1
|
Kou B, Huo L, Cao M, Yu T, Wu Y, Hui K, Tan W, Yuan Y, Zhu X. Applying kitchen compost promoted soil chrysene degradation by optimizing microbial community structure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122761. [PMID: 39369537 DOI: 10.1016/j.jenvman.2024.122761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/14/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
Chrysene, as a high molecular weight polycyclic aromatic hydrocarbon (PAH), has become an important factor in degrading soil quality and constraining the safe production of food crops. Compost has been widely used to amend contaminated soil. However, to date, the main components of kitchen compost that enhance the biodegradation of chrysene in the soil remain unidentified. Thus, in this study, the enhancing effect and mechanisms of kitchen compost (KC) and kitchen compost-derived dissolved organic matter (KCOM) on chrysene removal from soil were investigated through cultivation experiments combined with high-throughput sequencing technology. Additionally, the key components influencing the degradation of chrysene were identified. The results showed that KCOM was the main component of compost that promoted the degradation of chrysene. The average degradation rate of chrysene in 1% KC- and 1% KCOM-treated soil increased by 27.20% and 24.18%, respectively, at different levels of chrysene pollution compared with the control treatment (CK). KC and KCOM significantly increased soil nutrient content, accelerated humification of organic matter, and increased microbial activity in the chrysene-contaminated soil. Correlation analyses revealed that the application of KC and KCOM optimized the microbial community by altering soil properties and organic matter structure. This optimization enhanced the degradation of soil chrysene by increasing the abundance of chrysene-degrading functional bacteria from the genera Bacillus, Arthrobacter, Pseudomonas, Lysinibacillus, and Acinetobacter. This study provides insight into the identification of key components that promote chrysene degradation and into the microbial-enhanced remediation of chrysene-contaminated soil.
Collapse
Affiliation(s)
- Bing Kou
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China
| | - Lin Huo
- Swiss Federal Institute of Technology (ETH) Zurich, Universitaetstrasse 16, 8092, Zurich, Switzerland
| | - Minyi Cao
- College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China
| | - Tingqiao Yu
- International Education College, Beijing Vocational College of Agriculture, Beijing, 102442, China
| | - Yuman Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Kunlong Hui
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Xiaoli Zhu
- College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
2
|
Liu ZS, Wang KH, Han Q, Jiang CY, Liu SJ, Li DF. Sphingobium sp. SJ10-10 encodes a not-yet-reported chromate reductase and the classical Rieske dioxygenases to simultaneously degrade PAH and reduce chromate. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134889. [PMID: 38878436 DOI: 10.1016/j.jhazmat.2024.134889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/28/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
Both polycyclic aromatic hydrocarbons (PAHs) and heavy metals persist in the environment and are toxic to organisms. Their co-occurrence makes any of them difficult to remove during bioremediation and poses challenges to environmental management and public health. Microorganisms capable of effectively degrading PAHs and detoxifying heavy metals concurrently are required to improve the bioremediation process. In this study, we isolated a new strain, Sphingobium sp. SJ10-10, from an abandoned coking plant and demonstrated its capability to simultaneously degrade 92.6 % of 75 mg/L phenanthrene and reduce 90 % of 3.5 mg/L hexavalent chromium [Cr(VI)] within 1.5 days. Strain SJ10-10 encodes Rieske non-heme iron ring-hydroxylating oxygenases (RHOs) to initiate PAH degradation. Additionally, a not-yet-reported protein referred to as Sphingobium chromate reductase (SchR), with low sequence identity to known chromate reductases, was identified to reduce Cr(VI). SchR is distributed across different genera and can be classified into two classes: one from Sphingobium members and the other from non-Sphingobium species. The widespread presence of SchR in those RHO-containing Sphingobium members suggests that they are excellent candidates for bioremediation. In summary, our study demonstrates the simultaneous removal of PAHs and Cr(VI) by strain SJ10-10 and provides valuable insights into microbial strategies for managing complex pollutant mixtures.
