1
|
Yadav BNS, Sharma P, Maurya S, Yadav RK. Metagenomics and metatranscriptomics as potential driving forces for the exploration of diversity and functions of micro-eukaryotes in soil. 3 Biotech 2023; 13:423. [PMID: 38047037 PMCID: PMC10689336 DOI: 10.1007/s13205-023-03841-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 11/02/2023] [Indexed: 12/05/2023] Open
Abstract
Micro-eukaryotes are ubiquitous and play vital roles in diverse ecological systems, yet their diversity and functions are scarcely known. This may be due to the limitations of formerly used conventional culture-based methods. Metagenomics and metatranscriptomics are enabling to unravel the genomic, metabolic, and phylogenetic diversity of micro-eukaryotes inhabiting in different ecosystems in a more comprehensive manner. The in-depth study of structural and functional characteristics of micro-eukaryote community residing in soil is crucial for the complete understanding of this major ecosystem. This review provides a deep insight into the methodologies employed under these approaches to study soil micro-eukaryotic organisms. Furthermore, the review describes available computational tools, pipelines, and database sources and their manipulation for the analysis of sequence data of micro-eukaryotic origin. The challenges and limitations of these approaches are also discussed in detail. In addition, this review summarizes the key findings of metagenomic and metatranscriptomic studies on soil micro-eukaryotes. It also highlights the exploitation of these methods to study the structural as well as functional profiles of soil micro-eukaryotic community and to screen functional eukaryotic protein coding genes for biotechnological applications along with the future perspectives in the field.
Collapse
Affiliation(s)
- Bhupendra Narayan Singh Yadav
- Molecular Biology and Genetic Engineering Laboratory, Department of Botany, Faculty of Science, University of Allahabad, Prayagraj, Uttar Pradesh 211002 India
| | - Priyanka Sharma
- Molecular Biology and Genetic Engineering Laboratory, Department of Botany, Faculty of Science, University of Allahabad, Prayagraj, Uttar Pradesh 211002 India
| | - Shristy Maurya
- Molecular Biology and Genetic Engineering Laboratory, Department of Botany, Faculty of Science, University of Allahabad, Prayagraj, Uttar Pradesh 211002 India
| | - Rajiv Kumar Yadav
- Molecular Biology and Genetic Engineering Laboratory, Department of Botany, Faculty of Science, University of Allahabad, Prayagraj, Uttar Pradesh 211002 India
| |
Collapse
|
2
|
Distribution of soil testate amoeba assemblages along an elevation gradient on mount fuji (Japan). Eur J Protistol 2022; 84:125894. [DOI: 10.1016/j.ejop.2022.125894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022]
|
3
|
Wanner M, Sogame Y, Shimizu M. An elevation transect study of testate amoeba communities up to 4000 m a.s.l. on mount kinabalu, borneo. Eur J Protistol 2022; 83:125868. [DOI: 10.1016/j.ejop.2022.125868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 11/03/2022]
|
4
|
Fernández LD, Seppey CVW, Singer D, Fournier B, Tatti D, Mitchell EAD, Lara E. Niche Conservatism Drives the Elevational Diversity Gradient in Major Groups of Free-Living Soil Unicellular Eukaryotes. MICROBIAL ECOLOGY 2022; 83:459-469. [PMID: 34052880 DOI: 10.1007/s00248-021-01771-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Ancestral adaptations to tropical-like climates drive most multicellular biogeography and macroecology. Observational studies suggest that this niche conservatism could also be shaping unicellular biogeography and macroecology, although evidence is limited to Acidobacteria and testate amoebae. We tracked the phylogenetic signal of this niche conservatism in far related and functionally contrasted groups of common soil protists (Bacillariophyta, Cercomonadida, Ciliophora, Euglyphida and Kinetoplastida) along a humid but increasingly cold elevational gradient in Switzerland. Protist diversity decreased, and the size of the geographic ranges of taxa increased with elevation and associated decreasing temperature (climate), which is consistent with a macroecological pattern known as the Rapoport effect. Bacillariophyta exhibited phylogenetically overdispersed communities assembled by competitive exclusion of closely related taxa with shared (conserved) niches. By contrast, Cercomonadida, Ciliophora, Euglyphida and Kinetoplastida exhibited phylogenetically clustered communities assembled by habitat filtering, revealing the coexistence of closely related taxa with shared (conserved) adaptations to cope with the humid but temperate to cold climate of the study site. Phylobetadiversity revealed that soil protists exhibit a strong phylogenetic turnover among elevational sites, suggesting that most taxa have evolutionary constraints that prevent them from colonizing the colder and higher sites of the elevation gradient. Our results suggest that evolutionary constraints determine how soil protists colonize climates departing from warm and humid conditions. We posit that these evolutionary constraints are linked to an ancestral adaptation to tropical-like climates, which limits their survival in exceedingly cold sites. This niche conservatism possibly drives their biogeography and macroecology along latitudinal and altitudinal climatic gradients.
