1
|
Jameson BD, Murdock SA, Ji Q, Stevens CJ, Grundle DS, Kim Juniper S. Network analysis of 16S rRNA sequences suggests microbial keystone taxa contribute to marine N 2O cycling. Commun Biol 2023; 6:212. [PMID: 36823449 PMCID: PMC9950131 DOI: 10.1038/s42003-023-04597-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
The mechanisms by which large-scale microbial community function emerges from complex ecological interactions between individual taxa and functional groups remain obscure. We leveraged network analyses of 16S rRNA amplicon sequences obtained over a seven-month timeseries in seasonally anoxic Saanich Inlet (Vancouver Island, Canada) to investigate relationships between microbial community structure and water column N2O cycling. Taxa separately broadly into three discrete subnetworks with contrasting environmental distributions. Oxycline subnetworks were structured around keystone aerobic heterotrophs that correlated with nitrification rates and N2O supersaturations, linking N2O production and accumulation to taxa involved in organic matter remineralization. Keystone taxa implicated in anaerobic carbon, nitrogen, and sulfur cycling in anoxic environments clustered together in a low-oxygen subnetwork that correlated positively with nitrification N2O yields and N2O production from denitrification. Close coupling between N2O producers and consumers in the anoxic basin is indicated by strong correlations between the low-oxygen subnetwork, PICRUSt2-predicted nitrous oxide reductase (nosZ) gene abundances, and N2O undersaturation. This study implicates keystone taxa affiliated with common ODZ groups as a potential control on water column N2O cycling and provides a theoretical basis for further investigations into marine microbial interaction networks.
Collapse
Affiliation(s)
- Brett D Jameson
- School of Earth & Ocean Sciences, University of Victoria, P.O. Box 1700 Station CSC, Victoria, BC, V8W 2Y2, Canada.
| | - Sheryl A Murdock
- Department of Biology, University of Victoria, P.O. Box 1700 CSC, Victoria, BC, V8W 2Y2, Canada
- Bermuda Institute of Ocean Sciences, 17 Biological Station, St. George's, GE01, Bermuda
| | - Qixing Ji
- Bermuda Institute of Ocean Sciences, 17 Biological Station, St. George's, GE01, Bermuda
- Thrust of Earth, Ocean & Atmospheric Sciences, Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, Guangdong, 511400, China
| | - Catherine J Stevens
- School of Earth & Ocean Sciences, University of Victoria, P.O. Box 1700 Station CSC, Victoria, BC, V8W 2Y2, Canada
| | - Damian S Grundle
- Bermuda Institute of Ocean Sciences, 17 Biological Station, St. George's, GE01, Bermuda
- School of Ocean Futures & School of Earth & Space Exploration, Arizona State University, Tempe, AZ, 85287-7904, USA
| | - S Kim Juniper
- School of Earth & Ocean Sciences, University of Victoria, P.O. Box 1700 Station CSC, Victoria, BC, V8W 2Y2, Canada
- Department of Biology, University of Victoria, P.O. Box 1700 CSC, Victoria, BC, V8W 2Y2, Canada
- Ocean Networks Canada, 2474 Arbutus Road, Victoria, BC, V8N 1V8, Canada
| |
Collapse
|
2
|
Teiba I, Okunishi S, Yoshikawa T, Ikenaga M, Fouad El Basuini M, Mae S Santander-DE Leon S, Maeda H. Use of Purple Non-Sulfur Photosynthetic Bacteria (Rhodobacter sphaeroides) in Promoting Ciliated Protozoa Growth. Biocontrol Sci 2021; 25:81-89. [PMID: 32507794 DOI: 10.4265/bio.25.81] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Photosynthetic bacterium (PSB) was isolated from sediment samples of Yamagawa Bay, Kagoshima, Japan. Phylogenetic analysis results of PSB isolate were closely related to Rhodobacter sphaeroides, purple non-sulfur photosynthetic bacteria (PNSB). Pink-colored smooth edges of single bacterial colonies were observed after 3-5 days of incubation period on Basic I medium agar plates. Rhodobacter sphaeroides microscopic examination showed a short rod cell (1-2 µm length) with round ends. Sediment and water samples used for ciliates cultivation were collected from Kuwano-ura Bay, Koshiki Island, Japan. Ciliates were cultivated using fish meal with radish leaves medium (MI), with sediment into MI (MII) and algae media (MIII). The use of the algae media (MIII) in cultivation mixture produced the highest total number of ciliates. Big size ciliates were identified as Euplotes minuta and Cyclidium varibonneti, while small size was identified as Micrometopion nutans, based on PCR-DGGE. When ciliates were cultured with the PSB isolate, Rhodobacter sphaeroides as a feed, ciliates grow to 2,081 individual ml-1 72 hrs later. These findings indicate that PNSB can be used to promote ciliates growth.
