1
|
Liu Z, Cong Y, Sossah FL, Sheng H, Li Y. Identification of bacterial communities associated with needle mushroom ( Flammulina filiformis) and its production environment. Front Microbiol 2024; 15:1429213. [PMID: 39741595 PMCID: PMC11685130 DOI: 10.3389/fmicb.2024.1429213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/25/2024] [Indexed: 01/03/2025] Open
Abstract
Flammulina filiformis is an important edible and medicinal mushroom widely cultivated in East Asia, with its quality and health strongly influenced by associated microbial communities. However, limited data exist on the bacterial communities associated with F. filiformis cultivation in Chinese farms. This study investigated bacterial communities associated with F. filiformis and its production environment using high-throughput 16S rRNA gene amplicon sequencing and culture-dependent methods. A total of 42 samples were collected from farms in Jilin and Guizhou provinces, China, for microbial community profiling. The analysis revealed diverse bacterial phyla, including Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, and Cyanobacteria. Genera such as Pseudomonas, Lactobacillus, Acinetobacter, Flavobacterium, and Phyllobacterium were identified, with notable regional variations in the relative abundance of Pseudomonas and Lactobacillus. Pathogenic species, including Pseudomonas tolaasii, Ewingella americana, Stenotrophomonas maltophilia, Pseudomonas sp., Lelliottia amnigena, and Janthinobacterium lividum, were identified through phenotypic, biochemical, and molecular analyses. Pathogenicity tests confirmed the disease-causing potential of P. tolaasii, E. americana, and J. lividum in F. filiformis. These findings highlight regional differences in bacterial community composition and emphasize the need for tailored management practices. This study contributes to safe, high-quality mushroom cultivation and provides insights into improved cultivation practices, including Mushroom Good Agricultural Practices (MGAP).
Collapse
Affiliation(s)
- Zhenghui Liu
- Engineering and Research Center for Southwest Bio-pharmaceutical Resources of National Education Ministry, Guizhou University, Guiyang, China
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, China
- Institute of Edible Fungi, Guizhou University, Guiyang, China
| | - Yunlong Cong
- Research Institute of Science and Technology, Guizhou University, Guiyang, China
| | - Frederick Leo Sossah
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, China
- Council for Scientific and Industrial Research (CSIR), Oil Palm Research Institute, Coconut Research Programme, Sekondi, Ghana
| | - Hongyan Sheng
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Yu Li
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
2
|
Chen FC, Chen FC, Motoda T. A finding of potential coexisting bacteria and characterization of the bacterial communities in the fruiting body of Sarcodon aspratus. Folia Microbiol (Praha) 2024; 69:1137-1144. [PMID: 39160370 DOI: 10.1007/s12223-024-01189-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024]
Abstract
Sarcodon aspratus (Berk.) S. Ito is a Japanese local dish with unique aroma and is effective against allergic diseases. However, its cultivation was still difficult. Recently, coexisting bacteria were regarded as an important factor for mycelium growth and fruiting body formation. Therefore, we performed 16S rRNA amplicon sequencing in the fruiting body of S. aspratus and its adhered soil to understand the bacterial communities in the fruiting body of S. aspratus. The fruiting body group showed lower alpha diversities and a significant difference in the structure of bacterial communities compared to the soil group. In addition, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium had the highest relative abundance in the fruiting body group, and it was also a potential coexisting bacterium in the fruiting body of S. aspratus by linear discriminant analysis effect size (LEfSe) analysis. This highest relative abundance phenomenon in Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium clade was also found in the fruiting body of Cantharellus cibarius. These findings suggested that Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium plays a key role in the bacterial communities in the fruiting body of S. aspratus. Bacteria in the fruit bodies of S. aspratus and C. cibarius probably present a similar coexistence model.
Collapse
Affiliation(s)
- Fu-Chia Chen
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Miyazaki, Japan.
| | - Fu-Chieh Chen
- Jin-Sing Chen's Mushroom Farm, No. 31, Donghu Road, Dali District, Taichung City, Taiwan, ROC
| | - Taichi Motoda
- Institute of Wood Technology, Akita Prefectural University, Akita, Japan
| |
Collapse
|
3
|
Shen A, Tan Y, Shen B, Liu L, Li J, Tan Z, Zeng L. The Soil Bacterial Community Structure in a Lactarius hatsudake Tanaka Plantation during Harvest. Microorganisms 2024; 12:1376. [PMID: 39065144 PMCID: PMC11278682 DOI: 10.3390/microorganisms12071376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Lactarius hatsudake Tanaka is a mycorrhizal edible mushroom with an appealing taste and rich nutrition. It is also a significant food and has medicinal value. In this study, the plantation of L. hatsudake during the harvest period was taken as the research object, and this article explores which bacteria in the soil contribute to the production and growth of L. hatsudake. The soil of the control (CK) and the soil of the mushroom-producing area [including the soil of the base of the mushroom (JT) and the mycorrhizal root soil (JG)] was collected in the plantation. The three sites' bacterial community structure and soil diversity were analyzed using high-throughput sequencing technology, and a molecular ecological network was built. Soil bacteria in the L. hatsudake plantation had 28 tribes, 74 classes, 161 orders, 264 families, 498 genera, and 546 species. The dominant phyla were Proteobacteria and Acidobacteria, and the dominant genera were Burkholderia_Caballeronia_Paraburkholderia, Acidothermus, Bradyrhizobium, Candidatus_Xiphinematobacter, and Granulicella. The α-diversity of soil bacteria in JT was significantly lower than that in JG and CK, and the β-diversity in JT samples was significantly different from that in JG and CK samples. The size and complexity of the constructed network were smaller in JT samples than in JG and CK samples, and the stability was higher in JT samples than in JG and CK samples. The positive correlation between species in JT samples was dominant. The potential mycorrhizal helper bacteria (MHB) species of L. hatsudake was determined using correlation and differential group analysis. The results support future research on mycorrhizal synthesis, plantation management, and the function of microorganisms in the soil rhizosphere of L. hatsudake.
Collapse
Affiliation(s)
- Airong Shen
- College of Life Sciences and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (A.S.); (Y.T.); (J.L.)
- Hunan Academy of Forestry, Changsha 410004, China; (B.S.); (L.L.)
| | - Yun Tan
- College of Life Sciences and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (A.S.); (Y.T.); (J.L.)