Collapse
Affiliation(s)
- Ze-Shen Liu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ke-Huan Wang
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qun Han
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - De-Feng Li
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
3
|
Li S, Zhang L, Fang W, Shen Z. Variations in bacterial community succession and assembly mechanisms with mine age across various habitats in coal mining subsidence water areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174822. [PMID: 39029748 DOI: 10.1016/j.scitotenv.2024.174822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
Microorganisms play a pivotal role as catalysts in the biogeochemical cycles of aquatic ecosystems within coal mining subsidence areas. Despite their importance, the succession of microbial communities with increasing mine age, particularly across different habitats, and variations in phylogenetically-based community assembly mechanisms are not well understood. To address this knowledge gap, we collected 72 samples from lake sediments, water, and surrounding topsoil (0-20 cm) at various mining stages (early: 16 years, middle: 31 years, late: 40 years). We analyzed these samples using 16S rRNA gene sequencing and multivariate statistical methods to explore the dynamics and assembly mechanisms of bacterial communities. Our findings reveal that increases in phosphorus and organic matter in sediments, correlating with mining age, significantly enhance bacterial alpha diversity while reducing species richness (P < 0.001). Homogenizing selection (49.9 %) promotes species asynchrony-complementarity, augmenting the bacterial community's ability to metabolize sulfur, phosphorus, and organic matter, resulting in more complex-stable co-occurrence networks. In soil, elevated nitrogen and organic carbon levels markedly influence bacterial community composition (Adonis R2 = 0.761), yet do not significantly alter richness or diversity (P > 0.05). The lake's high connectivity with surrounding soil leads to substantial species drift and organic matter accumulation, thereby increasing bacterial richness in later stages (P < 0.05) and enhancing the ability to metabolize dissolved organic matter, including humic-like substances, fulvic acids, and protein-like materials. The assembly of soil bacterial communities is largely governed by stochastic processes (79.0 %) with species drift (35.8 %) significantly shaping these communities over a broad spatial scale, also affecting water bacterial communities. However, water bacterial community assembly is primarily driven by stochastic processes (51.2 %), with a substantial influence from habitat quality (47.6 %). This study offers comprehensive insights into the evolution of microbial community diversity within coal mining subsidence water areas, with significant implications for enhancing environmental management and protection strategies for these ecosystems.
Collapse
Affiliation(s)
- Shuo Li
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
| | - Lei Zhang
- College of Civil and Architecture Engineering, Chuzhou University, Chuzhou, 239000, China.
| | - Wangkai Fang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
| | - Zhen Shen
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
4
|
Li X, Cao X, Zhang Z, Li Y, Zhang Y, Wang C, Fan W. Mechanism of phenanthrene degradation by the halophilic Pelagerythrobacter sp. N7. CHEMOSPHERE 2024; 350:141175. [PMID: 38211788 DOI: 10.1016/j.chemosphere.2024.141175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/19/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
PAHs has shown worldwide accumulation and causes a significant environmental problem especially in saline and hypersaline environments. Moderately halophilic bacteria could be useful for the bioremediation of PAH pollution in hypersaline environments. Pelagerythrobacter sp. N7 was isolated from the PAH-degrading consortium 5H, which was enriched from mixed saline soil samples collected in Shanxi Province, China. 16S rRNA in the genomic DNA revealed that strain N7 belonged to Pelagerythrobacter. Strain N7 exhibited a high tolerance to a wide range of salinities (1-10%) and was highly efficient under neutral to weak alkaline conditions (pH 6-9). The whole genome of strain N7 was sequenced and analyzed, revealing an abundance of catabolic genes. Using the whole genome information, we conducted preliminary research on key enzymes and gene clusters involved in the upstream and downstream PAH degradation pathways of strain N7, thereby inferring its degradation pathway for phenanthrene and naphthalene. This study adds to our understanding of PAH degradation in hypersaline environments and, for the first time, identifies a Pelagerythrobacter with PAH-degrading capability. Strain N7, with its high efficiency in phenanthrene degradation, represents a promising resource for the bioremediation of PAHs in hypersaline environments.