Collapse
Affiliation(s)
- Islam Teiba
- The United Graduate School of Agricultural Sciences, Kagoshima University.,Faculty of Agriculture, Tanta University
| | - Suguru Okunishi
- Research Field in Fisheries; Agriculture, Fisheries and Veterinary Medicine Area; Research and Education Assembly; Kagoshima University
| | - Takeshi Yoshikawa
- Research Field in Fisheries; Agriculture, Fisheries and Veterinary Medicine Area; Research and Education Assembly; Kagoshima University
| | - Makoto Ikenaga
- Research Field in Agriculture; Agriculture, Fisheries and Veterinary Medicine Area; Research and Education Assembly; Kagoshima University
| | - Mohammed Fouad El Basuini
- Research Field in Fisheries; Agriculture, Fisheries and Veterinary Medicine Area; Research and Education Assembly; Kagoshima University.,Faculty of Agriculture, Tanta University
| | | | - Hiroto Maeda
- Research Field in Fisheries; Agriculture, Fisheries and Veterinary Medicine Area; Research and Education Assembly; Kagoshima University
| |
Collapse
|
3
|
Liu F, Giometto A, Wu M. Microfluidic and mathematical modeling of aquatic microbial communities. Anal Bioanal Chem 2021; 413:2331-2344. [PMID: 33244684 PMCID: PMC7990691 DOI: 10.1007/s00216-020-03085-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/05/2020] [Accepted: 11/19/2020] [Indexed: 01/27/2023]
Abstract
Aquatic microbial communities contribute fundamentally to biogeochemical transformations in natural ecosystems, and disruption of these communities can lead to ecological disasters such as harmful algal blooms. Microbial communities are highly dynamic, and their composition and function are tightly controlled by the biophysical (e.g., light, fluid flow, and temperature) and biochemical (e.g., chemical gradients and cell concentration) parameters of the surrounding environment. Due to the large number of environmental factors involved, a systematic understanding of the microbial community-environment interactions is lacking. In this article, we show that microfluidic platforms present a unique opportunity to recreate well-defined environmental factors in a laboratory setting in a high throughput way, enabling quantitative studies of microbial communities that are amenable to theoretical modeling. The focus of this article is on aquatic microbial communities, but the microfluidic and mathematical models discussed here can be readily applied to investigate other microbiomes.
Collapse
Affiliation(s)
- Fangchen Liu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Andrea Giometto
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Mingming Wu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
4
|
Chai ZY, Wang H, Deng Y, Hu Z, Zhong Tang Y. Harmful algal blooms significantly reduce the resource use efficiency in a coastal plankton community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135381. [PMID: 31810673 DOI: 10.1016/j.scitotenv.2019.135381] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/02/2019] [Accepted: 11/02/2019] [Indexed: 06/10/2023]
Abstract
Harmful algal blooms (HABs) have been investigated for their catastrophic effects on public health and aquaculture intensively, but the research about HABs effects on the diversity patterns and intrinsic functions of the plankton community based on a species identification with high resolution and accuracy has been scarce. We therefore investigated the shifts of plankton diversity via pyrosequencing during and around a natural dinoflagellate (Prorocentrum donghaiense) bloom and analyzed the effect of P. donghaiense abundance on the operationally-defined resource use efficiency (RUE) of plankton community to test our hypothesis that outbreaks of HABs will reduce RUE of the plankton community via shifting the plankton community structure, species composition in particular. We found that the species diversity of eukaryotic plankton community was significantly decreased during the bloom, as reflected in OTU (operational taxonomic unit) richness, and Pielou's evenness index. Principal coordinates analysis indicated significant difference in plankton community structure between blooming and non-blooming periods. As hypothesized, the species richness was positively correlated to RUE (defined as the ratio of phytoplankton biomass to total phosphorus), and more importantly, the cell density of P. donghaiense exhibited significant negative correlation with RUE. Our results explicitly demonstrated HABs reduce RUE via reducing species richness (corresponding to a less occupancy of the trophic niches), which supports the previously documented notion that niche partitioning enhances RUE (a key ecosystem function). Also, our work provides striking evidence for the relationship between plankton species richness (or diversity) and community function (resource use efficiency) via studying on HABs, a natural but exceptional phenomenon, in addition to revealing a profound consequence of HABs.