- Hunan Academy of Forestry, Changsha 410004, China; (B.S.); (L.L.)
| | - Baoming Shen
- Hunan Academy of Forestry, Changsha 410004, China; (B.S.); (L.L.)
| | - Lina Liu
- Hunan Academy of Forestry, Changsha 410004, China; (B.S.); (L.L.)
| | - Jilie Li
- College of Life Sciences and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (A.S.); (Y.T.); (J.L.)
| | - Zhuming Tan
- Hunan Academy of Forestry, Changsha 410004, China; (B.S.); (L.L.)
| | - Liangbin Zeng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| |
Collapse
|
4
|
Zhang R, Yang Q, Yao X, Fang Z, Wu X, Lin Q, Qing Y. Transcriptome analysis reveals the effect of cold storage time on the expression of genes related to oxidative metabolism in Chinese black truffle. Front Nutr 2024; 11:1375386. [PMID: 38895661 PMCID: PMC11183293 DOI: 10.3389/fnut.2024.1375386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Chinese black truffle (Tuber indicum) is a hypogenous fungus of great value due to its distinctive aroma. In this study, both transcriptome and physicochemical analyses were performed to investigate the changes of nutrients and gene expression in truffle fruiting bodies during cold storage. The results of physicochemical analysis revealed the active metabolism of fruiting bodies in cold storage, showing the decreased contents of protein and soluble sugar, the variations in both polyphenol oxidase activity and total phenol content, and the detrimental effect of reactive oxygen species production caused by heavy metals (cadmium and lead) in truffles. Transcriptome analysis identified a total of 139,489 unigenes. Down-regulated expression of genes encoding the catalase-like domain-containing protein (katE), glutaredoxin protein (GRX), a copper/zinc superoxide dismutase (Sod_Cu), and aspartate aminotransferase (AAT) affected the degradation metabolism of intracellular oxides. Ribulose-5-phosphate-3-epimerase (RPE) was a key enzyme in response to oxidative stress in truffle cells through the pentose phosphate pathway (PPP). A total of 51,612 simple sequence repeats were identified, providing valuable resources for further genetic diversity analysis, molecular breeding, and genetic map-ping in T. indicum. Transcription factors GAL4 and SUF4-like protein were involved in glucose metabolism and histone methylation processes, respectively. Our study provided a fundamental characterization of the physicochemical and molecular variations in T. indicum during the cold storage at 4°C, providing strong experimental evidence to support the improvement of storage quality of T. indicum.
Collapse
Affiliation(s)
- Runji Zhang
- Key Laboratory of Panxi Featured Crops Research and Utilization, Xichang University, Xichang, China
| | - Qiuyue Yang
- College of Agricultural Sciences, Xichang University, Xichang, China
| | - Xin Yao
- College of Agricultural Sciences, Xichang University, Xichang, China
| | - Zhirong Fang
- College of Resources and Environment, Xichang University, Xichang, China
| | - Xia Wu
- College of Agricultural Sciences, Xichang University, Xichang, China
| | - Qiao Lin
- College of Agricultural Sciences, Xichang University, Xichang, China
| | - Yuan Qing
- Key Laboratory of Panxi Featured Crops Research and Utilization, Xichang University, Xichang, China
| |
Collapse
|
5
|
Graziosi S, Puliga F, Iotti M, Amicucci A, Zambonelli A. In vitro interactions between Bradyrhizobium spp. and Tuber magnatum mycelium. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13271. [PMID: 38692852 PMCID: PMC11062863 DOI: 10.1111/1758-2229.13271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/06/2024] [Indexed: 05/03/2024]
Abstract
Tuber magnatum is the most expensive truffle, but its large-scale cultivation is still a challenge compared to other valuable Tuber species. T. magnatum mycelium has never been grown profitably until now, which has led to difficulties to studying it in vitro. This study describes beneficial interactions between T. magnatum mycelium and never before described bradyrhizobia, which allows the in vitro growth of T. magnatum mycelium. Three T. magnatum strains were co-isolated on modified Woody Plant Medium (mWPM) with aerobic bacteria and characterised through microscopic observations. The difficulties of growing alone both partners, bacteria and T. magnatum mycelium, on mWPM demonstrated the reciprocal dependency. Three bacterial isolates for each T. magnatum strain were obtained and molecularly characterised by sequencing the 16S rRNA, glnII, recA and nifH genes. Phylogenetic analyses showed that all nine bacterial strains were distributed among five subclades included in a new monophyletic lineage belonging to the Bradyrhizobium genus within the Bradyrhizobium jicamae supergroup. The nifH genes were detected in all bacterial isolates, suggesting nitrogen-fixing capacities. This is the first report of consistent T. magnatum mycelium growth in vitro conditions. It has important implications for the development of new technologies in white truffle cultivation and for further studies on T. magnatum biology and genetics.
Collapse
Affiliation(s)
- Simone Graziosi
- Department of Agricultural and Food SciencesUniversity of BolognaBolognaItaly
| | - Federico Puliga
- Department of Agricultural and Food SciencesUniversity of BolognaBolognaItaly
| | - Mirco Iotti
- Department of Life, Health and Environmental ScienceUniversity of L'AquilaL'AquilaItaly
| | | | | |
Collapse
|
6
|
Cailleau G, Hanson BT, Cravero M, Zhioua S, Hilpish P, Ruiz C, Robinson AJ, Kelliher JM, Morales D, Gallegos-Graves LV, Bonito G, Chain PS, Bindschedler S, Junier P. Associated bacterial communities, confrontation studies, and comparative genomics reveal important interactions between Morchella with Pseudomonas spp. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1285531. [PMID: 38155707 PMCID: PMC10753826 DOI: 10.3389/ffunb.2023.1285531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/08/2023] [Indexed: 12/30/2023]
Abstract
Members of the fungal genus Morchella are widely known for their important ecological roles and significant economic value. In this study, we used amplicon and genome sequencing to characterize bacterial communities associated with sexual fruiting bodies from wild specimens, as well as vegetative mycelium and sclerotia obtained from Morchella isolates grown in vitro. These investigations included diverse representatives from both Elata and Esculenta Morchella clades. Unique bacterial community compositions were observed across the various structures examined, both within and across individual Morchella isolates or specimens. However, specific bacterial taxa were frequently detected in association with certain structures, providing support for an associated core bacterial community. Bacteria from the genus Pseudomonas and Ralstonia constituted the core bacterial associates of Morchella mycelia and sclerotia, while other genera (e.g., Pedobacter spp., Deviosa spp., and Bradyrhizobium spp.) constituted the core bacterial community of fruiting bodies. Furthermore, the importance of Pseudomonas as a key member of the bacteriome was supported by the isolation of several Pseudomonas strains from mycelia during in vitro cultivation. Four of the six mycelial-derived Pseudomonas isolates shared 16S rDNA sequence identity with amplicon sequences recovered directly from the examined fungal structures. Distinct interaction phenotypes (antagonistic or neutral) were observed in confrontation assays between these bacteria and various Morchella isolates. Genome sequences obtained from these Pseudomonas isolates revealed intriguing differences in gene content and annotated functions, specifically with respect to toxin-antitoxin systems, cell adhesion, chitinases, and insecticidal toxins. These genetic differences correlated with the interaction phenotypes. This study provides evidence that Pseudomonas spp. are frequently associated with Morchella and these associations may greatly impact fungal physiology.
