing Gluconacetobacter liquefaciens qzr14, in a pot culture experiment using cucumber as test crop for 20 days. The number of G. liquefaciens and bacterial diversity in the rhizosphere and bulk soil were monitored by real-time PCR and DGGE, respectively. Soil phosphorus and cucumber biomass were also examined. G. liquefaciens qzr14 effectively colonized the rhizosphere soil (bacterial density ranging from 2.70 × 108 to 1.18 × 109 copies per gram dry soil). G. liquefaciens qzr14 inoculation had significantly positive effects on bacterial diversity (BD) of the rhizosphere and bulk soil and the ratio of soluble phosphorus to total phosphorus (SP/TP). The number of G. liquefaciens in the rhizosphere soil was significantly related to SP/TP and the BD of the rhizosphere and bulk soil. BD in rhizosphere soil was significantly related to SP/TP and BD in bulk soil. Based on the results of correlation analysis, we inferred that the introduced G. liquefaciens qzr14 effectively colonized the rhizosphere of cucumber, and then expanded its bacterial community by solubilizing soil phosphorus. The expanded bacterial communities might promote cucumber growth by some new functions.
Collapse
|
21
|
Zhu JJ, Anderson PR. Effect of long-term successive storm flows on water reclamation plant resilience. WATER RESEARCH 2017; 111:1-9. [PMID: 28033534 DOI: 10.1016/j.watres.2016.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/16/2016] [Accepted: 12/17/2016] [Indexed: 06/06/2023]
Abstract
A water reclamation plant (WRP) needs to be resilient to successfully operate through different kinds of perturbations. Perturbations such as storm events, especially long-term successive storm flows, can adversely affect operations. A better understanding of these effects can provide benefits for plant operation, in terms of effluent quality and energy efficiency. However, the concept of resilience for a WRP has not been widely studied, and we are not aware of any studies specifically related to storm flows. In this work we applied measures of resistance and recovery time to quantify resilience, and used a WRP simulation model to investigate how different storm flow characteristics (flowrate and duration) and the amount of aeration influence resilience. Not surprisingly, increasing storm flowrate leads to decreasing resilience. Although the aeration rate plays an important role in determining resilience, there is an aeration threshold (6 m3/s for our WRP model); higher aeration rates do not increase resilience. Results suggest that aeration costs could be reduced by as much as 50% while still maintaining the resilience needed to meet effluent quality permit requirements through the perturbations examined in this study.
Collapse
Affiliation(s)
- Jun-Jie Zhu
- Department of Civil, Architectural and Environmental Engineering, Illinois Institute of Technology, Chicago, IL 60616-3793, United States.
| | - Paul R Anderson
- Department of Civil, Architectural and Environmental Engineering, Illinois Institute of Technology, Chicago, IL 60616-3793, United States.
| |
Collapse
|
22
|
Luo J, Chen H, Han X, Sun Y, Yuan Z, Guo J. Microbial community structure and biodiversity of size-fractionated granules in a partial nitritation–anammox process. FEMS Microbiol Ecol 2017; 93:3003320. [DOI: 10.1093/femsec/fix021] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 02/17/2017] [Indexed: 11/13/2022] Open
|
23
|
Cerrillo M, Viñas M, Bonmatí A. Removal of volatile fatty acids and ammonia recovery from unstable anaerobic digesters with a microbial electrolysis cell. BIORESOURCE TECHNOLOGY 2016; 219:348-356. [PMID: 27501031 DOI: 10.1016/j.biortech.2016.07.103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/22/2016] [Accepted: 07/24/2016] [Indexed: 06/06/2023]
Abstract
Continuous assays with a microbial electrolysis cell (MEC) fed with digested pig slurry were performed to evaluate its stability and robustness to malfunction periods of an anaerobic digestion (AD) reactor and its feasibility as a strategy to recover ammonia. When performing punctual pulses of volatile fatty acids (VFA) in the anode compartment of the MEC, simulating a malfunction of the AD process, an increase in the current density was produced (up to 14 times, reaching values of 3500mAm(-2)) as a result of the added chemical oxygen demand (COD), especially when acetate was used. Furthermore, ammonium diffusion from the anode to the cathode compartment was enhanced and the removal efficiency achieved up to 60% during daily basis VFA pulses. An AD-MEC combined system has proven to be a robust and stable configuration to obtain a high quality effluent, with a lower organic and ammonium content.