Collapse
Affiliation(s)
- Xiangjin Li
- Miami College, Henan University, Kaifeng, 475000, Henan, China.
| | - Xinghong Cao
- Miami College, Henan University, Kaifeng, 475000, Henan, China.
| | - Zuotao Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Yichun Li
- Miami College, Henan University, Kaifeng, 475000, Henan, China.
| | - Yue Zhang
- Miami College, Henan University, Kaifeng, 475000, Henan, China.
| | - Chongyang Wang
- Miami College, Henan University, Kaifeng, 475000, Henan, China.
| | - Weihua Fan
- Miami College, Henan University, Kaifeng, 475000, Henan, China.
| |
Collapse
|
5
|
Wu Y, Xi B, Fang F, Kou B, Gang C, Tang J, Tan W, Yuan Y, Yu T. Insights into relationships between polycyclic aromatic hydrocarbon concentration, bacterial communities and organic matter composition in coal gangue site. ENVIRONMENTAL RESEARCH 2023; 236:116502. [PMID: 37406721 DOI: 10.1016/j.envres.2023.116502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023]
Abstract
Coal mining usually brought polycyclic aromatic hydrocarbons (PAHs) contamination. Relationships between the concentration of PAHs, bacterial communities and soil environmental factors were important for bioremediation of PAHs in soil. Total 4 kinds of soil samples with different concentrations of PAHs were selected from 7 typical coal gangue(CG) sites in Huainan, Anhui Province. The relationships between microorganisms, dissolved organic matter (DOM) composition and PAHs concentration were systematically analyzed in this work. Total 11 kinds of PAHs were enriched in the soil surface layer. That was attributed to the strong binding of soil organic matter (SOM) to PAHs. PAHs contamination reduced the diversity of soil microbial. The abundance of PAHs-degrading genera such as Arthrobacter decreased with the increasing concentration of PAHs. Mycobacterium increased with the increasing concentration of PAHs in all samples. The microbial activities decreased with increasing concentration of PAHs. The increasing contents of LWM-PAHs and DOM were beneficial to improve the activities of soil microbial. The increasing DOM aromaticity was beneficial to improve the bioavailability of PAHs according to the correlation analysis between PAHs content and DOM structural parameters. The obtained results provide a basis for better understanding the contamination characteristics and microbial communities of coal gangue PAH-contaminated sites.
Collapse
Affiliation(s)
- Yuman Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, And State Environmental Protection Key Laboratory of Simulation and Control of Groundwater, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, And State Environmental Protection Key Laboratory of Simulation and Control of Groundwater, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fei Fang
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, PR China
| | - Bing Kou
- State Key Laboratory of Environmental Criteria and Risk Assessment, And State Environmental Protection Key Laboratory of Simulation and Control of Groundwater, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Chen Gang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Jun Tang
- State Key Laboratory of Environmental Criteria and Risk Assessment, And State Environmental Protection Key Laboratory of Simulation and Control of Groundwater, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, And State Environmental Protection Key Laboratory of Simulation and Control of Groundwater, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, And State Environmental Protection Key Laboratory of Simulation and Control of Groundwater, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Tingqiao Yu
- International Education College, Beijing Vocational College of Agriculture, Beijing 102442, China
| |
Collapse
|
6
|
Wen M, Liu Y, Zhang Q, Liu C, Li Y, Yang Y. Effects of dissolved organic matter derived from chicken manure on the biotransformation of roxarsone in soil. CHEMOSPHERE 2023; 311:137118. [PMID: 36336016 DOI: 10.1016/j.chemosphere.2022.137118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/12/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Roxarsone (3-nitro-4-hydroxyphenylarsonic acid, ROX), widely used as a livestock feed additive, is excreted untransformed in large concentrations. Accumulation of this manure in the open environment increases dissolved organic matter (DOM) and ROX in soil within the aeration zone. And microbial action plays a dominant role in the transformation of ROX. However, the specific effect of DOM on the biotransformation of ROX is not known. In this paper, we investigated the transformation rate, metabolite content, and microbial community response of ROX in soils with different DOM concentrations (71.61, 100, 200, 500, and 800 mg L-1). The transformation of ROX was consistent with first-order transformation kinetics. DOM promoted the transformation of ROX, and with high DOM (DOM ≥200 mg L-1), ROX was transformed almost completely within two days. In this case, DOM provided nutrients to microorganisms and promoted their growth, accelerating the transformation of ROX. Also, the solubility of ROX was enhanced by DOM to increase its bioavailability. The microbial diversity was negatively correlated with DOM concentration and ROX transformation time; during the transformation of ROX, Bacillus, Arthrobacter, Enterococcus, Acinetobacter, and Pseudomonas became dominant in the soil with anomalously high levels of DOM. This study demonstrates the transformation process of ROX under actual environmental conditions where organic matter coexists with ROX, and this understanding is important for the prevention and control of arsenic pollution in soil within the aeration zone with anomalously high levels of DOM.