Collapse
Affiliation(s)
- Leonardo D Fernández
- Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O'Higgins, Avenida Viel 1497, Santiago, Chile.
- Laboratory of Soil Biodiversity, Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, CH-2000, Neuchâtel, Switzerland.
| | - Christophe V W Seppey
- Laboratory of Soil Biodiversity, Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, CH-2000, Neuchâtel, Switzerland
- Institute of Arctic and Marine Biology, UiT The Arctic University of Norway, Framstredet 39, 9019, Tromsø, Norway
- Institute of Environmental Sciences and Geography, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - David Singer
- Laboratory of Soil Biodiversity, Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, CH-2000, Neuchâtel, Switzerland
- Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, 05508-090, Brazil
- UMR CNRS 6112 LPG-BIAF, Université D'Angers, Cedex 1, Angers, France
| | - Bertrand Fournier
- Institute of Environmental Sciences and Geography, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Dylan Tatti
- Division Agronomie, Soil Protection and Use Group, School of Agricultural, Forest and Food Sciences HAFL, Bern University of Applied Sciences BFH, Länggasse 85, 3052, Zollikofen, Switzerland
| | - Edward A D Mitchell
- Laboratory of Soil Biodiversity, Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, CH-2000, Neuchâtel, Switzerland
- Botanical Garden of Neuchâtel, Chemin du Pertuis-du-Sault 58, CH-2000, Neuchâtel, Switzerland
| | - Enrique Lara
- Laboratory of Soil Biodiversity, Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, CH-2000, Neuchâtel, Switzerland
- Department of Mycology, Real Jardín Botánico de Madrid, CSIC, Plaza de Murillo 2, 28014, Madrid, Spain
| |
Collapse
|
5
|
Tonjer LR, Thoen E, Morgado L, Botnen S, Mundra S, Nybakken L, Bryn A, Kauserud H. Fungal community dynamics across a forest-alpine ecotone. Mol Ecol 2021; 30:4926-4938. [PMID: 34314543 DOI: 10.1111/mec.16095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 12/30/2022]
Abstract
Climate change is causing upward shift of forest lines worldwide, with consequences for soil biota and carbon (C) sequestration. We here analyse compositional changes in the soil biota across the forest line ecotone, an important transition zone between different ecosystems. We collected soil samples along transects stretching from subalpine mountain birch forests to alpine heath. Soil fungi and micro-eukaryotes were surveyed using DNA metabarcoding of the ITS2 and 18S markers, while ergosterol was used to quantify fungal biomass. We observed a strong shift in the soil biota across the forest line ecotone: Below the forest line, there were higher proportions of basidiomycetes and mucoromycetes, including ectomycorrhizal and saprotrophic fungi. Above it, we observed relatively more root-associated ascomycetes, including Archaeorhizomycetes, ericoid mycorrhizal fungi and dark septate endophytes. Ergosterol and percentage C content in soil correlated strongly and positively with the abundance of root-associated ascomycetes. The predominance of ectomycorrhizal and saprotrophic fungi below the forest line probably promote high C turnover, while root-associated ascomycetes above the forest line may enhance C sequestration. With further rise in forest lines, there will be a corresponding shift in the below-ground biota, probably leading to enhanced release of soil C.