Collapse
Affiliation(s)
- Míriam Cerrillo
- IRTA, GIRO Joint Research Unit IRTA-UPC, Torre Marimon, E-08140, Caldes de Montbui, Barcelona, Spain
| | - Marc Viñas
- IRTA, GIRO Joint Research Unit IRTA-UPC, Torre Marimon, E-08140, Caldes de Montbui, Barcelona, Spain
| | - August Bonmatí
- IRTA, GIRO Joint Research Unit IRTA-UPC, Torre Marimon, E-08140, Caldes de Montbui, Barcelona, Spain.
| |
Collapse
|
24
|
Kimura ZI, Hirano Y, Matsuzawa Y, Hiraishi A. Effects of 3,5-dichlorophenol on excess biomass reduction and bacterial community dynamics in activated sludge as revealed by a polyphasic approach. J Biosci Bioeng 2016; 122:467-74. [DOI: 10.1016/j.jbiosc.2016.03.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/23/2016] [Accepted: 03/22/2016] [Indexed: 11/25/2022]
|
25
|
Meerburg FA, Boon N, Van Winckel T, Pauwels KTG, Vlaeminck SE. Live Fast, Die Young: Optimizing Retention Times in High-Rate Contact Stabilization for Maximal Recovery of Organics from Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:9781-9790. [PMID: 27480015 DOI: 10.1021/acs.est.6b01888] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Wastewater is typically treated by the conventional activated sludge process, which suffers from an inefficient overall energy balance. The high-rate contact stabilization (HiCS) has been proposed as a promising primary treatment technology with which to maximize redirection of organics to sludge for subsequent energy recovery. It utilizes a feast-famine cycle to select for bioflocculation, intracellular storage, or both. We optimized the HiCS process for organics recovery and characterized different biological pathways of organics removal and recovery. A total of eight HiCS reactors were operated at 15 °C at short solids retention times (SRT; 0.24-2.8 days), hydraulic contact times (tc; 8 and 15 min), and stabilization times (ts; 15 and 40 min). At an optimal SRT between 0.5 and 1.3 days and tc of 15 min and ts of 40 min, the HiCS system oxidized only 10% of influent chemical oxygen demand (COD) and recovered up to 55% of incoming organic matter into sludge. Storage played a minor role in the overall COD removal, which was likely dominated by aerobic biomass growth, bioflocculation onto extracellular polymeric substances, and settling. The HiCS process recovers enough organics to potentially produce 28 kWh of electricity per population equivalent per year by anaerobic digestion and electricity generation. This inspires new possibilities for energy-neutral wastewater treatment.
