1
|
Buder C, Langkabel N, Kirse A, Kalusa M, Fietz SA, Meemken D. Nano-coating with silicon dioxide to reduce the occurrence of bacterial contamination in a pig abattoir drinking system. Folia Microbiol (Praha) 2025:10.1007/s12223-025-01243-x. [PMID: 39904879 DOI: 10.1007/s12223-025-01243-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/14/2025] [Indexed: 02/06/2025]
Abstract
A recently discovered source for infection of slaughter pigs, and thus entry for bacteria into the food chain, is the installed drinking equipment in lairage pens of pig abattoirs. To mitigate this, nano-coating of stainless steel, currently used in human medicine fields as well as in other parts of the food chain, appears as promising technology. In this study, silicon dioxide nano-coating was applied to six drinkers and installed for one and three months in a lairage of a pig abattoir, while results were compared with those of drinkers that had not been nano-coated. Laboratory examination of eight sample types related to the drinkers was conducted for total aerobic plate count, Enterobacteriaceae count, Pseudomonas spp. count, Salmonella presence, pathogenic Yersinia enterocolitica presence, Listeria monocytogenes presence and methicillin-resistant Staphylococcus aureus presence. The nipple drinker, which the pigs take into their mouth for drinking, was then examined using scanning electron microscopy and elemental analysis. The nano-coating did not produce statistically significant reductions in the loads or presence of these bacteria compared to the same but uncoated drinking equipment used under the same conditions. Further studies should focus on the implementation of combined methods, such as nano-coating and sanitary treatment, as well as modifications to the coating itself, to produce meaningful reductions of the bacterial loads on/in abattoir lairage drinking equipment.
Collapse
Affiliation(s)
- Celine Buder
- Institute of Food Safety and Food Hygiene, Working Group Meat Hygiene, School of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany.
- Veterinary Centre for Resistance Research, School of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany.
| | - Nina Langkabel
- Institute of Food Safety and Food Hygiene, Working Group Meat Hygiene, School of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
- Veterinary Centre for Resistance Research, School of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
| | - Alina Kirse
- Institute of Biometry, Epidemiology and Information Processing, WHO Collaborating Centre for Research and Training for Health at the Human-Animal-Environment Interface, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - Mirjam Kalusa
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, 04103, Leipzig, Germany
| | - Simone A Fietz
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, 04103, Leipzig, Germany
| | - Diana Meemken
- Institute of Food Safety and Food Hygiene, Working Group Meat Hygiene, School of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
- Veterinary Centre for Resistance Research, School of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
| |
Collapse
|
2
|
Carvalho F, Carreaux A, Sartori-Rupp A, Tachon S, Gazi AD, Courtin P, Nicolas P, Dubois-Brissonnet F, Barbotin A, Desgranges E, Bertrand M, Gloux K, Schouler C, Carballido-López R, Chapot-Chartier MP, Milohanic E, Bierne H, Pagliuso A. Aquatic environment drives the emergence of cell wall-deficient dormant forms in Listeria. Nat Commun 2024; 15:8499. [PMID: 39358320 PMCID: PMC11447242 DOI: 10.1038/s41467-024-52633-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
Stressed bacteria can enter a dormant viable but non-culturable (VBNC) state. VBNC pathogens pose an increased health risk as they are undetectable by growth-based techniques and can wake up back into a virulent state. Although widespread in bacteria, the mechanisms governing this phenotypic switch remain elusive. Here, we investigate the VBNC state transition in the human pathogen Listeria monocytogenes. We show that bacteria starved in mineral water become VBNC by converting into osmotically stable cell wall-deficient coccoid forms, a phenomenon that occurs in other Listeria species. We reveal the bacterial stress response regulator SigB and the autolysin NamA as major actors of VBNC state transition. We lastly show that VBNC Listeria revert to a walled and virulent state after passage in chicken embryos. Our study provides more detail on the VBNC state transition mechanisms, revealing wall-free bacteria naturally arising in aquatic environments as a potential survival strategy in hypoosmotic and oligotrophic conditions.
Collapse
Affiliation(s)
- Filipe Carvalho
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Alexis Carreaux
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | | | - Anastasia D Gazi
- Ultrastructural Bioimaging Facility, Institut Pasteur, Paris, France
| | - Pascal Courtin
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Pierre Nicolas
- INRAE, Université Paris-Saclay, MaIAGE, Jouy-en-Josas, France
| | | | - Aurélien Barbotin
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Emma Desgranges
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Matthieu Bertrand
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Karine Gloux
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | - Rut Carballido-López
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | - Eliane Milohanic
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Hélène Bierne
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Alessandro Pagliuso
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
| |
Collapse
|
3
|
Ormsby MJ, White HL, Metcalf R, Oliver DM, Quilliam RS. Clinically important E. coli strains can persist, and retain their pathogenicity, on environmental plastic and fabric waste. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 326:121466. [PMID: 36958655 DOI: 10.1016/j.envpol.2023.121466] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/02/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
Plastic waste is ubiquitous in the environment and there are increasing reports of such waste being colonised by human pathogens. However, the ability of pathogens to persist on plastics for long periods, and the risk that they pose to human health, is unknown. Here, under simulated environmental conditions, we aimed to determine if pathogenic bacteria can retain their virulence following a prolonged period on plastic. Using antibiotic selection and luciferase expression for quantification, we show that clinically important strains of E. coli can survive on plastic for at least 28-days. Importantly, these pathogens also retained their virulence (determined by using a Galleria mellonella model as a surrogate for human infection) and in some cases, had enhanced virulence following their recovery from the plastisphere. This indicates that plastics in the environment can act as reservoirs for human pathogens and could facilitate their persistence for extended periods of time. Most importantly human pathogens in the plastisphere are capable of retaining their pathogenicity. Pathogens colonising environmental plastic waste therefore pose a heightened public health risk, particularly in areas where people are exposed to pollution.
Collapse
Affiliation(s)
- Michael J Ormsby
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| | - Hannah L White
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Rebecca Metcalf
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - David M Oliver
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
4
|
Presence of Listeria at primary production and processing of food of non-animal origin (FNAO) in Bavaria, Germany. J Food Prot 2023; 86:100015. [PMID: 36916596 DOI: 10.1016/j.jfp.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022]
Abstract
Several foodborne outbreaks associated with food of non-animal origin (FNAO) were reported within the last years. In recent years, Listeriamonocytogenes has been associated with such outbreaks. For this reason, different producers of FNAO at the primary production and processing level in Bavaria, Germany, were inspected from July 2020 to June 2021. Environmental and food sampling as well as the sampling of irrigation and processing water was performed to investigate the prevalence of Listeriaspp., including L.monocytogenes at facilities that produce ready-to-eat FNAO. Altogether, 39 producers of soft fruit, vegetables, ready-to-eat raw fruits, and vegetables/fresh cut were inspected. In addition to the on-spot inspections, 407 samples were taken in total, among them, 229 were swab samples from food contact material and the environment, 59 food samples (including soft fruit, vegetables and ready-to-eat vegetables), and 119 samples of irrigation and processing water. Samples were analyzed using methods according to ISO11290-1:2017. Furthermore, the samples of irrigation and processing water were also quantitatively tested for the number of Escherichiacoli (ISO9308-2:2014-06), enterococci (ISO7899-2:2000-11), and Pseudomonasaeruginosa (ISO16266:2008-05). No contamination with E.coli, enterococci, and P.aeruginosa could be detected in most of the samples. Overall, in 12.53% of the samples, Listeriaspp. were detected. L.monocytogenes was identified in 1.72% of the environmental and processing water samples, whereas L.monocytogenes was not detected in food samples. In addition to water sources and quality, this study demonstrates that irrigation regime, cultivation, hygienic handling, and maintenance protocols are highly important to reduce the potential contamination of ready-to-eat soft fruits and vegetables with Listeriaspp.