Collapse
Affiliation(s)
- Zhao Yang Chai
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Huan Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunyan Deng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhangxi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ying Zhong Tang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
5
|
Model exploration of interactions between algal functional diversity and productivity in chemostats to represent open ponds systems across climate gradients. Ecol Modell 2019. [DOI: 10.1016/j.ecolmodel.2019.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
6
|
Dias F, Antunes JT, Ribeiro T, Azevedo J, Vasconcelos V, Leão PN. Cyanobacterial Allelochemicals But Not Cyanobacterial Cells Markedly Reduce Microbial Community Diversity. Front Microbiol 2017; 8:1495. [PMID: 28848513 PMCID: PMC5550742 DOI: 10.3389/fmicb.2017.01495] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/25/2017] [Indexed: 11/13/2022] Open
Abstract
The freshwater cyanobacterium Phormidium sp. LEGE 05292 produces allelochemicals, including the cyclic depsipeptides portoamides, that influence the growth of heterotrophic bacteria, cyanobacteria, and eukaryotic algae. Using 16S rRNA gene amplicon metagenomics, we show here that, under laboratory conditions, the mixture of metabolites exuded by Phormidium sp. LEGE 05292 markedly reduces the diversity of a natural planktonic microbial community. Exposure of the same community to the portoamides alone resulted in a similar outcome. In both cases, after 16 days, alpha-diversity estimates for the allelochemical-exposed communities were less than half of those for the control communities. Photosynthetic organisms, but also different heterotrophic-bacteria taxa were found to be negatively impacted by the allelochemicals. Intriguingly, when Phormidium sp. LEGE 05292 was co-cultured with the microbial community, the latter remained stable and closer to non-exposed than to allelochemical-exposed communities. Overall, our observations indicate that although under optimal growth conditions Phormidium sp. LEGE 05292 is able to synthesize potent allelochemicals that severely impact different microorganisms, its allelopathic effect is not pronounced when in contact with a complex microbial community. Therefore, under ecologically relevant conditions, the allelopathic behavior of this cyanobacterium may be regulated by nutrient availability or by interactions with the surrounding microbiota.