Collapse
Affiliation(s)
- Guillaume Cailleau
- Laboratory of Microbiology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Buck T. Hanson
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Melissa Cravero
- Laboratory of Microbiology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Sami Zhioua
- Laboratory of Microbiology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Patrick Hilpish
- Laboratory of Microbiology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Celia Ruiz
- Laboratory of Microbiology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Aaron J. Robinson
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Julia M. Kelliher
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Demosthenes Morales
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, United States
| | | | - Gregory Bonito
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Patrick S.G. Chain
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | | | - Pilar Junier
- Laboratory of Microbiology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
7
|
Embacher J, Zeilinger S, Kirchmair M, Neuhauser S. Prokaryote communities associated with different types of tissue formed and substrates inhabited by Serpula lacrymans. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:642-655. [PMID: 37789578 PMCID: PMC10667670 DOI: 10.1111/1758-2229.13191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/07/2023] [Indexed: 10/05/2023]
Abstract
The basidiomycete Serpula lacrymans is responsible for major timber devastation in houses. Basidiomycetes are known to harbour a diverse but poorly understood microbial community of bacteria, archaea, yeasts and filamentous fungi. In this study, we used amplicon-sequencing to analyse the abundance and composition of prokaryotic communities associated with fruiting bodies of S. lacrymans and compared them to communities of surrounding material to access the 'background' community structure. Our findings indicate that bacterial genera cluster depended on sample type and that the main driver for microbial diversity is specimen, followed by sample origin. The most abundant bacterial phylum identified in the fruiting bodies was Pseudomonadota, followed by Actinomycetota and Bacteroidota. The prokaryote community of the mycelium was dominated by Actinomycetota, Halobacterota and Pseudomonadota. Actinomycetota was the most abundant phylum in both environment samples (infested timber and underground scree), followed by Bacillota in wood and Pseudomonadota in underground samples. Nocardioides, Pseudomonas, Pseudonochardia, Streptomyces and Rubrobacter spp. were among others found to comprise the core microbiome of S. lacrymans basidiocarps. This research contributes to the understanding of the holobiont S. lacrymans and gives hints to potential bacterial phyla important for its development and lifestyle.
Collapse
Affiliation(s)
- Julia Embacher
- Institute of Microbiology, Universität InnsbruckInnsbruckAustria
| | | | - Martin Kirchmair
- Institute of Microbiology, Universität InnsbruckInnsbruckAustria
| | - Sigrid Neuhauser
- Institute of Microbiology, Universität InnsbruckInnsbruckAustria
| |
Collapse
|
8
|
Embacher J, Zeilinger S, Kirchmair M, Rodriguez-R LM, Neuhauser S. Wood decay fungi and their bacterial interaction partners in the built environment – A systematic review on fungal bacteria interactions in dead wood and timber. FUNGAL BIOL REV 2023. [DOI: 10.1016/j.fbr.2022.100305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Ye L, Yang X, Zhang B, Zhou J, Tian H, Zhang X, Li X. Seasonal Succession of Fungal Communities in Native Truffle ( Tuber indicum) Ecosystems. Appl Environ Microbiol 2023; 89:e0019523. [PMID: 37338363 PMCID: PMC10370315 DOI: 10.1128/aem.00195-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/12/2023] [Indexed: 06/21/2023] Open
Abstract
Truffles are a rare underground fungus and one of the most expensive, and sought-after kitchen ingredients in the world. Microbial ecology plays an important role in the annual growth cycle of truffles, but fungal communities in native truffle ecosystems are still largely unknown, especially for Tuber indicum from China. In this study, the spatial and temporal dynamics of soil physicochemical properties and fungal communities were described associated with four T. indicum-producing plots (TPPs) and one non-truffle-producing plot in four successive growing seasons. A total of 160 biological samples were collected, 80 of which were used for the determination of 10 soil physicochemical indices and 80 for Illumina-based analysis of the fungal microbiome. Soil physicochemical properties and fungal communities exhibited considerable seasonal variation. Ascomycetes, Basidiomycetes, and Mucormycoides dominated. The core microbiome work on the microecological changes in TPPs, and the identified core members contribute to the seasonal succession of communities. The genus Tuber occupies a central position in healthy TPPs. There was a strong correlation between soil physicochemical properties and fungal communities. The genus Tuber showed a positive correlation with Ca, Mg, and total nitrogen, but a negative correlation with total phosphorus and available potassium. This study describes the complex ecological dynamics of soil physicochemical indices and fungal communities occurring during the annual cycle of Tuber indicum, and highlights the succession of core communities in truffle plots, which contribute to better protection of native truffle ecosystems and control of mycorrhizal fungal contamination in artificial truffle plantations in China. IMPORTANCE The spatial and temporal dynamics of soil physicochemical properties and fungal communities associated with four Tuber indicum-producing plots and one non truffle producing plot in four different growing seasons are described. Soil physicochemical properties and fungal communities exhibited considerable seasonal variation. This study examines the complex ecological dynamics of soil physicochemical indices and fungal communities occurring during the annual cycle of Tuber indicum and highlights the succession of core communities in truffle plots, which contributes to better protection of native truffle ecosystems and control of mycorrhizal fungal contamination in artificial truffle plantations in China.
Collapse
Affiliation(s)
- Lei Ye
- Sichuan Institute of Edible Fungi, Chengdu, People’s Republic of China
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, People’s Republic of China
| | - Xuezhen Yang
- Sichuan Institute of Edible Fungi, Chengdu, People’s Republic of China
| | - Bo Zhang
- Sichuan Institute of Edible Fungi, Chengdu, People’s Republic of China
| | - Jie Zhou
- Sichuan Institute of Edible Fungi, Chengdu, People’s Republic of China
| | - Hong Tian
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, People’s Republic of China
| | - Xiaoping Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, People’s Republic of China
| | - Xiaolin Li
- Sichuan Institute of Edible Fungi, Chengdu, People’s Republic of China
| |
Collapse
|
10
|
Daei B, Azadmard-Damirchi S, Javadi A, Torbati M. Effects of Mild Thermal Processing and Storage Conditions on the Quality Attributes and Shelf Life of Truffles ( Terfezia claveryi). Foods 2023; 12:foods12112212. [PMID: 37297457 DOI: 10.3390/foods12112212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 06/12/2023] Open
Abstract
This study investigated the effects of two mild thermal processing (MTP) (63 °C, 40 °C, 3 min) methods, in a brine storage medium (7-16% (w/v) NaCl) and a vinegar solution (5% vinegar, 1% salt, and 0.5% sugar), on some physicochemical properties of truffles (Terfezia claveryi). Weight loss, phenolic compounds, firmness, ascorbic acid and microbial loads were evaluated during 160 days of storage. It was demonstrated that a 5% vinegar treatment with 63 °C MTP was effective to reduce the weight loss, microbial spoilage and increased firmness and of truffles during storage. However, phenolic compounds and ascorbic acid content were decreased by heating. Both MTPs inhibited the microbial load, but the 63 °C, 3 min MTP was most effective and resulted in an immediate (3.05-3.2 log CFU/g) reduction in the total aerobic bacteria (TAB) and remained at an acceptable level during storage, while the 40 °C, 3 min MTP reduced (1.12-2 log CFU/g) of the TAB. The results of this study suggest that the 63 °C MTP and immersion in 5% vinegar increased the shelf life of the truffles without perceptible losses in quality attributes.