Collapse
|
5
|
Ricci A, Martelli F, Alinovi M, Garofalo A, Perna G, Neviani E, Mucchetti G, Bernini V. Behaviour and adhesion capacity of Listeria monocytogenes on Mozzarella di Bufala Campana PDO cheese and in fluids involved in the production process. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
6
|
Listeria monocytogenes in Irrigation Water: An Assessment of Outbreaks, Sources, Prevalence, and Persistence. Microorganisms 2022; 10:microorganisms10071319. [PMID: 35889038 PMCID: PMC9323950 DOI: 10.3390/microorganisms10071319] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
As more fresh fruits and vegetables are needed to meet the demands of a growing population, growers may need to start depending on more varied sources of water, including environmental, recycled, and reclaimed waters. Some of these sources might be susceptible to contamination with microbial pathogens, such as Listeria monocytogenes. Surveys have found this pathogen in water, soil, vegetation, and farm animal feces around the world. The frequency at which this pathogen is present in water sources is dependent on multiple factors, including the season, surrounding land use, presence of animals, and physicochemical water parameters. Understanding the survival duration of L. monocytogenes in specific water sources is important, but studies are limited concerning this environment and the impact of these highly variable factors. Understanding the pathogen’s ability to remain infectious is key to understanding how L. monocytogenes impacts produce outbreaks and, ultimately, consumers’ health.
Collapse
|
7
|
Burnett J, Wu ST, Voorn M, Jordan C, Manuel CS, Singh M, Oliver HF. Enhanced training, employee-led deep cleans, and complete sanitation execution are effective Listeria monocytogenes controls in retail produce environments. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Lotoux A, Milohanic E, Bierne H. The Viable But Non-Culturable State of Listeria monocytogenes in the One-Health Continuum. Front Cell Infect Microbiol 2022; 12:849915. [PMID: 35372114 PMCID: PMC8974916 DOI: 10.3389/fcimb.2022.849915] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Many bacterial species, including several pathogens, can enter a so-called “viable but non-culturable” (VBNC) state when subjected to stress. Bacteria in the VBNC state are metabolically active but have lost their ability to grow on standard culture media, which compromises their detection by conventional techniques based on bacterial division. Under certain conditions, VBNC bacteria can regain their growth capacity and, for pathogens, their virulence potential, through a process called resuscitation. Here, we review the current state of knowledge of the VBNC state of Listeria monocytogenes (Lm), a Gram-positive pathogenic bacterium responsible for listeriosis, one of the most dangerous foodborne zoonosis. After a brief summary of characteristics of VBNC bacteria, we highlight work on VBNC Lm in the environment and in agricultural and food industry settings, with particular emphasis on the impact of antimicrobial treatments. We subsequently discuss recent data suggesting that Lm can enter the VBNC state in the host, raising the possibility that VBNC forms contribute to the asymptomatic carriage of this pathogen in wildlife, livestock and even humans. We also consider the resuscitation and virulence potential of VBNC Lm and the danger posed by these bacteria to at-risk individuals, particularly pregnant women. Overall, we put forth the hypothesis that VBNC forms contribute to adaptation, persistence, and transmission of Lm between different ecological niches in the One-Health continuum, and suggest that screening for healthy carriers, using alternative techniques to culture-based enrichment methods, should better prevent listeriosis risks.
Collapse
|
9
|
Sharma S, Jaiswal S, Duffy B, Jaiswal AK. Advances in emerging technologies for the decontamination of the food contact surfaces. Food Res Int 2022; 151:110865. [PMID: 34980401 DOI: 10.1016/j.foodres.2021.110865] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/13/2021] [Accepted: 12/02/2021] [Indexed: 11/18/2022]
Abstract
Foodborne pathogens could be transferred to food from food contact surfaces contaminated by poor hygiene or biofilm formation. The food processing industry has various conditions favouring microbes' adherence, such as moisture, nutrients, and the microbial inoculums obtained from the raw material. The function of the ideal antimicrobial surface is preventing initial attachment of the microbes, killing the microbes or/and removing the dead bacteria. This review article provides detail about the challenges food industries are facing with respect to food contact materials. It also summarises the merits and demerits of several sanitizing methods developed for industrial use. Furthermore, it reviews the new and emerging techniques that enhance the efficiency of reducing microbial contamination. Techniques such as surface functionalisation, high-intensity ultrasound, cold plasma technologies etc. which have high potential to be used for the decontamination of food contact surfaces are discussed. The emerging designs of antibacterial surfaces provide the opportunity to reduce or eradicate the adhesion of microorganisms. The most important purpose of these surfaces is to prevent the attachment of bacteria and to kill the bacteria that come in contact. These emerging technologies have a high potential for developing safe and inert food contact materials for the food industry.
Collapse
Affiliation(s)
- Shubham Sharma
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Environmental Sustainability and Health Institute, Technological University Dublin - City Campus, Grangegorman, Dublin D07 H6K8, Ireland; Centre for Research in Engineering and Surface Technology (CREST-Gateway), FOCAS Institute, Technological University Dublin - City Campus, Kevin Street, Dublin D08 CKP1, Ireland
| | - Swarna Jaiswal
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Environmental Sustainability and Health Institute, Technological University Dublin - City Campus, Grangegorman, Dublin D07 H6K8, Ireland.