Collapse
Affiliation(s)
- Lea-Rebekka Tonjer
- Section for Genetics and Evolutionary Biology (EVOGENE), University of Oslo, Oslo, Norway
| | - Ella Thoen
- Section for Genetics and Evolutionary Biology (EVOGENE), University of Oslo, Oslo, Norway
| | - Luis Morgado
- Section for Genetics and Evolutionary Biology (EVOGENE), University of Oslo, Oslo, Norway.,Naturalis Biodiversity Center, Leiden, the Netherlands
| | - Synnøve Botnen
- Section for Genetics and Evolutionary Biology (EVOGENE), University of Oslo, Oslo, Norway
| | - Sunil Mundra
- Section for Genetics and Evolutionary Biology (EVOGENE), University of Oslo, Oslo, Norway.,Department of Biology, College of Science, United Arab Emirates University, Abu Dhabi, UAE
| | - Line Nybakken
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Anders Bryn
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Håvard Kauserud
- Section for Genetics and Evolutionary Biology (EVOGENE), University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Singer D, Metz S, Unrein F, Shimano S, Mazei Y, Mitchell EAD, Lara E. Contrasted Micro-Eukaryotic Diversity Associated with Sphagnum Mosses in Tropical, Subtropical and Temperate Climatic Zones. MICROBIAL ECOLOGY 2019; 78:714-724. [PMID: 30756135 DOI: 10.1007/s00248-019-01325-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
Sphagnum-dominated ecosystem plays major roles as carbon sinks at the global level. Associated microbial communities, in particular, eukaryotes, play significant roles in nutrient fixation and turnover. In order to understand better the ecological processes driven by these organisms, the first step is to characterise these associated organisms. We characterised the taxonomic diversity, and from this, inferred the functional diversity of microeukaryotes in Sphagnum mosses in tropical, subtropical and temperate climatic zones through an environmental DNA diversity metabarcoding survey of the V9 region of the gene coding for the RNA of the small subunit of the ribosomes (SSU rRNA). As microbial processes are strongly driven by temperatures, we hypothesised that saprotrophy would be highest in warm regions, whereas mixotrophy, an optimal strategy in oligotrophic environments, would peak under colder climates. Phylotype richness was higher in tropical and subtropical climatic zones than in the temperate region, mostly due to a higher diversity of animal parasites (i.e. Apicomplexa). Decomposers, and especially opportunistic yeasts and moulds, were more abundant under warmer climates, while mixotrophic organisms were more abundant under temperate climates. The dominance of decomposers, suggesting a higher heterotrophic activity under warmer climates, is coherent with the generally observed faster nutrient cycling at lower latitudes; this phenomenon is likely enhanced by higher inputs of nutrients most probably brought in the system by Metazoa, such as arthropods.
Collapse
Affiliation(s)
- David Singer
- Laboratory of Soil Biodiversity, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, CH-2000, Neuchâtel, Switzerland.
- Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, 05508-090, Brazil.