Collapse
Affiliation(s)
- Bahareh Daei
- Department of Food Science and Technology, Mamaghan Branch, Islamic Azad University, Mamaghan 5375113135, Iran
| | - Sodeif Azadmard-Damirchi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz 5166616471, Iran
| | - Afshin Javadi
- Department of Food Hygiene, Faculty of Veterinary, Tabriz Medical Science, Islamic Azad University, Tabriz 5157944533, Iran
| | - Mohammadali Torbati
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz 1561661885, Iran
| |
Collapse
|
11
|
Bucci A, Monaco P, Naclerio G. Tuber magnatum Picco: the challenge to identify ascoma-associated bacteria as markers for geographic traceability. Front Microbiol 2023; 14:1142214. [PMID: 37260692 PMCID: PMC10227511 DOI: 10.3389/fmicb.2023.1142214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/02/2023] [Indexed: 06/02/2023] Open
|
12
|
Tejedor-Calvo E, García-Barreda S, Sanz MÁ, Gracia AP, Sánchez S, Marco P. Black truffle aroma transfer kinetics to food matrices. Food Chem 2023; 417:135814. [PMID: 36898224 DOI: 10.1016/j.foodchem.2023.135814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/18/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
Nowadays black truffles are so highly valued that truffled products are available in supermarkets whereas fresh truffle is mainly used in the restaurants. It is known that truffle aroma can change because heat treatments, but there is no scientific evidence about what molecules are transferred, in which concentration, and how much time is needed to aromatize products with truffle. In this study, four different fat-based food products (milk, sunflower oil, grapeseed oil and egg's yolk), were used to study black truffle (Tuber melanosporum) aroma transference for 14 days. Gas chromatography and olfactometry results showed different volatile organic compounds profile depending on the matrix used. After 24 h, some key truffle aromatic compounds were detected in all the food matrices. Among them, grape seed oil was the most aromatized product probably because of its odorless properties. According to our results, dimethyl disulphide, 3-methyl-1-butanol and 1-octen-3-one odorants showed the highest aromatization power.
Collapse
Affiliation(s)
- Eva Tejedor-Calvo
- Department of Plant Science, Agrifood Research and Technology Centre of Aragón (CITA). Avda. Montañana 930, 50059 Zaragoza, Spain.
| | - Sergi García-Barreda
- Department of Plant Science, Agrifood Research and Technology Centre of Aragón (CITA). Avda. Montañana 930, 50059 Zaragoza, Spain
| | - María Ángeles Sanz
- Laboratories and Technological Assistance, Agrifood Research and Technology Centre of Aragon (CITA), Avda. Montãnana, 50059 Zaragoza, Spain
| | - Ana Pilar Gracia
- Plant Food Research Group, Department of Food Technology, University of Zaragoza-IA2 (Zaragoza University-CITA), C/Miguel Servet 177, 50013 Zaragoza, Spain
| | - Sergio Sánchez
- Department of Plant Science, Agrifood Research and Technology Centre of Aragón (CITA). Avda. Montañana 930, 50059 Zaragoza, Spain
| | - Pedro Marco
- Department of Plant Science, Agrifood Research and Technology Centre of Aragón (CITA). Avda. Montañana 930, 50059 Zaragoza, Spain
| |
Collapse
|
13
|
Giorgio M, Niccolò BGM, Benedetta T, Luisa M, Leonardo BF, Gregory B, Pietro B, Alberto A, Domizia D, Emidio A. Fungal and Bacterial Diversity in the Tuber magnatum Ecosystem and Microbiome. MICROBIAL ECOLOGY 2023; 85:508-521. [PMID: 35237850 DOI: 10.1007/s00248-021-01950-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Fungi belonging to the genus Tuber produce edible ascocarps known as truffles. Tuber magnatum Picco may be the most appreciated truffle species given its peculiar aroma. While its life cycle is not yet fully elucidated, some studies demonstrated an active role of microorganisms. The main goal of this study was to determine how the T. magnatum microbiome varies across space and time. To address this, we characterized microbial communities associated with T. magnatum through high-throughput amplicon sequencing of internal transcribed spacer (ITS) and 16S rDNAs in three productive natural sites in Italy across 2 years. At each site, four truffles were sampled as well as the soil underneath and at 40, 100, and 200 cm from the harvesting points, to assess for microbial variation between substrates, years, and sites. A statistically significant site-related effect on microbial communities was identified, whereas only the prokaryotic community was significantly affected by the distance of soil from the truffle. Significant differences between sampling years were also found, demonstrating a possible relation among rainfall precipitation and Firmicutes and Actinobacteria. Thirty-six bacterial OTUs in truffles and 11 bacterial OTUs in soils beneath truffles were identified as indicator taxa. As shown for other truffle species, the dominance of Bradyrhizobium, Rhizobium, and Ensifer spp. within the truffle fruiting body suggests an evolutionary adaptation of this microorganism to the genus Tuber. The present work offers novel and relevant insights into the microbial ecology of T. magnatum ecosystems and fruiting bodies. The function and role of these bacteria in the truffle microbiome and life cycle are in need of further investigation.