| | - Brendan Duffy
- Centre for Research in Engineering and Surface Technology (CREST-Gateway), FOCAS Institute, Technological University Dublin - City Campus, Kevin Street, Dublin D08 CKP1, Ireland
| | - Amit K Jaiswal
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Environmental Sustainability and Health Institute, Technological University Dublin - City Campus, Grangegorman, Dublin D07 H6K8, Ireland
| |
Collapse
|
10
|
Shahbazi M, Tohidfar M, Azimzadeh Irani M. Identification of the key functional genes in salt-stress tolerance of Cyanobacterium Phormidium tenue using in silico analysis. 3 Biotech 2021; 11:503. [PMID: 34881166 PMCID: PMC8602552 DOI: 10.1007/s13205-021-03050-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/31/2021] [Indexed: 10/19/2022] Open
Abstract
The development of artificial biocrust using cyanobacterium Phormidium tenue has been suggested as an effective strategy to prevent soil degradation. Here, a combination of in silico approaches with growth rate, photosynthetic pigment, morphology, and transcript analysis was used to identify specific genes and their protein products in response to 500 mM NaCl in P. tenue. The results show that 500 mM NaCl induces the expression of genes encoding glycerol-3-phosphate dehydrogenase (glpD) as a Flavoprotein, ribosomal protein S12 methylthiotransferase (rimO), and a hypothetical protein (sll0939). The constructed co-expression network revealed a group of abiotic stress-responsive genes. Using the Basic Local Alignment Search Tool (BLAST), the homologous proteins of rimO, glpD, and sll0939 were identified in the P. tenue genome. Encoded proteins of glpD, rimO, and DUF1622 genes, respectively, contain (DAO and DAO C), (UPF0004, Radical SAM and TRAM 2), and (DUF1622) domains. The predicted ligand included 22B and MG for DUF1622, FS5 for rimO, and FAD for glpD protein. There was no direct disruption in ligand-binding sites of these proteins by Na+, Cl-, or NaCl. The growth rate, photosynthetic pigment, and morphology of P. tenue were investigated, and the result showed an acceptable tolerance rate of this microorganism under salt stress. The quantitative real-time polymerase chain reaction (qRT-PCR) results revealed the up-regulation of glpD, rimO, and DUF1622 genes under salt stress. This is the first report on computational and experimental analyses of the glpD, rimO, and DUF1622 genes in P. tenue under salt stress to the best of our knowledge. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03050-w.
Collapse
Affiliation(s)
- Mehrdad Shahbazi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, 1983969411 Tehran, Iran
| | - Masoud Tohidfar
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, 1983969411 Tehran, Iran
| | - Maryam Azimzadeh Irani
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, 1983969411 Tehran, Iran
| |
Collapse
|
11
|
Rilstone V, Vignale L, Craddock J, Cushing A, Filion Y, Champagne P. The role of antibiotics and heavy metals on the development, promotion, and dissemination of antimicrobial resistance in drinking water biofilms. CHEMOSPHERE 2021; 282:131048. [PMID: 34470147 DOI: 10.1016/j.chemosphere.2021.131048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
Antimicrobial resistance (AMR), as well as the development of biofilms in drinking water distribution systems (DWDSs), have become an increasing concern for public health and management. As bulk water travels from source to tap, it may accumulate contaminants of emerging concern (CECs) such as antibiotics and heavy metals. When these CECs and other selective pressures, such as disinfection, pipe material, temperature, pH, and nutrient availability interact with planktonic cells and, consequently, DWDS biofilms, AMR is promoted. The purpose of this review is to highlight the mechanisms by which AMR develops and is disseminated within DWDS biofilms. First, this review will lay a foundation by describing how DWDS biofilms form, as well as their basic intrinsic and acquired resistance mechanisms. Next, the selective pressures that further induce AMR in DWDS biofilms will be elaborated. Then, the pressures by which antibiotic and heavy metal CECs accumulate in DWDS biofilms, their individual resistance mechanisms, and co-selection are described and discussed. Finally, the known human health risks and current management strategies to mitigate AMR in DWDSs will be presented. Overall, this review provides critical connections between several biotic and abiotic factors that influence and induce AMR in DWDS biofilms. Implications are made regarding the importance of monitoring and managing the development, promotion, and dissemination of AMR in DWDS biofilms.
Collapse
Affiliation(s)
- Victoria Rilstone
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Leah Vignale
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Justine Craddock
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Alexandria Cushing
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Yves Filion
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada.
| | - Pascale Champagne
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada; Institut National de la Recherche Scientifique (INRS), 490 rue de la Couronne, Québec City, Québec, G1K 9A9, Canada
| |
Collapse
|
12
|
Khan J, Tarar SM, Gul I, Nawaz U, Arshad M. Challenges of antibiotic resistance biofilms and potential combating strategies: a review. 3 Biotech 2021; 11:169. [PMID: 33816046 DOI: 10.1007/s13205-021-02707-w] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
In this modern era, medicine is facing many alarming challenges. Among different challenges, antibiotics are gaining importance. Recent years have seen unprecedented increase in knowledge and understanding of various factors that are root cause of the spread and development of resistance in microbes against antibiotics. The infection results in the formation of microbial colonies which are termed as biofilms. However, it has been found that a multiple factors contribute in the formation of antimicrobial resistance. Due to higher dose of Minimum Bactericidal Concentration (MBC) as well as of Minimum Inhibitory Concentration (MIC), a large batch of antibiotics available today are of no use as they are ineffective against infections. Therefore, to control infections, there is dire need to adopt alternative treatment for biofilm infection other than antibiotics. This review highlights the latest techniques that are being used to cure the menace of biofilm infections. A wide range of mechanisms has been examined with particular attention towards avenues which can be proved fruitful in the treatment of biofilms. Besides, newer strategies, i.e., matrix centered are also discussed as alternative therapeutic techniques including modulating microbial metabolism, matrix degrading enzyme, photodynamic therapy, natural compounds quorum sensing and nanotechnology which are being used to disrupt extra polymeric substances (EPS) matrix of desired bacterial biofilms.
Collapse
Affiliation(s)
- Javairia Khan
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Sumbal Mudassar Tarar
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Iram Gul
- Department of Earth and Environmental Sciences, Hazara University, Mansehra, Pakistan
| | - Uzam Nawaz
- Department of Statistics, The Women University Multan, Multan, Pakistan
| | - Muhammad Arshad
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
13
|
Ricci A, Alinovi M, Martelli F, Bernini V, Garofalo A, Perna G, Neviani E, Mucchetti G. Heat Resistance of Listeria monocytogenes in Dairy Matrices Involved in Mozzarella di Bufala Campana PDO Cheese. Front Microbiol 2021; 11:581934. [PMID: 33488535 PMCID: PMC7815519 DOI: 10.3389/fmicb.2020.581934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022] Open
Abstract
The presence of Listeria monocytogenes in Mozzarella di Bufala Campana Protected Designation of Origin cheeses may depend on curd stretching conditions and post contaminations before packaging. To avoid cross-contamination, thermal treatment of water, brines and covering liquid may become necessary. The present study aimed to improve knowledge about L. monocytogenes thermal resistance focusing on the influence of some cheese making operations, namely curd stretching and heat treatment of fluids in contact with cheese after molding, in order to improve the safety of the cheese, optimize efficacy and sustainability of the processes. Moreover, the role that cheese curd stretching plays in L. monocytogenes inactivation was discussed. The 12 tested strains showed a very heterogeneous heat resistance that ranged from 7 to less than 1 Log10 Cfu/mL reduction after 8 min at 60°C. D-values (decimal reduction times) and z-values (thermal resistance constant) calculated for the most heat resistant strain among 60 and 70°C were highly affected by the matrix and, in particular, heat resistance noticeably increased in drained cheese curd. As cheese curd stretching is not an isothermal process, to simulate the overall lethal effect of an industrial process a secondary model was built. The lethal effect of the process was estimated around 4 Log10 reductions. The data provided may be useful for fresh pasta filata cheese producers in determining appropriate processing durations and temperatures for producing safe cheeses.