Collapse
Affiliation(s)
- Mengtuo Wen
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, 050061, PR China; Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, 361000, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Yaci Liu
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, 050061, PR China; Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, 361000, PR China.
| | - Qiulan Zhang
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Changli Liu
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, 050061, PR China; Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, 361000, PR China
| | - Yasong Li
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, 050061, PR China; Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, 361000, PR China
| | - Yuqi Yang
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| |
Collapse
|
7
|
Lv L, Sun L, Yuan C, Han Y, Huang Z. The combined enhancement of RL, nZVI and AQDS on the microbial anaerobic-aerobic degradation of PAHs in soil. CHEMOSPHERE 2022; 307:135609. [PMID: 35809750 DOI: 10.1016/j.chemosphere.2022.135609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 06/11/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous persistent organic pollutants in soil, which have carcinogenic, teratogenic and mutagenic hazards. The effects of rhamnolipid (RL), nano zero-valent iron (nZVI), and anthraquinone-2,6-disulfonic acid (AQDS) on the degradation of PAHs in soil were studied. It was found that the treatment of 5 mg·kg-1RL + 1% nZVI +0.2 mmol·kg-1AQDS had the highest degradation rate. The degradation rate of total PAHs and HMW-PAHs was 72.81% and 79.47% respectively after 90 days. High-throughput sequencing showed that in RL + nZVI + AQDS enhanced soil, Clostridium, Geobacter, Anaeromyxobacter and Sphingomonas were the dominant species for anaerobic degradation of PAHs. Rhodococcus, Nocardioides, and Microvirga are the dominant species for aerobic degradation of PAHs. The activities of methyltransferase, dehydrogenase and catechol 1,2-dioxygenase in the anaerobic-aerobic degradation process of PAHs were consistent with the degradation process of PAHs, indicating the role of these enzymes in the degradation of PAHs. RL, nZVI, and AQDS combined enhanced microbial anaerobic-aerobic degradation has great application potential in remediation of PAHs-contaminated soil.
Collapse
Affiliation(s)
- Lianghe Lv
- Key Laboratory of Ecological Restoration of Regional Pollution Environment, Ministry of Education, Shenyang University, Shenyang, 110004, China
| | - Lina Sun
- Key Laboratory of Ecological Restoration of Regional Pollution Environment, Ministry of Education, Shenyang University, Shenyang, 110004, China.
| | - Chunli Yuan
- Key Laboratory of Ecological Restoration of Regional Pollution Environment, Ministry of Education, Shenyang University, Shenyang, 110004, China.
| | - Yue Han
- Key Laboratory of Ecological Restoration of Regional Pollution Environment, Ministry of Education, Shenyang University, Shenyang, 110004, China
| | - Zhaohui Huang
- Key Laboratory of Ecological Restoration of Regional Pollution Environment, Ministry of Education, Shenyang University, Shenyang, 110004, China
| |
Collapse
|
8
|
Wang C, Hao Z, Huang C, Wang Q, Yan Z, Bai L, Jiang H, Li D. Drinking water treatment residue recycled to synchronously control the pollution of polycyclic aromatic hydrocarbons and phosphorus in sediment from aquatic ecosystems. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128533. [PMID: 35219062 DOI: 10.1016/j.jhazmat.2022.128533] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Great efforts have long been made to control sediment pollution from persistent organic pollutants and phosphorus for aquatic ecosystem restoration. This study proposed a novel recycling of drinking water treatment residue (DWTR) to synchronously control sediment polycyclic aromatic hydrocarbons (PAHs) and phosphorus pollution based on a 350-day incubation test. The results suggested that DWTR addition reduced approximately 88%- 96% of potential bioavailable PAHs and 76% of mobile phosphorus in sediment. The dominant mechanisms for both reductions by DWTR were immobilization, mainly through increasing sediment amorphous aluminum and iron. The tendency of enhanced PAHs degradation by DWTR was also observed, especially for high molecular weight PAHs (e.g., chrysene, indeno(1, 2, 3-cd)pyrene, and benzo(g, hi)perylene), which decreased by approximately 21.1%- 22.0% of the total. Additionally, accompanying a clear increase in the connections of microbial cooccurrence networks, the variations in bioavailable PAHs, amorphous aluminum and iron, and other properties (e.g., pH, nitrogen, and organic matter) significantly (p < 0.01) enhanced Flavobacterium enrichment, although the enrichment of many other microbes potentially related to PAHs degradation (e.g., C1-B045) decreased after DWTR addition. Therefore, DWTR could promote the construction of a "PAHs immobilization with microbial augmentation" system while immobilizing phosphorus in sediment, indicating the high feasibility of controlling multiple sediment pollution.