Collapse
Affiliation(s)
- Marozzi Giorgio
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121, Perugia, Italy
| | - Benucci Gian Maria Niccolò
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA.
| | - Turchetti Benedetta
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121, Perugia, Italy
| | - Massaccesi Luisa
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100, Viterbo, Italy
| | - Baciarelli Falini Leonardo
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121, Perugia, Italy
| | - Bonito Gregory
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Buzzini Pietro
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121, Perugia, Italy
| | - Agnelli Alberto
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121, Perugia, Italy
| | - Donnini Domizia
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121, Perugia, Italy
| | - Albertini Emidio
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121, Perugia, Italy
| |
Collapse
|
14
|
Ge W, Ren Y, Dong C, Shao Q, Bai Y, He Z, Yao T, Zhang Y, Zhu G, Deshmukh SK, Han Y. New perspective: Symbiotic pattern and assembly mechanism of Cantharellus cibarius-associated bacteria. Front Microbiol 2023; 14:1074468. [PMID: 36876069 PMCID: PMC9978014 DOI: 10.3389/fmicb.2023.1074468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Cantharellus cibarius, an ectomycorrhizal fungus belonging to the Basidiomycetes, has significant medicinal and edible value, economic importance, and ecological benefits. However, C. cibarius remains incapable of artificial cultivation, which is thought to be due to the presence of bacteria. Therefore, much research has focused on the relationship between C. cibarius and bacteria, but rare bacteria are frequently overlooked, and symbiotic pattern and assembly mechanism of the bacterial community associated with C. cibarius remain unknown. In this study, the assembly mechanism and driving factors of both abundant and rare bacterial communities of C. cibarius were revealed by the null model. The symbiotic pattern of the bacterial community was examined using a co-occurrence network. Metabolic functions and phenotypes of the abundant and rare bacteria were compared using METAGENassist2, and the impacts of abiotic variables on the diversity of abundant and rare bacteria were examined using partial least squares path modeling. In the fruiting body and mycosphere of C. cibarius, there was a higher proportion of specialist bacteria compared with generalist bacteria. Dispersal limitation dominated the assembly of abundant and rare bacterial communities in the fruiting body and mycosphere. However, pH, 1-octen-3-ol, and total phosphorus of the fruiting body were the main driving factors of bacterial community assembly in the fruiting body, while available nitrogen and total phosphorus of the soil affected the assembly process of the bacterial community in the mycosphere. Furthermore, bacterial co-occurrence patterns in the mycosphere may be more complex compared with those in the fruiting body. Unlike the specific potential functions of abundant bacteria, rare bacteria may provide supplementary or unique metabolic pathways (such as sulfite oxidizer and sulfur reducer) to enhance the ecological function of C. cibarius. Notably, while volatile organic compounds can reduce mycosphere bacterial diversity, they can increase fruiting body bacterial diversity. Findings from this study further, our understanding of C. cibarius-associated microbial ecology.
Collapse
Affiliation(s)
- Wei Ge
- Institute of Fungus Resources, Department of Ecology/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Yulian Ren
- Institute of Fungus Resources, Department of Ecology/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Chunbo Dong
- Institute of Fungus Resources, Department of Ecology/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Qiuyu Shao
- Institute of Fungus Resources, Department of Ecology/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Yanmin Bai
- Institute of Fungus Resources, Department of Ecology/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Zhaoying He
- Institute of Fungus Resources, Department of Ecology/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Ting Yao
- Analysis and Test Center, Huangshan University, Huangshan, China
| | - Yanwei Zhang
- School of Biological Sciences, Guizhou Education University, Guiyang, Guizhou, China
| | - Guosheng Zhu
- Guizhou Key Laboratory of Edible Fungi Breeding, Institute of Crop Germplasm Resources, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Sunil Kumar Deshmukh
- TERI-Deakin Nano Biotechnology Centre, The Energy and Resources Institute, New Delhi, India
| | - Yanfeng Han
- Institute of Fungus Resources, Department of Ecology/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
15
|
Huang L, Li Y, Yuan J, Wan S, Colinas C, He X, Shi X, Wang Y, Yu F. Tuber indicum and T. lijiangense colonization differentially regulates plant physiological responses and mycorrhizosphere bacterial community of Castanopsis rockii seedlings. FRONTIERS IN PLANT SCIENCE 2023; 14:1134446. [PMID: 37123847 PMCID: PMC10130384 DOI: 10.3389/fpls.2023.1134446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
Black truffles and white truffles are widely studied around the world, but their effects on plant growth and physiological responses, and on the mycorrhizosphere bacterial community of the host plant remain unclear. Here, mycorrhizal colonization of Castanopsis rockii by Tuber indicum (Chinese black truffle) and T. lijiangense (Chinese white truffle), respectively, was induced in a greenhouse study, and their effects on host growth, physiological responses and mycorrhizosphere bacterial communities were compared. The results show that colonization of both Tuber species significantly increased leaf photosynthetic rate, leaf P concentration and mycorrhizosphere acid phosphatase activity, as well as richness of mycorrhizosphere bacterial communities of C. rockii seedlings. However, T. indicum colonization on the one hand significantly decreased tartrate content, bacterial acid phosphatase, phoC gene abundance in the mycorrhizosphere, and peroxidase (POD) activity of ectomycorrhizal root tips, but on the other hand increased mycorrhizosphere pH and superoxide dismutase (SOD) of ectomycorrhizal root tips, compared to T. lijiangense colonization. Moreover, principal coordinate and β-diversity analyses show significant differences in mycorrhizosphere bacterial community composition between T. indicum and T. lijiangese colonized C. rockii seedlings. Finally, the relative abundance of the bacterium Agromyces cerinus significantly correlated to mycorrhizosphere acid phosphatase activity and leaf P concentration, suggesting that this bacterium might play an important role in P mobilization and acquisition. Overall, these results suggest that T. indicum and T. lijiangense differently regulate their host plant's physiological responses and mycorrhizosphere bacterial community.
Collapse
Affiliation(s)
- Lanlan Huang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yongmei Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Jing Yuan
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Shanping Wan
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Carlos Colinas
- Department of Crop and Forest Science, University of Lleida, Lleida, Spain
| | - Xinhua He
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Centre of Excellence for Soil Biology, College of Resources and Environment, and Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, China
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Xiaofei Shi
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Guizhou Kangqunyuan Biotechnology Co., LTD, Liupanshui, Guizhou, China
| | - Yanliang Wang
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- *Correspondence: Yanliang Wang, ; Fuqiang Yu,
| | - Fuqiang Yu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- *Correspondence: Yanliang Wang, ; Fuqiang Yu,
| |
Collapse
|
16
|
Desirò A, Takashima Y, Bonito G, Nishizawa T, Narisawa K, Bonfante P. Investigating Endobacteria that Thrive Within Mucoromycota. Methods Mol Biol 2022; 2605:293-323. [PMID: 36520400 DOI: 10.1007/978-1-0716-2871-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metagenomics approaches have revealed the importance of Mucoromycota in the evolution and functioning of plant microbiomes. Comprised of three subphyla (Glomeromycotina, Mortierellomycotina, and Mucoromycotina), this early diverging lineage of fungi encompasses species of mycorrhizal fungi, root endophytes, plant pathogens, and many decomposers of plant debris. Interestingly, several taxa of Mucoromycota share a common feature, that is, the presence of endobacteria within their mycelia and spores. The study of these endosymbiotic bacteria is still a challenging task. However, given recent improvements in the sensitivity of culture-free approaches, a deeper understanding of such microbial interactions is now possible and fuels an emerging research field. In this chapter, we report how Mucoromycota, in particular Mortierellomycotina, and their endobacteria can be investigated using a combination of diverse cellular biology, microscopy, and molecular techniques.