Collapse
Affiliation(s)
- Annalisa Ricci
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | | | | | - Alessandro Garofalo
- Research and Development, Consorzio Tutela Mozzarella di Bufala Campana DOP, Caserta, Italy
| | - Giampiero Perna
- Research and Development, Consorzio Tutela Mozzarella di Bufala Campana DOP, Caserta, Italy
| | - Erasmo Neviani
- Department of Food and Drug, University of Parma, Parma, Italy
| | | |
Collapse
|
14
|
Detection and Potential Virulence of Viable but Non-Culturable (VBNC) Listeria monocytogenes: A Review. Microorganisms 2021; 9:microorganisms9010194. [PMID: 33477778 PMCID: PMC7832328 DOI: 10.3390/microorganisms9010194] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 01/04/2023] Open
Abstract
The detection, enumeration, and virulence potential of viable but non-culturable (VBNC) pathogens continues to be a topic of discussion. While there is a lack of definitive evidence that VBNC Listeria monocytogenes (Lm) pose a public health risk, recent studies suggest that Lm in its VBNC state remains virulent. VBNC bacteria cannot be enumerated by traditional plating methods, so the results from routine Lm testing may not demonstrate a sample's true hazard to public health. We suggest that supplementing routine Lm testing methods with methods designed to enumerate VBNC cells may more accurately represent the true level of risk. This review summarizes five methods for enumerating VNBC Lm: Live/Dead BacLightTM staining, ethidium monoazide and propidium monoazide-stained real-time polymerase chain reaction (EMA- and PMA-PCR), direct viable count (DVC), 5-cyano-2,3-ditolyl tetrazolium chloride-4',6-diamidino-2-phenylindole (CTC-DAPI) double staining, and carboxy-fluorescein diacetate (CDFA) staining. Of these five supplementary methods, the Live/Dead BacLightTM staining and CFDA-DVC staining currently appear to be the most accurate for VBNC Lm enumeration. In addition, the impact of the VBNC state on the virulence of Lm is reviewed. Widespread use of these supplemental methods would provide supporting data to identify the conditions under which Lm can revert from its VBNC state into an actively multiplying state and help identify the environmental triggers that can cause Lm to become virulent. Highlights: Rationale for testing for all viable Listeria (Lm) is presented. Routine environmental sampling and plating methods may miss viable Lm cells. An overview and comparison of available VBNC testing methods is given. There is a need for resuscitation techniques to recover Lm from VBNC. A review of testing results for post VBNC virulence is compared.
Collapse
|
15
|
Formation and resistance to cleaning of biofilms at air-liquid-wall interface. Influence of bacterial strain and material. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Delhalle L, Taminiau B, Fastrez S, Fall A, Ballesteros M, Burteau S, Daube G. Evaluation of Enzymatic Cleaning on Food Processing Installations and Food Products Bacterial Microflora. Front Microbiol 2020; 11:1827. [PMID: 32849429 PMCID: PMC7431609 DOI: 10.3389/fmicb.2020.01827] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/12/2020] [Indexed: 12/13/2022] Open
Abstract
Biofilms are a permanent source of contamination in food industries and could harbor various types of microorganisms, such as spoiling bacteria. New strategies, such as enzymatic cleaning, have been proposed to eradicate them. The purpose of this study was to evaluate the impact of enzymatic cleaning on the microbial flora of installations in a processing food industry and of the final food product throughout its shelf life. A total of 189 samples were analyzed by classical microbiology and 16S rDNA metagenetics, including surface samples, cleaning-in-place (CIP) systems, and food products (at D0, Dend of the shelf life, and Dend of the shelf life +7 days). Some surfaces were highly contaminated with spoiling bacteria during conventional cleaning while the concentration of the total flora decreased during enzymatic cleaning. Although the closed circuits were cleaned with conventional cleaning before enzymatic cleaning, there was a significant release of microorganisms from some parts of the installations during enzymatic treatment. A significant difference in the total flora in the food products at the beginning of the shelf life was observed during enzymatic cleaning compared to the conventional cleaning, with a reduction of up to 2 log CFU/g. Metagenetic analysis of the food samples at the end of their shelf life showed significant differences in bacterial flora between conventional and enzymatic cleaning, with a decrease of spoiling bacteria (Leuconostoc sp.). Enzymatic cleaning has improved the hygiene of the food processing instillations and the microbial quality of the food throughout the shelf life. Although enzymatic cleaning is not yet commonly used in the food industry, it should be considered in combination with conventional sanitizing methods to improve plant hygiene.
Collapse
Affiliation(s)
- Laurent Delhalle
- Fundamental and Applied Research for Animals and Health, Department of Food Science, University of Liège, Liège, Belgium
| | - Bernard Taminiau
- Fundamental and Applied Research for Animals and Health, Department of Food Science, University of Liège, Liège, Belgium
| | | | | | | | | | - Georges Daube
- Fundamental and Applied Research for Animals and Health, Department of Food Science, University of Liège, Liège, Belgium
| |
Collapse
|
17
|
Ríos-Castillo A, Ripolles-Avila C, Rodríguez-Jerez J. Detection of Salmonella Typhimurium and Listeria monocytogenes biofilm cells exposed to different drying and pre-enrichment times using conventional and rapid methods. Int J Food Microbiol 2020; 324:108611. [DOI: 10.1016/j.ijfoodmicro.2020.108611] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 01/28/2023]
|
18
|
Gu G, Bolten S, Mowery J, Luo Y, Gulbronson C, Nou X. Susceptibility of foodborne pathogens to sanitizers in produce rinse water and potential induction of viable but non-culturable state. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107138] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Lepe-Balsalobre E, Lepe JA. Retos actuales en la detección e identificación de Listeria monocytogenes. REVISTA MADRILEÑA DE SALUD PÚBLICA 2020. [DOI: 10.36300/remasp.2020.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Desde el punto de vista microbiológico la identificación y detección de Listeria monocytogenes (Lm) está bien establecida, pero no bien resuelta en algunas circunstancias. En la actualidad, los mayores retos en la identificación de Lm son: la identificación segura de los aislamientos de Lm con características hemolíticas atípicas y la detección de Lm en un estado fisiológicamente viable pero no cultivable (VBNC) en respuesta al estrés. Estos aspectos, no están bien establecidos o no están contemplados en la normativa UNE-EN ISO 11290.
Desde el punto de vista de la identificación segura, los mayores problemas ocurren con los aislados de Lm con débil o ausente capacidad hemolítica, los aislados con fenotipo de hemólisis atípico y en la discriminación de los aislados de Listeria innocua con características hemolíticas.