Collapse
Affiliation(s)
- Filipa Dias
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of PortoMatosinhos, Portugal
| | - Jorge T Antunes
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of PortoMatosinhos, Portugal.,Department of Biology, Faculty of Sciences, University of PortoPorto, Portugal
| | - Tiago Ribeiro
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of PortoMatosinhos, Portugal
| | - Joana Azevedo
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of PortoMatosinhos, Portugal.,Department of Biology, Faculty of Sciences, University of PortoPorto, Portugal
| | - Vitor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of PortoMatosinhos, Portugal.,Department of Biology, Faculty of Sciences, University of PortoPorto, Portugal
| | - Pedro N Leão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of PortoMatosinhos, Portugal
| |
Collapse
|
7
|
Felpeto AB, Roy S, Vasconcelos VM. Allelopathy prevents competitive exclusion and promotes phytoplankton biodiversity. OIKOS 2017. [DOI: 10.1111/oik.04046] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Shovonlal Roy
- CIIMAR, Univ. of Porto, Rua dos Bragas 289; PT-4050-123 Porto Portugal
| | - Vitor M. Vasconcelos
- Faculty of Sciences, Porto Univ., Porto, Portugal. - S. Roy, Dept of Geography and Environmental Science, Univ. of Reading; Reading UK
| |
Collapse
|
8
|
Ramos VMC, Castelo-Branco R, Leão PN, Martins J, Carvalhal-Gomes S, Sobrinho da Silva F, Mendonça Filho JG, Vasconcelos VM. Cyanobacterial Diversity in Microbial Mats from the Hypersaline Lagoon System of Araruama, Brazil: An In-depth Polyphasic Study. Front Microbiol 2017; 8:1233. [PMID: 28713360 PMCID: PMC5492833 DOI: 10.3389/fmicb.2017.01233] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 06/19/2017] [Indexed: 11/24/2022] Open
Abstract
Microbial mats are complex, micro-scale ecosystems that can be found in a wide range of environments. In the top layer of photosynthetic mats from hypersaline environments, a large diversity of cyanobacteria typically predominates. With the aim of strengthening the knowledge on the cyanobacterial diversity present in the coastal lagoon system of Araruama (state of Rio de Janeiro, Brazil), we have characterized three mat samples by means of a polyphasic approach. We have used morphological and molecular data obtained by culture-dependent and -independent methods. Moreover, we have compared different classification methodologies and discussed the outcomes, challenges, and pitfalls of these methods. Overall, we show that Araruama's lagoons harbor a high cyanobacterial diversity. Thirty-six unique morphospecies could be differentiated, which increases by more than 15% the number of morphospecies and genera already reported for the entire Araruama system. Morphology-based data were compared with the 16S rRNA gene phylogeny derived from isolate sequences and environmental sequences obtained by PCR-DGGE and pyrosequencing. Most of the 48 phylotypes could be associated with the observed morphospecies at the order level. More than one third of the sequences demonstrated to be closely affiliated (best BLAST hit results of ≥99%) with cyanobacteria from ecologically similar habitats. Some sequences had no close relatives in the public databases, including one from an isolate, being placed as “loner” sequences within different orders. This hints at hidden cyanobacterial diversity in the mats of the Araruama system, while reinforcing the relevance of using complementary approaches to study cyanobacterial diversity.
Collapse
Affiliation(s)
- Vitor M C Ramos
- Faculty of Sciences, University of PortoPorto, Portugal.,Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of PortoMatosinhos, Portugal
| | - Raquel Castelo-Branco
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of PortoMatosinhos, Portugal
| | - Pedro N Leão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of PortoMatosinhos, Portugal
| | - Joana Martins
- Faculty of Sciences, University of PortoPorto, Portugal.,Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of PortoMatosinhos, Portugal
| | - Sinda Carvalhal-Gomes
- Palynofacies and Organic Facies Laboratory, Department of Geology, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Frederico Sobrinho da Silva
- Palynofacies and Organic Facies Laboratory, Department of Geology, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - João G Mendonça Filho
- Palynofacies and Organic Facies Laboratory, Department of Geology, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Vitor M Vasconcelos
- Faculty of Sciences, University of PortoPorto, Portugal.,Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of PortoMatosinhos, Portugal
| |
Collapse
|
9
|
Newby DT, Mathews TJ, Pate RC, Huesemann MH, Lane TW, Wahlen BD, Mandal S, Engler RK, Feris KP, Shurin JB. Assessing the potential of polyculture to accelerate algal biofuel production. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.09.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Allen JL, Ten-Hage L, Leflaive J. Allelopathic interactions involving benthic phototrophic microorganisms. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:752-762. [PMID: 27337369 DOI: 10.1111/1758-2229.12436] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/15/2016] [Indexed: 06/06/2023]
Abstract
As a way to prevent resource depletion by other species, many phototrophic aquatic microorganisms produce inhibitory compounds. This process, known as allelopathy, has been widely studied in planktonic environments, where it is recognized as being a driving force of planktonic communities. However, in benthic environments, biofilms provide very particular micro-environments. The present review focuses on allelopathic interactions involving benthic phototrophic prokaryotes and micro-eukaryotes ('microalgae'), which generally form biofilms, and includes any interaction involving benthic microalgae either as the emitter or as the target in both marine and freshwater habitats. To support our hypothesis on the importance of allelopathy in biofilms due to the particularities of biofilms, we show that (i) reported allelopathic species and compounds are diverse and numerous in the three major groups of benthic phototrophic microorganisms, (ii) allelopathic benthic species could affect community composition, (iii) allelopathy in biofilms is currently underestimated because of the lack of suitable methods. As benthic primary producers represent an important source of organic carbon in some streams and littoral areas, these interactions could impact the whole ecosystem in these areas, probably more than in areas dominated by planktonic communities.