Collapse
Affiliation(s)
- Alessandro Desirò
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Yusuke Takashima
- Sugadaira Research Station, Mountain Science Center, University of Tsukuba, Nagano, Japan
| | - Gregory Bonito
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | | | | | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
| |
Collapse
|
17
|
Bacterial communities associated with mushrooms in the Qinghai-Tibet Plateau are shaped by soil parameters. Int Microbiol 2022; 26:231-242. [PMID: 36352292 DOI: 10.1007/s10123-022-00286-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 09/14/2022] [Accepted: 10/20/2022] [Indexed: 11/10/2022]
Abstract
Fungi capable of producing fruit bodies are essential food and medicine resources. Despite recent advances in the study of microbial communities in mycorrhizospheres, little is known about the bacterial communities contained in fruit bodies. Using high-throughput sequencing, we investigated the bacterial communities in four species of mushrooms located on the alpine meadow and saline-alkali soil of the Qinghai-Tibet Plateau (QTP). Proteobacteria (51.7% on average) and Actinobacteria (28.2% on average) were the dominant phyla in all of the sampled fairy ring fruit bodies, and Acidobacteria (27.5% on average) and Proteobacteria (25.7% on average) dominated their adjacent soils. For the Agria. Bitorquis, Actinobacteria was the dominant phylum in its fruit body (67.5% on average) and adjacent soils (65.9% on average). The alpha diversity (i.e., Chao1, Shannon, Richness, and Simpson indexes) of the bacterial communities in the fruit bodies were significantly lower than those in the soil samples. All of the fungi shared more than half of their bacterial phyla and 16.2% of their total operational taxonomic units (OTUs) with their adjacent soil. Moreover, NH4+ and pH were the key factors associated with bacterial communities in the fruit bodies and soils, respectively. These results indicate that the fungi tend to create a unique niche that selects for specific members of the bacterial community. Using culture-dependent methods, we also isolated 27 bacterial species belonging to three phyla and five classes from fruit bodies and soils. The strains isolated will be useful for future research on interactions between mushroom-forming fungi and their bacterial endosymbionts.
Collapse
|
18
|
The Microbiome Structure of the Symbiosis between the Desert Truffle Terfezia boudieri and Its Host Plant Helianthemum sessiliflorum. J Fungi (Basel) 2022; 8:jof8101062. [PMID: 36294627 PMCID: PMC9605525 DOI: 10.3390/jof8101062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022] Open
Abstract
The desert truffle Terfezia boudieri is an ascomycete fungus that forms ect-endomycorrhiza in the roots of plants belonging to Cistaceae. The fungus forms hypogeous edible fruit bodies, appreciated as gourmet food. Truffles and host plants are colonized by various microbes, which may contribute to their development. However, the diversity and composition of the bacterial community under field conditions in the Negev desert are still unknown. The overall goal of this research was to identify the rhizosphere microbial community supporting the establishment of a symbiotic association between T. boudieri and Helianthemum sessiliflorum. The bacterial community was characterized by fruiting bodies, mycorrhized roots, and rhizosphere soil. Based on next-generation sequencing meta-analyses of the 16S rRNA gene, we discovered diverse bacterial communities of fruit bodies that differed from those found in the roots and rhizosphere. Families of Proteobacteria, Planctomycetes, and Actinobacteria were present in all four samples. Alpha diversity analysis revealed that the rhizosphere and roots contain significantly higher bacterial species numbers compared to the fruit. Additionally, ANOSIM and PCoA provided a comparative analysis of the bacterial taxa associated with fruiting bodies, roots, and rhizosphere. The core microbiome described consists of groups whose biological role triggers important traits supporting plant growth and fruit body development.
Collapse
|
19
|
Monaco P, Naclerio G, Mello A, Bucci A. Role and potentialities of bacteria associated with Tuber magnatum: A mini-review. Front Microbiol 2022; 13:1017089. [PMID: 36274685 PMCID: PMC9584545 DOI: 10.3389/fmicb.2022.1017089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Among the hypogeous ectomycorrhizal fungi, the white truffle Tuber magnatum Picco is the species of greatest interest, both from an ecological and economic point of view. The increasing market demand of the precious white truffle along with the fall in its natural production led to a growing interest in cultivation techniques and encouraged truffle growers and researchers to deeper investigate factors that could affect and improve T. magnatum productivity. In this context, microbial communities play a central role. Indeed, in the last few years, the hypothesis of a potential link between microbial community composition and truffle orchard productivity is arousing a greater attention. Moreover, since the value of the prized T. magnatum can vary in relation to its provenience, the need to define a reliable tracking system is also emerging and bacteria appear to be a promising tool. Accordingly, the present mini-review summarises the knowledge currently available on T. magnatum microbial communities, focusing on the role of truffle-associated bacteria and highlighting similarities and differences between samples of different origin, to address the following issues: (i) Is there a correlation between microbial taxa and truffle ground productivity? (ii) Can bacteria actually be used as markers of T. magnatum geographic origin? The identification of microorganisms able to promote T. magnatum formation may represent an important advance in the field of truffle farming. Similarly, the detection of bacterial taxa that can be used as markers of T. magnatum origin could have a considerable impact on truffle industry and trade, even at local scale.