Respecto a la detección Lm con fenotipo de no cultivabilidad, los problemas radican en la puesta en evidencia de los aislados en las biopelículas que se forman en las instalaciones de procesamiento de alimentos o en las infecciones que involucran dispositivos protésicos. Otro hecho importante, es la detección en las hojas de los vegetales sometidos a procesos de conservación y en las infecciones que producen abscesos.
Collapse
Affiliation(s)
| | - José A. Lepe
- Hospital Universitario Virgen del Rocío. Sevilla.España
| |
Collapse
|
20
|
Rosenberg M, Azevedo NF, Ivask A. Propidium iodide staining underestimates viability of adherent bacterial cells. Sci Rep 2019; 9:6483. [PMID: 31019274 PMCID: PMC6482146 DOI: 10.1038/s41598-019-42906-3] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/08/2019] [Indexed: 02/07/2023] Open
Abstract
Combining membrane impermeable DNA-binding stain propidium iodide (PI) with membrane-permeable DNA-binding counterstains is a widely used approach for bacterial viability staining. In this paper we show that PI staining of adherent cells in biofilms may significantly underestimate bacterial viability due to the presence of extracellular nucleic acids (eNA). We demonstrate that gram-positive Staphylococcus epidermidis and gram-negative Escherichia coli 24-hour initial biofilms on glass consist of 76 and 96% PI-positive red cells in situ, respectively, even though 68% the cells of either species in these aggregates are metabolically active. Furthermore, 82% of E. coli and 89% S. epidermidis are cultivable after harvesting. Confocal laser scanning microscopy (CLSM) revealed that this false dead layer of red cells is due to a subpopulation of double-stained cells that have green interiors under red coating layer which hints at eNA being stained outside intact membranes. Therefore, viability staining results of adherent cells should always be validated by an alternative method for estimating viability, preferably by cultivation.
Collapse
Affiliation(s)
- Merilin Rosenberg
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia. .,Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia.
| | - Nuno F Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy; Department of Chemical Engineering; Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Angela Ivask
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| |
Collapse
|
21
|
Alvarez-Ordóñez A, Coughlan LM, Briandet R, Cotter PD. Biofilms in Food Processing Environments: Challenges and Opportunities. Annu Rev Food Sci Technol 2019; 10:173-195. [PMID: 30653351 DOI: 10.1146/annurev-food-032818-121805] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review examines the impact of microbial communities colonizing food processing environments in the form of biofilms on food safety and food quality. The focus is both on biofilms formed by pathogenic and spoilage microorganisms and on those formed by harmless or beneficial microbes, which are of particular relevance in the processing of fermented foods. Information is presented on intraspecies variability in biofilm formation, interspecies relationships of cooperativism or competition within biofilms, the factors influencing biofilm ecology and architecture, and how these factors may influence removal. The effect on the biofilm formation ability of particular food components and different environmental conditions that commonly prevail during food processing is discussed. Available tools for the in situ monitoring and characterization of wild microbial biofilms in food processing facilities are explored. Finally, research on novel agents or strategies for the control of biofilm formation or removal is summarized.
Collapse
Affiliation(s)
- Avelino Alvarez-Ordóñez
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, 24071 León, Spain;
| | - Laura M Coughlan
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland.,School of Microbiology, University College Cork, County Cork, Ireland
| | - Romain Briandet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78350 France
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland.,APC Microbiome Ireland, Cork, County Cork, Ireland
| |
Collapse
|
22
|
Galié S, García-Gutiérrez C, Miguélez EM, Villar CJ, Lombó F. Biofilms in the Food Industry: Health Aspects and Control Methods. Front Microbiol 2018; 9:898. [PMID: 29867809 PMCID: PMC5949339 DOI: 10.3389/fmicb.2018.00898] [Citation(s) in RCA: 477] [Impact Index Per Article: 68.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 04/18/2018] [Indexed: 12/18/2022] Open
Abstract
Diverse microorganisms are able to grow on food matrixes and along food industry infrastructures. This growth may give rise to biofilms. This review summarizes, on the one hand, the current knowledge regarding the main bacterial species responsible for initial colonization, maturation and dispersal of food industry biofilms, as well as their associated health issues in dairy products, ready-to-eat foods and other food matrixes. These human pathogens include Bacillus cereus (which secretes toxins that can cause diarrhea and vomiting symptoms), Escherichia coli (which may include enterotoxigenic and even enterohemorrhagic strains), Listeria monocytogenes (a ubiquitous species in soil and water that can lead to abortion in pregnant women and other serious complications in children and the elderly), Salmonella enterica (which, when contaminating a food pipeline biofilm, may induce massive outbreaks and even death in children and elderly), and Staphylococcus aureus (known for its numerous enteric toxins). On the other hand, this review describes the currently available biofilm prevention and disruption methods in food factories, including steel surface modifications (such as nanoparticles with different metal oxides, nanocomposites, antimicrobial polymers, hydrogels or liposomes), cell-signaling inhibition strategies (such as lactic and citric acids), chemical treatments (such as ozone, quaternary ammonium compounds, NaOCl and other sanitizers), enzymatic disruption strategies (such as cellulases, proteases, glycosidases and DNAses), non-thermal plasma treatments, the use of bacteriophages (such as P100), bacteriocins (such us nisin), biosurfactants (such as lichenysin or surfactin) and plant essential oils (such as citral- or carvacrol-containing oils).
Collapse
Affiliation(s)
- Serena Galié
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, University of Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Coral García-Gutiérrez
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, University of Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Elisa M. Miguélez
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, University of Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Claudio J. Villar
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, University of Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Felipe Lombó
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, University of Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
23
|
Gutierrez-Rodriguez E, Adhikari A. Preharvest Farming Practices Impacting Fresh Produce Safety. Microbiol Spectr 2018; 6:10.1128/microbiolspec.pfs-0022-2018. [PMID: 29676249 PMCID: PMC11633564 DOI: 10.1128/microbiolspec.pfs-0022-2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Indexed: 01/08/2023] Open
Abstract
Advancements in agriculture and food processing techniques have been instrumental in the development of modern human societies. Vast improvements in agronomic practices, handling, and processing have allowed us to produce and preserve mass quantities of food. Yet despite all these innovations and potentially as a consequence of these mass production practices, more and more outbreaks of human pathogens linked to raw and processed foods are identified every year. It is evident that our increased capacity for microbial detection has contributed to the greater number of outbreaks detected. However, our understanding of how these events originate and what agronomic, packaging, and environmental factors influence the survival, persistence, and proliferation of human pathogens remains of scientific debate. This review seeks to identify those past and current challenges to the safety of fresh produce and focuses on production practices and how those impact produce safety. It reflects on 20 years of research, industry guidelines, and federal standards and how they have evolved to our current understanding of fresh produce safety. This document is not intended to summarize and describe all fruit and vegetable farming practices across the United States and the rest of the world. We understand the significant differences in production practices that exist across regions. This review highlights those general farming practices that significantly impact past and current food safety issues. It focuses on current and future research needs and on preharvest food safety control measures in fresh-produce safety that could provide insight into the mechanisms of pathogen contamination, survival, and inactivation under field and packinghouse conditions.