Collapse
Affiliation(s)
- Joey L Allen
- ECOLAB, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Loïc Ten-Hage
- ECOLAB, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | | |
Collapse
|
11
|
Van Wichelen J, Vanormelingen P, Codd GA, Vyverman W. The common bloom-forming cyanobacterium Microcystis is prone to a wide array of microbial antagonists. HARMFUL ALGAE 2016; 55:97-111. [PMID: 28073551 DOI: 10.1016/j.hal.2016.02.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 06/06/2023]
Abstract
Many degraded waterbodies around the world are subject to strong proliferations of cyanobacteria - notorious for their toxicity, high biomass build-up and negative impacts on aquatic food webs - the presence of which puts serious limits on the human use of affected water bodies. Cyanobacterial blooms are largely regarded as trophic dead ends since they are a relatively poor food source for zooplankton. As a consequence, their population dynamics are generally attributed to changes in abiotic conditions (bottom-up control). Blooms however generally contain a vast and diverse community of micro-organisms of which some have shown devastating effects on cyanobacterial biomass. For Microcystis, one of the most common bloom-forming cyanobacteria worldwide, a high number of micro-organisms (about 120 taxa) including viruses, bacteria, microfungi, different groups of heterotrophic protists, other cyanobacteria and several eukaryotic microalgal groups are currently known to negatively affect its growth by infection and predation or by the production of allelopathic compounds. Although many of these specifically target Microcystis, sharp declines of Microcystis biomass in nature are only rarely assigned to these antagonistic microbiota. The commonly found strain specificity of their interactions may largely preclude strong antagonistic effects on Microcystis population levels but may however induce compositional shifts that can change ecological properties such as bloom toxicity. These highly specific interactions may form the basis of a continuous arms race (co-evolution) between Microcystis and its antagonists which potentially limits the possibilities for (micro)biological bloom control.
Collapse
Affiliation(s)
- Jeroen Van Wichelen
- Protistology and Aquatic Ecology, Biology Department, Ghent University, Krijgslaan 281 (S8), 9000 Gent, Belgium.
| | - Pieter Vanormelingen
- Protistology and Aquatic Ecology, Biology Department, Ghent University, Krijgslaan 281 (S8), 9000 Gent, Belgium
| | - Geoffrey A Codd
- Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Wim Vyverman
- Protistology and Aquatic Ecology, Biology Department, Ghent University, Krijgslaan 281 (S8), 9000 Gent, Belgium
| |
Collapse
|
12
|
Bittencourt-Oliveira MC, Hereman TC, Macedo-Silva I, Cordeiro-Araújo MK, Sasaki FFC, Dias CTS. Sensitivity of salad greens (Lactuca sativa L. and Eruca sativa Mill.) exposed to crude extracts of toxic and non-toxic cyanobacteria. BRAZ J BIOL 2015; 75:273-8. [PMID: 26132007 DOI: 10.1590/1519-6984.08113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 03/12/2014] [Indexed: 11/22/2022] Open
Abstract
We evaluated the effect of crude extracts of the microcystin-producing (MC+) cyanobacteria Microcystis aeruginosa on seed germination and initial development of lettuce and arugula, at concentrations between 0.5 μg.L(-1) and 100 μg.L(-1) of MC-LR equivalent, and compared it to crude extracts of the same species without the toxin (MC-). Crude extracts of the cyanobacteria with MC (+) and without MC (-) caused different effects on seed germination and initial development of the salad green seedlings, lettuce being more sensitive to both extracts when compared to arugula. Crude extracts of M. aeruginosa (MC+) caused more evident effects on seed germination and initial development of both species of salad greens than MC-. Concentrations of 75 μg.L(-1) and 100 μg.L(-1) of MC-LR equivalent induced a greater occurrence of abnormal seedlings in lettuce, due to necrosis of the radicle and shortening of this organ in normal seedlings, as well as the reduction in total chlorophyll content and increase in the activity of the antioxidant enzyme peroxidase (POD). The MC- extract caused