Collapse
Affiliation(s)
- Francis A Meerburg
- Center for Microbial Ecology and Technology (CMET), Ghent University , Coupure Links 653, 9000 Gent, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University , Coupure Links 653, 9000 Gent, Belgium
| | - Tim Van Winckel
- Center for Microbial Ecology and Technology (CMET), Ghent University , Coupure Links 653, 9000 Gent, Belgium
| | - Koen T G Pauwels
- Center for Microbial Ecology and Technology (CMET), Ghent University , Coupure Links 653, 9000 Gent, Belgium
| | - Siegfried E Vlaeminck
- Center for Microbial Ecology and Technology (CMET), Ghent University , Coupure Links 653, 9000 Gent, Belgium
- Research Group of Sustainable Energy, Air and Water Technology, University of Antwerp , Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| |
Collapse
|
26
|
Belkin N, Rahav E, Elifantz H, Kress N, Berman-Frank I. Enhanced salinities, as a proxy of seawater desalination discharges, impact coastal microbial communities of the eastern Mediterranean Sea. Environ Microbiol 2015; 17:4105-20. [DOI: 10.1111/1462-2920.12979] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 07/02/2015] [Indexed: 01/13/2023]
Affiliation(s)
- Natalia Belkin
- Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat Gan 52900 Israel
| | - Eyal Rahav
- Israel Oceanographic and Limnological Research; National Institute of Oceanography; Haifa 31080 Israel
| | - Hila Elifantz
- Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat Gan 52900 Israel
| | - Nurit Kress
- Israel Oceanographic and Limnological Research; National Institute of Oceanography; Haifa 31080 Israel
| | - Ilana Berman-Frank
- Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat Gan 52900 Israel
| |
Collapse
|
27
|
Bellucci M, Ofiţeru ID, Beneduce L, Graham DW, Head IM, Curtis TP. A preliminary and qualitative study of resource ratio theory to nitrifying lab-scale bioreactors. Microb Biotechnol 2015; 8:590-603. [PMID: 25874592 PMCID: PMC4408191 DOI: 10.1111/1751-7915.12284] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 01/21/2015] [Accepted: 03/05/2015] [Indexed: 11/30/2022] Open
Abstract
The incorporation of microbial diversity in design would ideally require predictive theory that would relate operational parameters to the numbers and distribution of taxa. Resource ratio-theory (RRT) might be one such theory. Based on Monod kinetics, it explains diversity in function of resource-ratio and richness. However, to be usable in biological engineered system, the growth parameters of all the bacteria under consideration and the resource supply and diffusion parameters for all the relevant nutrients should be determined. This is challenging, but plausible, at least for low diversity groups with simple resource requirements like the ammonia oxidizing bacteria (AOB). One of the major successes of RRT was its ability to explain the ‘paradox of enrichment’ which states that diversity first increases and then decreases with resource richness. Here, we demonstrate that this pattern can be seen in lab-scale-activated sludge reactors and parallel simulations that incorporate the principles of RRT in a floc-based system. High and low ammonia and oxygen were supplied to continuous flow bioreactors with resource conditions correlating with the composition and diversity of resident AOB communities based on AOB 16S rDNA clone libraries. Neither the experimental work nor the simulations are definitive proof for the application of RRT in this context. However, it is sufficient evidence that such approach might work and justify a more rigorous investigation.
Collapse
Affiliation(s)
- Micol Bellucci
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK; Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università di Foggia, via Napoli 25, Foggia, 71122, Italy
| | | | | | | | | | | |
Collapse
|
28
|
Bagchi S, Tellez BG, Rao HA, Lamendella R, Saikaly PE. Diversity and dynamics of dominant and rare bacterial taxa in replicate sequencing batch reactors operated under different solids retention time. Appl Microbiol Biotechnol 2014; 99:2361-70. [DOI: 10.1007/s00253-014-6134-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/03/2014] [Accepted: 10/04/2014] [Indexed: 10/24/2022]
|
29
|
Potentially novel copper resistance genes in copper-enriched activated sludge revealed by metagenomic analysis. Appl Microbiol Biotechnol 2014; 98:10255-66. [PMID: 25081552 DOI: 10.1007/s00253-014-5939-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/01/2014] [Accepted: 07/03/2014] [Indexed: 10/25/2022]
Abstract
In this study, we utilized the Illumina high-throughput metagenomic approach to investigate diversity and abundance of both microbial community and copper resistance genes (CuRGs) in activated sludge (AS) which was enriched under copper selective stress up to 800 mg/L. The raw datasets (~3.5 Gb for each sample, i.e., the copper-enriched AS and the control AS) were merged and normalized for the BLAST analyses against the SILVA SSU rRNA gene database and self-constructed copper resistance protein database (CuRD). Also, the raw metagenomic sequences were assembled into contigs and analyzed based on Open Reading Frames (ORFs) to identify potentially novel copper resistance genes. Among the different resistance systems for copper detoxification under the high copper stress condition, the Cus system was the most enriched system. The results also indicated that genes encoding multi-copper oxidase played a more important role than those encoding efflux proteins. More significantly, several potentially novel copper resistance ORFs were identified by Pfam search and phylogenic analysis. This study demonstrated a new understanding of microbial-mediated copper resistance under high copper stress using high-throughput shotgun sequencing technique.