Collapse
Affiliation(s)
- Eduardo Gutierrez-Rodriguez
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695
| | - Achyut Adhikari
- School of Nutrition and Food Sciences, Louisiana State University, Baton Rouge, LA 70803
| |
Collapse
|
24
|
A multiplex PCR detection method for milk based on novel primers specific for Listeria monocytogenes 1/2a serotype. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.11.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Brauge T, Faille C, Sadovskaya I, Charbit A, Benezech T, Shen Y, Loessner MJ, Bautista JR, Midelet-Bourdin G. The absence of N-acetylglucosamine in wall teichoic acids of Listeria monocytogenes modifies biofilm architecture and tolerance to rinsing and cleaning procedures. PLoS One 2018; 13:e0190879. [PMID: 29320565 PMCID: PMC5761963 DOI: 10.1371/journal.pone.0190879] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/21/2017] [Indexed: 11/18/2022] Open
Abstract
The wall teichoic acid (WTA) is the major carbohydrate found within the extracellular matrix of the Listeria monocytogenes biofilm. We first addressed the frequency of spontaneous mutations in two genes (lmo2549 and lmo2550) responsible for the GlcNAcylation in 93 serotype 1/2a strains that were mainly isolated from seafood industries. We studied the impact of mutations in lmo2549 or lmo2550 genes on biofilm formation by using one mutant carrying a natural mutation inactivating the lmo2550 gene (DSS 1130 BFA2 strain) and two EGD-e mutants that lack respective genes by in-frame deletion of lmo2549 or lmo2550 using splicing-by-overlap-extension PCR, followed by allelic exchange mutagenesis. The lmo2550 gene mutation, occurring in around 50% isolates, caused a decrease in bacterial adhesion to stainless steel compared to wild-type EGD-e strain during the adhesion step. On the other hand, bacterial population weren't significantly different after 24h-biofilm formation. The biofilm architecture was different between the wild-type strain and the two mutants inactivated for lmo2549 or lmo2550 genes respectively with the presence of bacterial micro-colonies for mutants which were not observed in the wild-type EGD-e strain biofilm. These differences might account for the stronger hydrophilic surface exhibited by the mutant cells. Upon a water flow or to a cleaning procedure at a shear stress of 0.16 Pa, the mutant biofilms showed the higher detachment rate compared to wild-type strain. Meanwhile, an increase in the amount of residual viable but non-culturable population on stainless steel was recorded in two mutants. Our data suggests that the GlcNAc residue of WTA played a role in adhesion and biofilm formation of Listeria monocyctogenes.
Collapse
Affiliation(s)
- Thomas Brauge
- ANSES, Laboratory for food safety, Boulogne sur Mer, France
| | - Christine Faille
- UMR UMET, INRA, CNRS, Université Lille 1, Villeneuve d’Ascq, France
| | - Irina Sadovskaya
- Université du Littoral-Côte d’Opale, Institut Charles Violette EA 7394, USC Anses, Boulogne sur Mer, France
| | | | - Thierry Benezech
- UMR UMET, INRA, CNRS, Université Lille 1, Villeneuve d’Ascq, France
| | - Yang Shen
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Martin J. Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
26
|
Rodríguez-López P, Puga CH, Orgaz B, Cabo ML. Quantifying the combined effects of pronase and benzalkonium chloride in removing late-stage Listeria monocytogenes-Escherichia coli dual-species biofilms. BIOFOULING 2017; 33:690-702. [PMID: 28871864 DOI: 10.1080/08927014.2017.1356290] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/10/2017] [Indexed: 06/07/2023]
Abstract
This work presents the assessment of the effectivity of a pronase (PRN)-benzalkonium chloride (BAC) sequential treatment in removing Listeria monocytogenes-Escherichia coli dual-species biofilms grown on stainless steel (SS) using fluorescence microscopy and plate count assays. The effects of PRN-BAC on the occupied area (OA) by undamaged cells in 168 h dual-species samples were determined using a first-order factorial design. Empirical equations significantly (r2 = 0.927) described a negative individual effect of BAC and a negative interactive effect of PRN-BAC achieving OA reductions up to 46%. After treatment, high numbers of remaining attached and released viable and cultivable E. coli cells were detected in PRN-BAC combinations when low BAC concentrations were used. Therefore, at appropriate BAC doses, in addition to biofilm removal, sequential application of PRN and BAC represents an appealing strategy for pathogen control on SS surfaces while hindering the dispersion of live cells into the environment.
Collapse
Affiliation(s)
- Pedro Rodríguez-López
- a Department of Microbiology and Technology of Marine Products , Instituto de Investigaciones Marinas (IIM-CSIC) , Pontevedra , Spain
| | - Carmen H Puga
- b Department of Nutrition, Food Science and Technology, Faculty of Veterinary , University Complutense of Madrid (UCM) , Madrid , Spain
| | - Belén Orgaz
- b Department of Nutrition, Food Science and Technology, Faculty of Veterinary , University Complutense of Madrid (UCM) , Madrid , Spain
| | - Marta L Cabo
- a Department of Microbiology and Technology of Marine Products , Instituto de Investigaciones Marinas (IIM-CSIC) , Pontevedra , Spain
| |
Collapse
|
27
|
Zhao X, Zhong J, Wei C, Lin CW, Ding T. Current Perspectives on Viable but Non-culturable State in Foodborne Pathogens. Front Microbiol 2017; 8:580. [PMID: 28421064 PMCID: PMC5378802 DOI: 10.3389/fmicb.2017.00580] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/21/2017] [Indexed: 01/24/2023] Open
Abstract
The viable but non-culturable (VBNC) state, a unique state in which a number of bacteria respond to adverse circumstances, was first discovered in 1982. Unfortunately, it has been reported that many foodborne pathogens can be induced to enter the VBNC state by the limiting environmental conditions during food processing and preservation, such as extreme temperatures, drying, irradiation, pulsed electric field, and high pressure stress, as well as the addition of preservatives and disinfectants. After entering the VBNC state, foodborne pathogens will introduce a serious crisis to food safety and public health because they cannot be detected using conventional plate counting techniques. This review provides an overview of the various features of the VBNC state, including the biological characteristics, induction and resuscitation factors, formation and resuscitation mechanisms, detection methods, and relationship to food safety.