no harmful effects to seed germination and initial development of seedlings of arugula. However, in lettuce, it caused elevation of POD enzyme activity, decrease in seed germination at concentrations of 75 μg.L(-1) (MC-75) and 100 μg.L(-1) (MC-100), and shortening of the radicle length, suggesting that other compounds present in the cyanobacteria extracts contributed to this result. Crude extracts of M. aeruginosa (MC-) may contain other compounds, besides the cyanotoxins, capable of causing inhibitory or stimulatory effects on seed germination and initial development of salad green seedlings. Arugula was more sensitive to the crude extracts of M. aeruginosa (MC+) and (MC-) and to other possible compounds produced by the cyanobacteria.
Collapse
Affiliation(s)
- M C Bittencourt-Oliveira
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - T C Hereman
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - I Macedo-Silva
- Graduating Program on Biological Sciences, Universidade Estadual Paulista "Júlio de Mesquita Filho", Rio Claro, SP, Brazil
| | - M K Cordeiro-Araújo
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - F F C Sasaki
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - C T S Dias
- Department of Exact Sciences, Luiz de Queiroz College of Agriculture, Universidade de São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
13
|
Dietary input of microbes and host genetic variation shape among-population differences in stickleback gut microbiota. ISME JOURNAL 2015; 9:2515-26. [PMID: 25909977 DOI: 10.1038/ismej.2015.64] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 02/11/2015] [Accepted: 03/25/2015] [Indexed: 02/06/2023]
Abstract
To explain differences in gut microbial communities we must determine how processes regulating microbial community assembly (colonization, persistence) differ among hosts and affect microbiota composition. We surveyed the gut microbiota of threespine stickleback (Gasterosteus aculeatus) from 10 geographically clustered populations and sequenced environmental samples to track potential colonizing microbes and quantify the effects of host environment and genotype. Gut microbiota composition and diversity varied among populations. These among-population differences were associated with multiple covarying ecological variables: habitat type (lake, stream, estuary), lake geomorphology and food- (but not water-) associated microbiota. Fish genotype also covaried with gut microbiota composition; more genetically divergent populations exhibited more divergent gut microbiota. Our results suggest that population level differences in stickleback gut microbiota may depend more on internal sorting processes (host genotype) than on colonization processes (transient environmental effects).
Collapse
|
14
|
Cray JA, Bell ANW, Bhaganna P, Mswaka AY, Timson DJ, Hallsworth JE. The biology of habitat dominance; can microbes behave as weeds? Microb Biotechnol 2013; 6:453-92. [PMID: 23336673 PMCID: PMC3918151 DOI: 10.1111/1751-7915.12027] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 12/03/2012] [Indexed: 02/06/2023] Open
Abstract
Competition between microbial species is a product of, yet can lead to a reduction in, the microbial diversity of specific habitats. Microbial habitats can resemble ecological battlefields where microbial cells struggle to dominate and/or annihilate each other and we explore the hypothesis that (like plant weeds) some microbes are genetically hard-wired to behave in a vigorous and ecologically aggressive manner. These 'microbial weeds' are able to dominate the communities that develop in fertile but uncolonized--or at least partially vacant--habitats via traits enabling them to out-grow competitors; robust tolerances to habitat-relevant stress parameters and highly efficient energy-generation systems; avoidance of or resistance to viral infection, predation and grazers; potent antimicrobial systems; and exceptional abilities to sequester and store resources. In addition, those associated with nutritionally complex habitats are extraordinarily versatile in their utilization of diverse substrates. Weed species typically deploy multiple types of antimicrobial including toxins; volatile organic