Collapse
|
30
|
Leal AL, Dalzochio MS, Flores TS, de Alves AS, Macedo JC, Valiati VH. Implementation of the sludge biotic index in a petrochemical WWTP in Brazil: improving operational control with traditional methods. ACTA ACUST UNITED AC 2013; 40:1415-22. [DOI: 10.1007/s10295-013-1354-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/18/2013] [Indexed: 10/26/2022]
Abstract
Abstract
Microbiological analysis of activated sludge is an important tool for monitoring wastewater treatment plants (WWTP). The utilization of the sludge biotic index (SBI) provides helpful information in examining the quality of biological treatment process and has been tested for several different systems. Although its utilization has been increasing, it is still not widespread, especially in Brazil. Also, its applicability has been considered limited for some particular systems. Thus, it becomes important to evaluate the relations among operational and biological parameters of each WWTP in order to characterize the system and its variations. In this work, microscopic analysis were performed once a week for 1 year (n = 54) and the results were compared to the physicochemical, operational parameters and efficiency of the plant along the period. The four seasons were comprised and analyzed, as we cannot neglect the influence of environmental changes in this subtropical region. Not only had we found a strong influence of the evaluated parameters on the structure of the biological community but there is also a good correspondence of SBI with the performance of the WWTP. More importantly, including microscopic analysis in the operational routine made it possible to notice even the slightest changes in the biological community that were not enough to diminish the SBI classification of the sludge, but were satisfactorily informative to show in advance to operators when to take corrective actions about an increase of COD and BOD in the influent and when it was necessary to discard the exceeding sludge.
Collapse
Affiliation(s)
- Ana Lusia Leal
- Superintendence for the Treatment of Wastewater, Companhia Riograndense de Saneamento (SITEL/CORSAN) BR 386, km 419, Via 3, Polo Petroquímico do Sul, Bairro Bom Jardim CEP 95.583-000 Triunfo RS Brazil
- grid.412302.6 0000000118827290 Laboratory of Molecular Biology Unisinos Av. Unisinos, 950 CEP 93.022-000 São Leopoldo RS Brazil
| | - Marina Schmidt Dalzochio
- grid.412302.6 0000000118827290 Laboratory of Ecology and Conservation of Aquatic Ecosystems Unisinos Av. Unisinos, 950 CEP 93.022-000 São Leopoldo RS Brazil
| | - Tatiane Strogulski Flores
- Superintendence for the Treatment of Wastewater, Companhia Riograndense de Saneamento (SITEL/CORSAN) BR 386, km 419, Via 3, Polo Petroquímico do Sul, Bairro Bom Jardim CEP 95.583-000 Triunfo RS Brazil
| | - Aline Scherer de Alves
- Superintendence for the Treatment of Wastewater, Companhia Riograndense de Saneamento (SITEL/CORSAN) BR 386, km 419, Via 3, Polo Petroquímico do Sul, Bairro Bom Jardim CEP 95.583-000 Triunfo RS Brazil
| | - Julio Cesar Macedo
- Superintendence for the Treatment of Wastewater, Companhia Riograndense de Saneamento (SITEL/CORSAN) BR 386, km 419, Via 3, Polo Petroquímico do Sul, Bairro Bom Jardim CEP 95.583-000 Triunfo RS Brazil
| | - Victor Hugo Valiati
- grid.412302.6 0000000118827290 Laboratory of Molecular Biology Unisinos Av. Unisinos, 950 CEP 93.022-000 São Leopoldo RS Brazil
| |
Collapse
|
31
|