Collapse
Affiliation(s)
- Xihong Zhao
- Key Laboratory for Green Chemical Process of Ministry of Education, Key Laboratory for Hubei Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of TechnologyWuhan, China
| | - Junliang Zhong
- Key Laboratory for Green Chemical Process of Ministry of Education, Key Laboratory for Hubei Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of TechnologyWuhan, China
| | - Caijiao Wei
- Key Laboratory for Green Chemical Process of Ministry of Education, Key Laboratory for Hubei Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of TechnologyWuhan, China
| | - Chii-Wann Lin
- Institute of Biomedical Engineering, National Taiwan UniversityTaipei, Taiwan
| | - Tian Ding
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang UniversityHangzhou, China
| |
Collapse
|
28
|
Rodríguez-López P, Carballo-Justo A, Draper LA, Cabo ML. Removal of Listeria monocytogenes dual-species biofilms using combined enzyme-benzalkonium chloride treatments. BIOFOULING 2017; 33:45-58. [PMID: 27918204 DOI: 10.1080/08927014.2016.1261847] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/08/2016] [Indexed: 06/06/2023]
Abstract
The effects of pronase (PRN), cellulase (CEL) or DNaseI alone or combined with benzalkonium chloride (BAC) against Listeria monocytogenes-carrying biofilms were assayed. The best removal activity against L. monocytogenes-Escherichia coli biofilms was obtained using DNaseI followed by PRN and CEL. Subsequently, a modified logistic model was used to quantify the combined effects of PRN or DNaseI with BAC. A better BAC performance after PRN compared to DNaseI eradicating L. monocytogenes was observed. In E. coli the effects were the opposite. Finally, effects of DNaseI and DNaseI-BAC treatments were compared against two different L. monocytogenes-carrying biofilms. DNaseI-BAC was more effective against L. monocytogenes when co-cultured with E. coli. Nonetheless, comparing the removal effects after BAC addition, these were higher in mixed-biofilms with Pseudomonas fluorescens. However, a high number of released viable cells was observed after combined treatments. These results open new perspectives of enzymes as an anti-biofilm strategy for environmental pathogen control.
Collapse
Affiliation(s)
- Pedro Rodríguez-López
- a Department of Microbiology and Technology of Marine Products , Instituto de Investigaciones Marinas (IIM-CSIC) , Pontevedra , Spain
- b Faculty of Biosciences, Department of Genetics and Microbiology , Autonomous University of Barcelona , Catalonia , Spain
| | - Alba Carballo-Justo
- a Department of Microbiology and Technology of Marine Products , Instituto de Investigaciones Marinas (IIM-CSIC) , Pontevedra , Spain
| | - Lorraine A Draper
- c APC Microbiome Institute , University College Cork , Cork , Ireland
| | - Marta L Cabo
- a Department of Microbiology and Technology of Marine Products , Instituto de Investigaciones Marinas (IIM-CSIC) , Pontevedra , Spain
| |
Collapse
|
29
|
Ayrapetyan M, Oliver JD. The viable but non-culturable state and its relevance in food safety. Curr Opin Food Sci 2016. [DOI: 10.1016/j.cofs.2016.04.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Gilmartin N, Gião MS, Keevil CW, O'Kennedy R. Differential internalin A levels in biofilms of Listeria monocytogenes grown on different surfaces and nutrient conditions. Int J Food Microbiol 2015; 219:50-5. [PMID: 26724402 DOI: 10.1016/j.ijfoodmicro.2015.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 11/30/2015] [Accepted: 12/11/2015] [Indexed: 10/22/2022]
Abstract
Listeria monoctyogenes is a foodborne pathogen containing the surface protein, internalin A (InlA). The expression of this protein permits the invasion of L. monocytogenes into intestinal epithelial cells expressing the receptor E-cadherin, thus crossing the intestinal barrier and resulting in listerosis. The main aim of this work was to investigate InlA levels in different L. monocytogenes strains in both planktonic and sessile states using an anti-InlA antibody. Biofilms were grown in high and low nutrient environments on glass, stainless steel and polytetrafluoroethylene (PTFE). This study demonstrated that InlA levels varied greatly between strains and serotypes of L. monocytogenes. However, the serotypes 1/2a, 1/2b and 4b, associated with the largest number of outbreaks of listerosis consistently showed the highest InlA levels, regardless of nutrient content or planktonic or sessile state. Differences in InlA levels were also observed in biofilms grown on different surfaces such as glass, stainless steel and PTFE, with a significant reduction in InlA levels observed in biofilms on PTFE. Interestingly, although a large number of the total cells observed in biofilms formed in tap-water were non-cultivable, the virulence factor, InlA, was expressed at levels between 78 and 85%, thus indicating that these cells may still be virulent. A greater understanding of the factors that affect the levels of InlA on the surface of L. monocytogenes, is essential in the appreciation of the role of InlA in the persistence of biofilms containing L. monocytogenes and their potential to cause food borne disease.
Collapse
Affiliation(s)
- Niamh Gilmartin
- School of Biotechnology, Dublin City University, Dublin, 9, Ireland; Biomedical Diagnostics Institute, Dublin City University, Dublin, 9, Ireland.
| | - Maria S Gião
- Centre for Biological Sciences, University of Southampton, Life Sciences Building, Highfield Campus, Southampton SO17 1BJ, UK
| | - Charles W Keevil
- Centre for Biological Sciences, University of Southampton, Life Sciences Building, Highfield Campus, Southampton SO17 1BJ, UK
| | - Richard O'Kennedy
- School of Biotechnology, Dublin City University, Dublin, 9, Ireland; Biomedical Diagnostics Institute, Dublin City University, Dublin, 9, Ireland
| |
Collapse
|
31
|
Gião MS, Blanc S, Porta S, Belenguer J, Keevil CW. Improved recovery of Listeria monocytogenes from stainless steel and polytetrafluoroethylene surfaces using air/water ablation. J Appl Microbiol 2015; 119:253-62. [PMID: 25943582 DOI: 10.1111/jam.12837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 04/10/2015] [Accepted: 04/24/2015] [Indexed: 11/30/2022]
Abstract
AIMS To develop a gentle ablation technique to recover Listeria monocytogenes biofilms from stainless steel (SS) and polytetrafluoroethylene (PTFE) surfaces by using compressed air and water injection. METHODS AND RESULTS Biofilms were grown for 4, 24 and 48 h or 7 days and a compressed air and water flow at 2, 3 and 4 bars was applied for cell removal. Collected cells were quantified for total/dead by staining with SYTO 9/PI double staining and cultivable populations were determined by plating onto brain heart infusion (BHI) agar, while coupon surfaces also were stained with DAPI to quantify in situ the remaining cells. The recovery efficiency was compared to that of conventional swabbing. Results showed that the air/water ablation is able to collect up to 98·6% of cells from SS surfaces while swabbing only recovered 11·2% of biofilm. Moreover, air/water ablation recovered 99·9% of cells from PTFE surfaces. CONCLUSIONS The high recovery rate achieved by this technique, along with the fact that cells were able to retain membrane integrity and cultivability, indicate that this device is suitable for the gentle recovery of viable L. monocytogenes biofilm cells. SIGNIFICANCE AND IMPACT OF THE STUDY This work presents a highly efficient technique to remove, collect and quantify L. monocytogenes from surfaces commonly used in the food industry, which can thus serve as an important aid in verifying cleaning and sanitation as well as in reducing the likelihood of cross-contamination events.