| | - Sebastian Metz
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), UNSAM-CONICET, Av. Intendente Marino Km 8.200, (B 7130 IWA) Chascomús, Buenos Aires, Argentina
| | - Fernando Unrein
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), UNSAM-CONICET, Av. Intendente Marino Km 8.200, (B 7130 IWA) Chascomús, Buenos Aires, Argentina
| | - Satoshi Shimano
- Science Research Center, Hosei University, Fujimi 2-17-1, Chiyoda-ku, Tokyo, 102-8160, Japan
| | - Yuri Mazei
- Department of Hydrobiology, Lomonosov Moscow State University, Leninskiye gory, 1, Moscow, Russia, 119991
| | - Edward A D Mitchell
- Laboratory of Soil Biodiversity, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, CH-2000, Neuchâtel, Switzerland
- Jardin Botanique de Neuchâtel, Chemin du Pertuis-du-Sault 58, CH-2000, Neuchâtel, Switzerland
| | - Enrique Lara
- Real Jardín Botánico, CSIC, Plaza de Murillo 2, 28014, Madrid, Spain
| |
Collapse
|
7
|
Singer D, Kosakyan A, Seppey CVW, Pillonel A, Fernández LD, Fontaneto D, Mitchell EAD, Lara E. Environmental filtering and phylogenetic clustering correlate with the distribution patterns of cryptic protist species. Ecology 2018; 99:904-914. [DOI: 10.1002/ecy.2161] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/27/2017] [Accepted: 01/08/2018] [Indexed: 12/12/2022]
Affiliation(s)
- David Singer
- Laboratory of Soil Biodiversity; Institute of Biology; University of Neuchâtel; Rue Emile-Argand 11 CH-2000 Neuchâtel Switzerland
| | - Anush Kosakyan
- Laboratory of Soil Biodiversity; Institute of Biology; University of Neuchâtel; Rue Emile-Argand 11 CH-2000 Neuchâtel Switzerland
- Department of Zoology; Institute of Biosciences; University of São Paulo; São Paulo 05508 Brazil
- Institute of Parasitology, Biology Centre; Czech Academy of Sciences; Branisovska 31 České Budějovice 37005 Czech Republic
| | - Christophe V. W. Seppey
- Laboratory of Soil Biodiversity; Institute of Biology; University of Neuchâtel; Rue Emile-Argand 11 CH-2000 Neuchâtel Switzerland
- Microorganisms and Plants Group; Department of Arctic and Marine Biology; Faculty of Biosciences, Fisheries and Economics; University of Tromsø; Framstredet 39 9037 Tromsø Norway
| | - Amandine Pillonel
- Laboratory of Soil Biodiversity; Institute of Biology; University of Neuchâtel; Rue Emile-Argand 11 CH-2000 Neuchâtel Switzerland
| | - Leonardo D. Fernández
- Laboratory of Soil Biodiversity; Institute of Biology; University of Neuchâtel; Rue Emile-Argand 11 CH-2000 Neuchâtel Switzerland
- Laboratorio de Ecología Evolutiva y Filoinformática; Departamento de Zoología; Facultad de Ciencias Naturales y Oceanográficas; Universidad de Concepción; Barrio Universitario s/n, Casilla 160-C Concepción Chile
- Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS); Universidad Bernardo O'Higgins; Avenida Viel 1497 Santiago Chile
| | - Diego Fontaneto
- National Research Council of Italy; Institute of Ecosystem Study; 28922 Verbania Pallanza Italy
| | - Edward A. D. Mitchell
- Laboratory of Soil Biodiversity; Institute of Biology; University of Neuchâtel; Rue Emile-Argand 11 CH-2000 Neuchâtel Switzerland
- Jardin Botanique de Neuchâtel; Chemin du Perthuis-du-Sault 58 CH-2000 Neuchâtel Switzerland
| | - Enrique Lara
- Laboratory of Soil Biodiversity; Institute of Biology; University of Neuchâtel; Rue Emile-Argand 11 CH-2000 Neuchâtel Switzerland
- Real Jardín Botánico; CSIC; Plaza Murillo 2 ES 28014 Madrid Spain
| |
Collapse
|
8
|
Geisen S, Mitchell EAD, Adl S, Bonkowski M, Dunthorn M, Ekelund F, Fernández LD, Jousset A, Krashevska V, Singer D, Spiegel FW, Walochnik J, Lara E. Soil protists: a fertile frontier in soil biology research. FEMS Microbiol Rev 2018; 42:293-323. [DOI: 10.1093/femsre/fuy006] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/12/2018] [Indexed: 12/27/2022] Open
Affiliation(s)
- Stefan Geisen
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, 6708 PB Wageningen, The Netherlands
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Edward A D Mitchell
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel 2000, Switzerland
- Jardin Botanique de Neuchâtel, Chemin du Perthuis-du-Sault 58, Neuchâtel 2000, Switzerland
| | - Sina Adl
- Department of Soil Sciences, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, Canada
| | - Michael Bonkowski
- Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Institute of Zoology, Terrestrial Ecology, Zülpicher Straße 47b, 50674 Köln, Germany
| | - Micah Dunthorn