Collapse
Affiliation(s)
- Changhui Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Zheng Hao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenghao Huang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianhong Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zaisheng Yan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Leilei Bai
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Dongdong Li
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210008, China
| |
Collapse
|
9
|
Zhang K, Wang S, Guo P, Guo S. Characteristics of organic carbon metabolism and bioremediation of petroleum-contaminated soil by a mesophilic aerobic biopile system. CHEMOSPHERE 2021; 264:128521. [PMID: 33039688 DOI: 10.1016/j.chemosphere.2020.128521] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/09/2020] [Accepted: 10/01/2020] [Indexed: 05/25/2023]
Abstract
An innovative mesophilic aerobic biopile technology was explored to improve the bioremediation efficiency of petroleum-contaminated soil. Under the suitable soil conditions (C:N:P at 100:5:1 and soil moisture content at 18%), the soil pH was hold in the range of 7.4 to 6.8 throughout the bioremediation process, the mesophilic (30 °C-40 °C) and forced aeration (3 h-on/1 h-off) conditions were the critical factors to enhancing petroleum biodegradation. The consumption of bioavailable organic carbon (BAC) which was one of the most important factors regulating microbial metabolism, was positively related (R2 = 0.85, 40 °C) with the rate of petroleum removal. The 50% threshold of BAC could be regarded as the signal for supplementing the soil nutrients in the mesophilic aerobic biopiles to favor petroleum removal. The optimal conditions (40 °C, 3 h-on/1 h-off) maximized the utilization of BAC, promoted the petroleum degradation, and remained the microbial abundance and community composition stable to the greatest extent. In addition, the accumulation of aliphatic acids affected the microbial activity, which limited the efficiency of petroleum degradation to a certain extent. Jointly considering the energy consumption, time cost and soil conditions maintenance, a cost-effective biopile technology was obtained by temperature and aeration regulation and BAC supplementation, which could be applied to engineering application.
Collapse
Affiliation(s)
- Kai Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Sa Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, China.
| | - Penghong Guo
- Arizona State University, Tempe, AZ, 85281, USA.
| | - Shuhai Guo
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, China.
| |
Collapse
|
10
|
Singh A, Ahmed B, Singh A, Ojha AK. Photodegradation of phenanthrene catalyzed by rGO sheets and disk like structures synthesized using sugar cane juice as a reducing agent. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 204:603-610. [PMID: 29980062 DOI: 10.1016/j.saa.2018.06.086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/21/2018] [Accepted: 06/23/2018] [Indexed: 06/08/2023]
Abstract
In the present report, rGO sheets (rG1) and disk (rG2) like structures of reduced graphene oxide (rGO) were synthesized using sugar cane juice as green reducing agent. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectroscopy, ultraviolet-visible (UV-vis.) spectroscopy and photoluminescence (PL) spectroscopy techniques. The transition of electrons localized in different sized sub-domain of the sp2 bonded carbons having different values of highest occupied molecular orbital (HOMO) -lowest unoccupied molecular orbital (LUMO) gap may likely to be responsible for the observed PL emission in rG1 and rG2 at different excitation wavelengths. The rG1 and rG2 were also used as photocatalyst materials for the degradation of phenanthrene (PHE) under the UV irradiation. The rG2 shows better photocatalytic degradation compared to rG1 by degrading the PHE up to 30%.