Collapse
Affiliation(s)
- Pamela Monaco
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Gino Naclerio
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Antonietta Mello
- Institute for Sustainable Plant Protection (IPSP), Turin Unit, National Research Council, Turin, Italy
| | - Antonio Bucci
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| |
Collapse
|
20
|
Ma YJ, Gao WQ, Zhu XT, Kong WB, Zhang F, Yang HQ. Identification and profiling of the community structure and potential function of bacteria from the fruiting bodies of Sanghuangporus vaninii. Arch Microbiol 2022; 204:564. [PMID: 35982255 DOI: 10.1007/s00203-022-03174-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/07/2022] [Indexed: 11/25/2022]
Abstract
Sanghuangporus sp., a medicinal and edible homologous macrofungus known as 'forest gold', which has good effects on antitumor, hypolipidemia and the treatment of gynecological diseases. However, the natural resources of fruiting body are on the verge of depletion due to its long growth cycle and over exploitation. The growth and metabolism of macrofungi are known to depend on the diverse bacterial community. Here, we characterized the diversity and potential function of bacteria inhabiting in the fruiting body of the most widely applied S. vaninii using a combination method of high-throughput sequencing with pure culturing for the first time, and tested the biological activities of bacterial isolates, of which Illumina NovaSeq provided a more comprehensive results on the bacterial community structure. Total 33 phyla, 82 classes, 195 orders, 355 families, 601 genera and 679 species were identified in the fruiting body, and our results revealed that the community was predominated by the common Proteobacteria, Gammaproteobacteria, Burkholderiales, Methylophilaceae (partly consistent with pure-culturing findings), and was dominated by the genera of distinctive Methylotenera and Methylomonas (yet-uncultured taxa). Simultaneously, the functional analysis showed that companion bacteria were involved in the pathways of carbohydrate transport and metabolism, metabolism of terpenoids and polyketides, cell wall/membrane/envelope biogenesis, etc. Hence, it was inferred that bacteria associated with fruiting body may have the potential to adjust the growth, development and active metabolite production of host S. vaninii combined with the tested results of indole-3-acetic acid and total antioxidant capacity. Altogether, this report first provided new findings which can be inspiring for further in-depth studies to exploit bioactive microbial resources for increased production of Sanghuangporus, as well as to explore the relationship between medicinal macrofungi and their associated endophytes.
Collapse
Affiliation(s)
- Yan-Jun Ma
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China.
| | - Wei-Qian Gao
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Xue-Tai Zhu
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Wei-Bao Kong
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Fan Zhang
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Hong-Qin Yang
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China.
| |
Collapse
|
21
|
Mattupalli C, Cuenca FP, Shiller JB, Watkins T, Hansen K, Garzon CD, Marek SM, Young CA. Genetic Diversity of Phymatotrichopsis omnivora Based on Mating Type and Microsatellite Markers Reveals Heterothallic Mating System. PLANT DISEASE 2022; 106:2105-2116. [PMID: 35156845 DOI: 10.1094/pdis-01-22-0013-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phymatotrichopsis omnivora is a member of Pezizomycetes and causes root rot disease on a broad range of dicotyledonous plants. Using recently generated draft genome sequence data from four P. omnivora isolates, we developed simple sequence repeat (SSR) markers and identified both mating type genes (MAT1-1-1 and MAT1-2-1) in this fungus. To understand the genetic diversity of P. omnivora isolates (n = 43) and spore mats (n = 29) collected from four locations (Oklahoma, Texas, Arizona, and Mexico) and four host crops (cotton, alfalfa, peach, and soybean), we applied 24 SSR markers and showed that of the 72 P. omnivora isolates and spore mats tested, 41 were distinct genotypes. Furthermore, the developed SSR markers did not show cross-transferability to other close relatives of P. omnivora in the class Pezizomycetes. A multiplex PCR detecting both mating type idiomorphs and a reference gene (TUB2) was developed to screen P. omnivora isolates. Based on the dataset we tested, P. omnivora is a heterothallic fungus with both mating types present in the United States in a ratio close to 1:1. We tested P. omnivora spore mats obtained from spatially distinct disease rings that developed in a center-pivot alfalfa field and showed that both mating types can be present not only in the same field but also within a single spore mat. This study shows that P. omnivora has the genetic toolkit for generating sexually diverse progeny, providing impetus for future studies that focus on identifying sexual morphs in nature.
Collapse
Affiliation(s)
- Chakradhar Mattupalli
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
- Department of Plant Pathology, Washington State University, Mount Vernon NWREC, Mount Vernon, WA 98273, U.S.A
| | - Fernanda Proaño Cuenca
- Institute for Biosecurity and Microbial Forensics, Oklahoma State University, Stillwater, OK 74078, U.S.A
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, U.S.A
| | - Jason B Shiller
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
- Scion, Rotorua 3046, New Zealand
| | - Tara Watkins
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
- Department of Plant, Soil and Microbial Science, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Karen Hansen
- Department of Botany, Swedish Museum of Natural History, SE-104 05 Stockholm, Sweden
| | - Carla D Garzon
- Department of Plant Science and Landscape Architecture, Delaware Valley University, Doylestown, PA 18901, U.S.A
| | - Stephen M Marek
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, U.S.A
| | - Carolyn A Young
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, U.S.A
| |
Collapse
|
22
|
Sillo F, Vergine M, Luvisi A, Calvo A, Petruzzelli G, Balestrini R, Mancuso S, De Bellis L, Vita F. Bacterial Communities in the Fruiting Bodies and Background Soils of the White Truffle Tuber magnatum. Front Microbiol 2022; 13:864434. [PMID: 35651491 PMCID: PMC9149314 DOI: 10.3389/fmicb.2022.864434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/25/2022] [Indexed: 01/09/2023] Open
Abstract
Tuber magnatum Picco is a greatly appreciated truffle species mainly distributed in Italy. Its price and characteristics mostly depend on its geographical origin. Truffles represent a fundamental step of the life cycle of Tuber species promoting spore dissemination. They consist of two main parts, gleba, the inner part, and peridium, which is in direct contact with ground soil. Within the truffle and around in the growing soil, both the occurrence and abundance of different microbial species seem to play an essential role in truffle production. The development of the next-generation sequencing (NGS) based technology has greatly improved to deepen the role of the composition of microbial communities, thus improving the knowledge of the existing relationships between microbial taxa in a specific condition. Here, we applied a metabarcoding approach to assess the differences in T. magnatum samples collected from three areas in Tuscany (Italy). Peridium and gleba were analyzed separately with the aim to distinguish them based on their microbial composition. Also, soil samples were collected and analyzed to compare productive and unproductive truffle grounds to confirm the presence of specific patterns linked to truffle production. Results indicate that differences occurred between truffle compartments (gleba and peridium) as well as between analyzed soils (productive and unproductive), with distinctive taxa associated. Furthermore, findings also demonstrated specific characteristics associated with truffle collection areas, thus indicating a degree of microbial selection related to different environments.