compounds that act as either hydrophobic or highly chaotropic stressors; biosurfactants; organic acids; and moderately chaotropic solutes that are produced in bulk quantities (e.g. acetone, ethanol). Whereas ability to dominate communities is habitat-specific we suggest that some microbial species are archetypal weeds including generalists such as: Pichia anomala, Acinetobacter spp. and Pseudomonas putida; specialists such as Dunaliella salina, Saccharomyces cerevisiae, Lactobacillus spp. and other lactic acid bacteria; freshwater autotrophs Gonyostomum semen and Microcystis aeruginosa; obligate anaerobes such as Clostridium acetobutylicum; facultative pathogens such as Rhodotorula mucilaginosa, Pantoea ananatis and Pseudomonas aeruginosa; and other extremotolerant and extremophilic microbes such as Aspergillus spp., Salinibacter ruber and Haloquadratum walsbyi. Some microbes, such as Escherichia coli, Mycobacterium smegmatis and Pseudoxylaria spp., exhibit characteristics of both weed and non-weed species. We propose that the concept of nonweeds represents a 'dustbin' group that includes species such as Synodropsis spp., Polypaecilum pisce, Metschnikowia orientalis, Salmonella spp., and Caulobacter crescentus. We show that microbial weeds are conceptually distinct from plant weeds, microbial copiotrophs, r-strategists, and other ecophysiological groups of microorganism. Microbial weed species are unlikely to emerge from stationary-phase or other types of closed communities; it is open habitats that select for weed phenotypes. Specific characteristics that are common to diverse types of open habitat are identified, and implications of weed biology and open-habitat ecology are discussed in the context of further studies needed in the fields of environmental and applied microbiology.
Collapse
Affiliation(s)
- Jonathan A Cray
- School of Biological Sciences, MBC, Queen's University BelfastBelfast, BT9 7BL, Northern Ireland, UK
| | - Andrew N W Bell
- School of Biological Sciences, MBC, Queen's University BelfastBelfast, BT9 7BL, Northern Ireland, UK
| | - Prashanth Bhaganna
- School of Biological Sciences, MBC, Queen's University BelfastBelfast, BT9 7BL, Northern Ireland, UK
| | - Allen Y Mswaka
- School of Biological Sciences, MBC, Queen's University BelfastBelfast, BT9 7BL, Northern Ireland, UK
| | - David J Timson
- School of Biological Sciences, MBC, Queen's University BelfastBelfast, BT9 7BL, Northern Ireland, UK
| | - John E Hallsworth
- School of Biological Sciences, MBC, Queen's University BelfastBelfast, BT9 7BL, Northern Ireland, UK
| |
Collapse
|
15
|
Role of a microcin-C-like biosynthetic gene cluster in allelopathic interactions in marine Synechococcus. Proc Natl Acad Sci U S A 2013; 110:12030-5. [PMID: 23818639 DOI: 10.1073/pnas.1306260110] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Competition between phytoplankton species for nutrients and light has been studied for many years, but allelopathic interactions between them have been more difficult to characterize. We used liquid and plate assays to determine whether these interactions occur between marine unicellular cyanobacteria of the genus Synechococcus. We have found a clear growth impairment of Synechococcus sp. CC9311 and Synechococcus sp. WH8102 when they are cultured in the presence of Synechococcus sp. CC9605. The genome of CC9605 contains a region showing homology to genes of the Escherichia coli Microcin C (McC) biosynthetic pathway. McC is a ribosome-synthesized peptide that inhibits translation in susceptible strains. We show that the CC9605 McC gene cluster is expressed and that three genes (mccD, mccA, and mccB) are further induced by coculture with CC9311. CC9605 was resistant to McC purified from E. coli, whereas strains CC9311 and WH8102 were sensitive. Cloning the CC9605 McC biosynthetic gene cluster into sensitive CC9311 led this strain to become resistant to both purified E. coli McC and Synechococcus sp. CC9605. A CC9605 mutant lacking mccA1, mccA2, and the N-terminal domain of mccB did not inhibit CC9311 growth, whereas the inhibition of WH8102 was reduced. Our results suggest that an McC-like molecule is involved in the allelopathic interactions with CC9605.