Collapse
Affiliation(s)
- Arvind Singh
- Department of Physics, Motilal Nehru National Institute of Technology Allahabad, 211004, India
| | - Bilal Ahmed
- Department of Physics, Motilal Nehru National Institute of Technology Allahabad, 211004, India
| | - Ajeet Singh
- Department of Physics, Motilal Nehru National Institute of Technology Allahabad, 211004, India
| | - Animesh K Ojha
- Department of Physics, Motilal Nehru National Institute of Technology Allahabad, 211004, India.
| |
Collapse
|
11
|
Chen XM, Zhao Y, Ma YY, Zhu LJ, Yang TX, Wei ZM, Dong YL, Wei QB. Assessing the environmental impact of phenanthrene in different types of land use based on the binding characteristics with dissolved organic matter. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:394-400. [PMID: 28886495 DOI: 10.1016/j.ecoenv.2017.08.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/26/2017] [Accepted: 08/29/2017] [Indexed: 06/07/2023]
Abstract
The binding characteristics of phenanthrene with dissolved organic matter (DOM) were studied by the excitation emission matrix fluorescence spectroscopy with parallel factor analysis in four types of land use which derived from forest (F), meadow (M), cropland (C), and greenhouse (G). The results showed that the humification degree and binding characteristics of phenanthrene with DOM were distinct differences in the four soils. The binding capacities of humic-like components with phenanthrene were stronger than those of protein-like components. The log K derived from the Stern-Volmer equation significantly correlated with the humification degree of DOM (p < 0.05) in different types of land use. Besides, correlation analysis demonstrated that the potential binding index (Fk) obtained from the modified Stern-Volmer model was a more accurate parameter to describe the combination degree of DOM with phenanthrene than log K, which presented a decrease order of C > F > M > G. Therefore, the environmental impact of phenanthrene in different types of land use could be assessed deeply based on the Fk and DOM concentration.
Collapse
Affiliation(s)
- Xiao-Meng Chen
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Ying-Ying Ma
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Long-Ji Zhu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Tian-Xue Yang
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zi-Min Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| | - Ying-Li Dong
- Environmental Monitoring Center of Heilongjiang Province, Harbin 150056, China
| | - Qing-Bin Wei
- Environmental Monitoring Center of Heilongjiang Province, Harbin 150056, China
| |
Collapse
|
12
|
Han X, Hu H, Shi X, Zhang L, He J. Effects of different agricultural wastes on the dissipation of PAHs and the PAH-degrading genes in a PAH-contaminated soil. CHEMOSPHERE 2017; 172:286-293. [PMID: 28086156 DOI: 10.1016/j.chemosphere.2017.01.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 12/05/2016] [Accepted: 01/03/2017] [Indexed: 06/06/2023]
Abstract
Land application of agricultural wastes is considered as a promising bioremediation approach for cleaning up soils contaminated by aged polycyclic aromatic hydrocarbons (PAHs). However, it remains largely unknown about how microbial PAH-degraders, which play a key role in the biodegradation of soil PAHs, respond to the amendments of agricultural wastes. Here, a 90-day soil microcosm study was conducted to compare the effects of three agricultural wastes (i.e. WS, wheat stalk; MCSW, mushroom cultivation substrate waste; and CM, cow manure) on the dissipation of aged PAHs and the abundance and community structure of PAH-degrading microorganisms. The results showed that all the three agricultural wastes accelerated the dissipation of aged PAHs and significantly increased abundances of the bacterial 16S rRNA and PAH-degrading genes (i.e. pdo1 and nah). CM and MCSW with lower ratios of C:N eliminated soil PAHs more efficiently than WS with a high ratio of C:N. Low molecular weight PAHs were dissipated more quickly than those with high molecular weight. Phylogenetic analysis revealed that all of the nah and C12O clones were affiliated within Betaproteobacteria and Gammaproteobacteria, and application of agricultural wastes significantly changed the community structure of the microorganisms harboring nah and C12O genes, particularly in the CM treatment. Taken together, our findings suggest that the three tested agricultural wastes could accelerate the degradation of aged PAHs most likely through changing the abundances and community structure of microbial PAH degraders.