Stalder T, Alrhmoun M, Louvet JN, Casellas M, Maftah C, Carrion C, Pons MN, Pahl O, Ploy MC, Dagot C. Dynamic assessment of the floc morphology, bacterial diversity, and integron content of an activated sludge reactor processing hospital effluent. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:7909-7917. [PMID: 23789899 DOI: 10.1021/es4008646] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The treatment of hospital effluents (HE) is a major concern, as they are suspected of disseminating drugs and antibiotic resistance determinants in the environment. In order to assess HE influence on wastewater treatment plant biomass, lab-scale conventional activated sludge systems (CAS) were continuously fed with real HE or urban effluent as a control. To gain insights into the main hurdles linked to HE treatment, we conducted a multiparameter study using classical physicochemical characterization, phase contrast and confocal laser scaning microscopy, and molecular biology (i.e., pyrosequencing) tools. HE caused erosion of floc structure and the production of extracellular polymeric substances attributed to the development of floc-forming bacteria. Adaptation of the sludge bacterial community to the HE characteristics, thus maintaining the purification performance of the biomass, was observed. Finally, the comparative metagenomic analysis of the CAS showed that HE treatment resulted in an increase of class 1 resistance integrons (RIs) and the introduction of Pseudomonas spp. into the bacterial community. HE treatment did not reduce the CAS process performance; nevertheless it increases the risk of dissemination into the environment of bacterial species and genetic determinants (RIs) involved in antibiotic resistance acquisition.
Collapse
|
32
|
Berga M, Székely AJ, Langenheder S. Effects of disturbance intensity and frequency on bacterial community composition and function. PLoS One 2012; 7:e36959. [PMID: 22606316 PMCID: PMC3351442 DOI: 10.1371/journal.pone.0036959] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 04/10/2012] [Indexed: 11/22/2022] Open
Abstract
Disturbances influence community structure and ecosystem functioning. Bacteria are key players in ecosystems and it is therefore crucial to understand the effect of disturbances on bacterial communities and how they respond to them, both compositionally and functionally. The main aim of this study was to test the effect of differences in disturbance strength on bacterial communities. For this, we implemented two independent short-term experiments with dialysis bags containing natural bacterial communities, which were transplanted between ambient and ‘disturbed’ incubation tanks, manipulating either the intensity or the frequency of a salinity disturbance. We followed changes in community composition by terminal restriction fragment analysis (T-RFLP) and measured various community functions (bacterial production, carbon substrate utilization profiles and rates) directly after and after a short period of recovery under ambient conditions. Increases in disturbance strength resulted in gradually stronger changes in bacterial community composition and functions. In the disturbance intensity experiment, the sensitivity to the disturbance and the ability of recovery differed between different functions. In the disturbance frequency experiment, effects on the different functions were more consistent and recovery was not observed. Moreover, in case of the intensity experiment, there was also a time lag in the responses of community composition and functions, with functional responses being faster than compositional ones. To summarize, our study shows that disturbance strength has the potential to change the functional performance and composition of bacterial communities. It further highlights that the overall effects, rates of recovery and the degree of congruence in the response patterns of community composition and functioning along disturbance gradients depend on the type of function and the character of the disturbance.
Collapse
Affiliation(s)
- Mercè Berga
- Department of Ecology and Genetics/Limnology, Uppsala University, Uppsala, Sweden.
| | | | | |
Collapse
|
33
|
General and rare bacterial taxa demonstrating different temporal dynamic patterns in an activated sludge bioreactor. Appl Microbiol Biotechnol 2012; 97:1755-65. [DOI: 10.1007/s00253-012-4002-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 02/29/2012] [Accepted: 03/01/2012] [Indexed: 10/28/2022]
|