Collapse
|
16
|
Cusick KD, Wetzel RK, Minkin SC, Dodani SC, Wilhelm SW, Sayler GS. Paralytic shellfish toxins inhibit copper uptake in Chlamydomonas reinhardtii. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:1388-1395. [PMID: 23423950 DOI: 10.1002/etc.2187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/04/2013] [Accepted: 01/13/2013] [Indexed: 06/01/2023]
Abstract
Paralytic shellfish toxins are secondary metabolites produced by several species of dinoflagellates and cyanobacteria. Known targets of these toxins, which typically occur at detrimental concentrations during harmful algal blooms, include voltage-gated ion channels in humans and other mammals. However, the effects of the toxins on the co-occurring phytoplankton community remain unknown. The present study examined the molecular mechanisms of the model photosynthetic alga Chlamydomonas reinhardtii in response to saxitoxin exposure as a means of gaining insight into the phytoplankton community response to a bloom. Previous work with yeast indicated that saxitoxin inhibited copper uptake, so experiments were designed to examine whether saxitoxin exhibited a similar mode of action in algae. Expression profiling following exposure to saxitoxin or a copper chelator produced similar profiles in copper homeostasis genes, notably induction of the cytochrome c6 (CYC6) and copper transporter (COPT1, CTR1) genes. Cytochrome c6 is used as an alternative to plastocyanin under conditions of copper deficiency, and immunofluorescence data showed this protein to be present in a significantly greater proportion of saxitoxin-exposed cells compared to controls. Live-cell imaging with a copper-sensor probe for intracellular labile Cu(I) confirmed that saxitoxin blocked copper uptake. Extrapolations of these data to phytoplankton metabolic processes along with the copper transporter as a molecular target of saxitoxin based on existing structural models are discussed.
Collapse
Affiliation(s)
- Kathleen D Cusick
- Center for Environmental Biotechnology, The University of Tennessee, Knoxville, Tennessee, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Harel M, Weiss G, Lieman-Hurwitz J, Gun J, Lev O, Lebendiker M, Temper V, Block C, Sukenik A, Zohary T, Braun S, Carmeli S, Kaplan A. Interactions between Scenedesmus and Microcystis may be used to clarify the role of secondary metabolites. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:97-104. [PMID: 23757137 DOI: 10.1111/j.1758-2229.2012.00366.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 06/26/2012] [Indexed: 06/02/2023]
Abstract
Microcystis sp. are major players in the global intensification of toxic cyanobacterial blooms endangering the water quality of freshwater bodies. A novel green alga identified as Scenedesmus sp., designated strain huji (hereafter S. huji), was isolated from water samples containing toxic Microcystis sp. withdrawn from Lake Kinneret (Sea of Galilee), Israel, suggesting that it produces secondary metabolites that help it withstand the Microcystis toxins. Competition experiments suggested complex interaction between these two organisms and use of spent cell-free media from S. huji caused severe cell lysis in various Microcystis strains. We have isolated active metabolites from the spent S. huji medium. Application of the concentrated allelochemicals interfered with the functionality and perhaps the integrity of the Microcystis cell membrane, as indicated by the rapid effect on the photosynthetic variable fluorescence and leakage of phycobilins and ions. Although some activity was observed towards various bacteria, it did not alter growth of eukaryotic organisms such as the green alga Chlamydomonas reinhardtii.
Collapse
Affiliation(s)
- Moshe Harel
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, Givat Ram, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
This review covers the literature on the chemically mediated ecology of cyanobacteria, including ultraviolet radiation protection, feeding-deterrence, allelopathy, resource competition, and signalling. To highlight the chemical and biological diversity of this group of organisms, evolutionary and chemotaxonomical studies are presented. Several technologically relevant aspects of cyanobacterial chemical ecology are also discussed.
Collapse
Affiliation(s)
- Pedro N Leão
- CIIMAR/CIMAR, Center for Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123, Porto, Portugal.
| | | | | | | | | |
Collapse
|