Collapse
Affiliation(s)
- Xuemei Han
- School of Resources and Environment, University of Jinan, Jinan, 250100, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Hangwei Hu
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, 3010, Victoria, Australia.
| | - Xiuzhen Shi
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Limei Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jizheng He
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, 3010, Victoria, Australia.
| |
Collapse
|
13
|
Cai D, Yang X, Wang S, Chao Y, Morel JL, Qiu R. Effects of dissolved organic matter derived from forest leaf litter on biodegradation of phenanthrene in aqueous phase. JOURNAL OF HAZARDOUS MATERIALS 2017; 324:516-525. [PMID: 27856050 DOI: 10.1016/j.jhazmat.2016.11.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 10/30/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
Dissolved organic matter (DOM) released from forest leaf litter is potentially effective for the degradation of polycyclic aromatic hydrocarbons (PAHs), yet the inherent mechanism remains insufficiently elucidated. In this study, we investigated the effects of DOM derived from Pinus elliottii and Schima superba leaf litter on the degradation of phenanthrene by the phenanthrene degrading bacterium Sphingobium sp. Phe-1. DOM from different origins and at a large range of concentrations enhanced the degradation rate of phenanthrene. DOM derived from P. elliottii leaf litter decomposed for 12 months used at a concentration of 100mg/L yielded the highest degradation rate (16.9% in 36h) and shortened the degradation time from 48h to 24h. Changes in the composition of DOM during degradation as measured by EEMs-FRI showed that proteins and tyrosine in the DOM supplied readily available nutrients that stimulated biological activity of Phe-1, increasing its growth rate and catechol 2,3-dioxygenase activity. Simultaneously, fulvic acid and humic acid in the DOM enhanced phenanthrene bioavailability by increasing the solubility and mass transfer of phenanthrene, enhancing the uptake kinetics of Phe-1, and increasing the bacteria's direct access to DOM-associated phenanthrene. Humic acid was co-metabolized by Phe-1, resulting in further stimulation of phenanthrene degradation.
Collapse
Affiliation(s)
- Dan Cai
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiuhong Yang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Experiment Teaching Center, Sun Yat-sen University Zhuhai Campus, Zhuhai 519082, China
| | - Shizhong Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, China.
| | - Yuanqing Chao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, China
| | - J L Morel
- Université de Lorraine, Laboratoire Sols et Environnement, UMR 1120, TSA 40602, F-54518 Vandœuvre-lès-Nancy, France; INRA, Laboratoire Sols et Environnement, UMR 1120, TSA 40602, F-54518 Vandœuvre-lès-Nancy, France
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, China.
| |
Collapse
|
14
|
Wang S, Guo S, Li F, Yang X, Teng F, Wang J. Effect of alternating bioremediation and electrokinetics on the remediation of n-hexadecane-contaminated soil. Sci Rep 2016; 6:23833. [PMID: 27032838 PMCID: PMC4817206 DOI: 10.1038/srep23833] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 03/15/2016] [Indexed: 12/02/2022] Open
Abstract
This study demonstrated the highly efficient degradation of n-hexadecane in soil, realized by alternating bioremediation and electrokinetic technologies. Using an alternating technology instead of simultaneous application prevented competition between the processes that would lower their efficiency. For the consumption of the soil dissolved organic matter (DOM) necessary for bioremediation by electrokinetics, bioremediation was performed first. Because of the utilization and loss of the DOM and water-soluble ions by the microbial and electrokinetic processes, respectively, both of them were supplemented to provide a basic carbon resource, maintain a high electrical conductivity and produce a uniform distribution of ions. The moisture and bacteria were also supplemented. The optimal DOM supplement (20.5 mg·kg−1 glucose; 80–90% of the total natural DOM content in the soil) was calculated to avoid competitive effects (between the DOM and n-hexadecane) and to prevent nutritional deficiency. The replenishment of the water-soluble ions maintained their content equal to their initial concentrations. The degradation rate of n-hexadecane was only 167.0 mg·kg−1·d−1 (1.9%, w/w) for the first 9 days in the treatments with bioremediation or electrokinetics alone, but this rate was realized throughout the whole process when the two technologies were alternated, with a degradation of 78.5% ± 2.0% for the n-hexadecane after 45 days of treatment.
Collapse
Affiliation(s)
- Sa Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuhai Guo
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Fengmei Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | | | - Fei Teng
- Shenyang University, Shenyang 110014, China
| | - Jianing Wang
- Institute of Biology, Shandong Academy of Sciences, Jinan 250014, China
| |
Collapse
|