- Department of Ecology, University of Kaiserslautern, Erwin-Schrödinger Straße, 67663 Kaiserslautern, Germany
| | - Flemming Ekelund
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Leonardo D Fernández
- Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O’Higgins, Avenida Viel 1497, Santiago, Chile
| | - Alexandre Jousset
- Department of Ecology and Biodiversity, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Valentyna Krashevska
- University of Göttingen, J.F. Blumenbach Institute of Zoology and Anthropology, Untere Karspüle 2, 37073 Göttingen, Germany
| | - David Singer
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel 2000, Switzerland
| | - Frederick W Spiegel
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, United States of America
| | - Julia Walochnik
- Molecular Parasitology, Institute of Tropical Medicine, Medical University, 1090 Vienna, Austria
| | - Enrique Lara
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel 2000, Switzerland
- Real Jardín Botánico, CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| |
Collapse
|
9
|
Zhao K, Kong W, Khan A, Liu J, Guo G, Muhanmmad S, Zhang X, Dong X. Elevational diversity and distribution of ammonia-oxidizing archaea community in meadow soils on the Tibetan Plateau. Appl Microbiol Biotechnol 2017; 101:7065-7074. [PMID: 28776097 DOI: 10.1007/s00253-017-8435-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/12/2017] [Accepted: 07/19/2017] [Indexed: 10/19/2022]
Abstract
Unraveling elevational diversity patterns of plants and animals has long been attracting scientific interests. However, whether soil microorganisms exhibit similar elevational patterns remains largely less explored, especially for functional microbial communities, such as ammonia oxidizers. Here, we investigated the diversity and distribution pattern of ammonia-oxidizing archaea (AOA) in meadow soils along an elevation gradient from 4400 m to the grassline at 5100 m on the Tibetan Plateau using terminal restriction fragment length polymorphism (T-RFLP) and sequencing methods by targeting amoA gene. Increasing elevations led to lower soil temperature and pH, but higher nutrients and water content. The results showed that AOA diversity and evenness monotonically increased with elevation, while richness was relatively stable. The increase of diversity and evenness was attributed to the growth inhibition of warm-adapted AOA phylotypes by lower temperature and the growth facilitation of cold-adapted AOA phylotypes by richer nutrients at higher elevations. Low temperature thus played an important role in the AOA growth and niche separation. The AOA community variation was explained by the combined effect of all soil properties (32.6%), and 8.1% of the total variation was individually explained by soil pH. The total AOA abundance decreased, whereas soil potential nitrification rate (PNR) increased with increasing elevations. Soil PNR positively correlated with the abundance of cold-adapted AOA phylotypes. Our findings suggest that low temperature plays an important role in AOA elevational diversity pattern and niche separation, rising the negative effects of warming on AOA diversity and soil nitrification process in the Tibetan region.
Collapse
Affiliation(s)
- Kang Zhao
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Building 3, Courtyard 16, Lincui Road, Chaoyang District, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Weidong Kong
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Building 3, Courtyard 16, Lincui Road, Chaoyang District, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ajmal Khan
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Building 3, Courtyard 16, Lincui Road, Chaoyang District, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinbo Liu
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Building 3, Courtyard 16, Lincui Road, Chaoyang District, Beijing, 100101, China
| | - Guangxia Guo
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Building 3, Courtyard 16, Lincui Road, Chaoyang District, Beijing, 100101, China
| | - Said Muhanmmad
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Building 3, Courtyard 16, Lincui Road, Chaoyang District, Beijing, 100101, China
| | - Xianzhou Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaobin Dong
- State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Resources Science and Technology, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|