Collapse
Affiliation(s)
- M S Gião
- Centre for Biological Sciences, University of Southampton, Southampton, UK
| | - S Blanc
- 40-30, Parc Technologique des Fontaines, Chemin des Franques, Bernin, France
| | - S Porta
- Ainia, Parque Tecnólogico de Valencia, Valencia, Spain
| | - J Belenguer
- Ainia, Parque Tecnólogico de Valencia, Valencia, Spain
| | - C W Keevil
- Centre for Biological Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
32
|
Metselaar KI, Saá Ibusquiza P, Ortiz Camargo AR, Krieg M, Zwietering MH, den Besten HMW, Abee T. Performance of stress resistant variants of Listeria monocytogenes in mixed species biofilms with Lactobacillus plantarum. Int J Food Microbiol 2015; 213:24-30. [PMID: 25935090 DOI: 10.1016/j.ijfoodmicro.2015.04.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/13/2015] [Accepted: 04/15/2015] [Indexed: 11/25/2022]
Abstract
Population diversity and the ability to adapt to changing environments allow Listeria monocytogenes to grow and survive under a wide range of environmental conditions. In this study, we aimed to evaluate the performance of a set of acid resistant L. monocytogenes variants in mixed-species biofilms with Lactobacillus plantarum as well as their benzalkonium chloride (BAC) resistance in these biofilms. L. monocytogenes LO28 wild type and acid resistant variants were capable of forming mixed biofilms with L. plantarum at 20°C and 30°C in BHI supplemented with manganese and glucose. Homolactic fermentation of glucose by L. plantarum created an acidic environment with pH values below the growth boundary of L. monocytogenes. Some of the variants were able to withstand the low pH in the mixed biofilms for a longer time than the WT and there were clear differences in survival between the variants which could not be correlated to (lactic) acid resistance alone. Adaptation to mild pH of liquid cultures during growth to stationary phase increased the acid resistance of some variants to a greater extent than of others, indicating differences in adaptive behaviour between the variants. Two variants that showed a high level of acid adaptation when grown in liquid cultures, showed also better performance in mixed species biofilms. There were no clear differences in BAC resistance between the wild type and variants in mixed biofilms. It can be concluded that acid resistant variants of L. monocytogenes show diversity in their adaptation to acidic conditions and their capacity to survive in mixed cultures and biofilms with L. plantarum.
Collapse
Affiliation(s)
- Karin I Metselaar
- Top Institute Food and Nutrition, P.O. Box 557, 6700 AN Wageningen, The Netherlands; Laboratory of Food Microbiology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Paula Saá Ibusquiza
- Top Institute Food and Nutrition, P.O. Box 557, 6700 AN Wageningen, The Netherlands; Laboratory of Food Microbiology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Angela R Ortiz Camargo
- Laboratory of Food Microbiology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Myriam Krieg
- Laboratory of Food Microbiology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Marcel H Zwietering
- Top Institute Food and Nutrition, P.O. Box 557, 6700 AN Wageningen, The Netherlands; Laboratory of Food Microbiology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Heidy M W den Besten
- Laboratory of Food Microbiology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Tjakko Abee
- Top Institute Food and Nutrition, P.O. Box 557, 6700 AN Wageningen, The Netherlands; Laboratory of Food Microbiology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| |
Collapse
|
33
|
Friedman M. Chemistry and multibeneficial bioactivities of carvacrol (4-isopropyl-2-methylphenol), a component of essential oils produced by aromatic plants and spices. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:7652-7670. [PMID: 25058878 DOI: 10.1021/jf5023862] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Aromatic plants produce organic compounds that may be involved in the defense of plants against phytopathogenic insects, bacteria, fungi, and viruses. One of these compounds, called carvacrol, which is found in high concentrations in essential oils such as oregano, has been reported to exhibit numerous bioactivities in cells and animals. This integrated overview surveys and interprets our present knowledge of the chemistry and analysis of carvacrol and its beneficial bioactivities. These activities include its antioxidative properties in food (e.g., lard, sunflower oil) and in vivo and the inhibition of foodborne and human antibiotic-susceptible and antibiotic-resistant pathogenic bacteria, viruses, pathogenic fungi and parasites, and insects in vitro and in human foods (e.g., apple juice, eggs, leafy greens, meat and poultry products, milk, oysters) and food animal feeds and wastes. Also covered are inhibitions of microbial and fungal toxin production and the anti-inflammatory, analgesic, antiarthritic, antiallergic, anticarcinogenic, antidiabetic, cardioprotective, gastroprotective, hepatoprotective, and neuroprotective properties of carvacrol as well as metabolic, synergistic, and mechanistic aspects. Areas for future research are also suggested. The collated information and suggested research might contribute to a better understanding of agronomical, biosynthetic, chemical, physiological, and cellular mechanisms of the described health-promoting effects of carvacrol, and facilitate and guide further studies needed to optimize the use of carvacrol as a multifunctional food in pure and encapsulated forms, in edible antimicrobial films, and in combination with plant-derived and medical antibiotics to help prevent or treat animal and human diseases.
Collapse
Affiliation(s)
- Mendel Friedman
- Western Regional Research Center, Agricultural Research Service , U.S. Department of Agriculture, Albany, California 94710, United States
| |
Collapse
|
34
|
Li L, Mendis N, Trigui H, Oliver JD, Faucher SP. The importance of the viable but non-culturable state in human bacterial pathogens. Front Microbiol 2014; 5:258. [PMID: 24917854 PMCID: PMC4040921 DOI: 10.3389/fmicb.2014.00258] [Citation(s) in RCA: 587] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/12/2014] [Indexed: 12/12/2022] Open
Abstract
Many bacterial species have been found to exist in a viable but non-culturable (VBNC) state since its discovery in 1982. VBNC cells are characterized by a loss of culturability on routine agar, which impairs their detection by conventional plate count techniques. This leads to an underestimation of total viable cells in environmental or clinical samples, and thus poses a risk to public health. In this review, we present recent findings on the VBNC state of human bacterial pathogens. The characteristics of VBNC cells, including the similarities and differences to viable, culturable cells and dead cells, and different detection methods are discussed. Exposure to various stresses can induce the VBNC state, and VBNC cells may be resuscitated back to culturable cells under suitable stimuli. The conditions that trigger the induction of the VBNC state and resuscitation from it are summarized and the mechanisms underlying these two processes are discussed. Last but not least, the significance of VBNC cells and their potential influence on human health are also reviewed.
Collapse
Affiliation(s)
- Laam Li
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University Ste-Anne-de-Bellevue, QC, Canada
| | - Nilmini Mendis
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University Ste-Anne-de-Bellevue, QC, Canada
| | - Hana Trigui
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University Ste-Anne-de-Bellevue, QC, Canada
| | - James D Oliver
- Department of Biology, University of North Carolina at Charlotte Charlotte, NC, USA
| | - Sebastien P Faucher
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University Ste-Anne-de-Bellevue, QC, Canada
| |
Collapse
|