Collapse
Affiliation(s)
- Fabiano Sillo
- National Research Council-Institute for Sustainable Plant Protection (CNR-IPSP), Turin, Italy
| | - Marzia Vergine
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Alice Calvo
- National Research Council-Institute for Sustainable Plant Protection (CNR-IPSP), Turin, Italy
| | | | - Raffaella Balestrini
- National Research Council-Institute for Sustainable Plant Protection (CNR-IPSP), Turin, Italy
| | - Stefano Mancuso
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Federico Vita
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy.,Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
23
|
Kang Z, Li X, Li Y, Ye L, Zhang B, Zhang X, Penttinen P, Gu Y. Black Truffles Affect Quercus aliena Physiology and Root-Associated nirK- and nirS-Type Denitrifying Bacterial Communities in the Initial Stage of Inoculation. Front Microbiol 2022; 13:792568. [PMID: 35572648 PMCID: PMC9096950 DOI: 10.3389/fmicb.2022.792568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 03/22/2022] [Indexed: 11/29/2022] Open
Abstract
Truffles (Tuber spp.) are edible ectomycorrhizal fungi with high economic value. Bacteria in ectomycorrhizosphere soils are considered to be associated with the nutrient uptake of truffles and hosts. Whether Tuber spp. inoculation can affect the growth of Quercus aliena, the ectomycorrhizosphere soil, and the rhizosphere nirK and nirS-denitrifier communities at the ectomycorrhizae formation stage is still unclear. Therefore, we inoculated Q. aliena with the black truffles Tuber melanosporum and Tuber indicum, determined the physiological activity and morphological indices of Q. aliena seedlings, analyzed the physicochemical properties of ectomycorrhizosphere soils, and applied DNA sequencing to assess the nirK and nirS- denitrifier community structure in ectomycorrhizosphere soils. Peroxidase activity was higher in the seedlings inoculated with T. melanosporum than in the T. indicum inoculation and uninoculated control treatments. The available phosphorus contents were lower and nitrate contents were higher in those with truffle inoculation, and T. melanosporum treatment differed more from the control than the T. indicum treatment. The richness of the nirK-community was highest in the T. indicum treatment and lowest in the uninoculated treatment. The differences in nirK-community composition across treatments were not statistically significant, but the nirS communities were different. The nirS-type bacteria correlated with three environmental factors (pH, available phosphorus, and nitrate contents), whereas the nirK-type bacteria were only associated with the nitrate contents. Generally, this work revealed that inoculation with Tuber spp. would change a few nutrient contents and richness of nirK-type bacteria and had little effects on growth of Q. aliena seedlings in the initial stage of inoculation. The results of this study may provide in-depth insights into the relationships between Tuber spp. and hosts, which should be taken into account when developing truffle production methods.
Collapse
Affiliation(s)
- Zongjing Kang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xiaolin Li
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yan Li
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Lei Ye
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Bo Zhang
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xiaoping Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Petri Penttinen
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
- Ecosystems and Environment Research Programme, University of Helsinki, Helsinki, Finland
| | - Yunfu Gu
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
24
|
Changes in Soil Ectomycorrhizal Fungi Community in Oak Forests along the Urban–Rural Gradient. FORESTS 2022. [DOI: 10.3390/f13050675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The ectomycorrhizal fungi communities of forests are closely correlated with forest health and ecosystem functions. To investigate the structure and composition of ectomycorrhizal fungi communities in oak forest soil and their driving factors along the urban–rural gradient, we set up a Quercus acutissima forest transect and collected samples from the center to the edge of Jinan city (urban, suburban, rural). The results showed that the ectomycorrhizal fungal community composition at the phyla level mainly included Basidiomycota and Ascomycota in three sites. At the genus level, the community compositions of ectomycorrhizal fungi, along the urban–rural gradient, exhibited significant differences. Inocybe, Russula, Scleroderma, Tomentella, Amanita and Tuber were the dominant genera in these Quercus acutissima forests. Additionally, the diversity of ectomycorrhizal fungi was the highest in rural Quercus acutissima forest, followed by urban and suburban areas. Key ectomycorrhizal fungi species, such as Tuber, Russula and Sordariales, were identified among three forests. We also found that pH, soil organic matter and ammonium nitrogen were the main driving factors of the differences in ectomycorrhizal fungi community composition and diversity along the urban–rural gradient. Overall, the differences in composition and diversity in urban–rural gradient forest were driven by the differences in soil physicochemical properties resulting from the forest location.
Collapse
|
25
|
Suwannarach N, Kumla J, Zhao Y, Kakumyan P. Impact of Cultivation Substrate and Microbial Community on Improving Mushroom Productivity: A Review. BIOLOGY 2022; 11:biology11040569. [PMID: 35453768 PMCID: PMC9027886 DOI: 10.3390/biology11040569] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Lignocellulosic material and substrate formulations affect mushroom productivity. The microbial community in cultivation substrates affects the quality of the substrates and the efficiency of mushroom production. The elucidation of the key microbes and their biochemical function can serve as a useful guide in the development of a more effective system for mushroom cultivation. Abstract Lignocellulosic materials commonly serve as base substrates for mushroom production. Cellulose, hemicellulose, and lignin are the major components of lignocellulose materials. The composition of these components depends upon the plant species. Currently, composted and non-composted lignocellulosic materials are used as substrates in mushroom cultivation depending on the mushroom species. Different substrate compositions can directly affect the quality and quantity of mushroom production yields. Consequently, the microbial dynamics and communities of the composting substrates can significantly affect mushroom production. Therefore, changes in both substrate composition and microbial diversity during the cultivation process can impact the production of high-quality substrates and result in a high degree of biological efficiency. A brief review of the current findings on substrate composition and microbial diversity for mushroom cultivation is provided in this paper. We also summarize the advantages and disadvantages of various methods of mushroom cultivation by analyzing the microbial diversity of the composting substrates during mushroom cultivation. The resulting information will serve as a useful guide for future researchers in their attempts to increase mushroom productivity through the selection of suitable substrate compositions and their relation to the microbial community.
Collapse
Affiliation(s)
- Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (J.K.)
| | - Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (J.K.)
| | - Yan Zhao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Correspondence: (Y.Z.); (P.K.)
| | - Pattana Kakumyan
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Correspondence: (Y.Z.); (P.K.)
| |
Collapse
|
26
|
Gohar D, Põldmaa K, Tedersoo L, Aslani F, Furneaux B, Henkel TW, Saar I, Smith ME, Bahram M. Global diversity and distribution of mushroom-inhabiting bacteria. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:254-264. [PMID: 35102713 DOI: 10.1111/1758-2229.13045] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Mushroom-forming fungi are important sources of food and medicine in many regions of the world, and their development and health are known to depend on various microbes. Recent studies have examined the structure of mushroom-inhabiting bacterial (MIB) communities and their association with local environmental variables, but global-scale diversity and determinants of these communities remain poorly understood. Here we examined the MIB global diversity and community composition in relation to climate, soil and host factors. We found a core global mushroom microbiome, accounting for 30% of sequence reads, while comprising a few bacterial genera such as Halomonas, Serratia, Bacillus, Cutibacterium, Bradyrhizobium and Burkholderia. Our analysis further revealed an important role of host phylogeny in shaping the communities of MIB, whereas the effects of climate and soil factors remained negligible. The results suggest that the communities of MIB and free-living bacteria are structured by contrasting community assembly processes and that fungal-bacterial interactions are an important determinant of MIB community structure.
Collapse
Affiliation(s)
- Daniyal Gohar
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi St. 2, Tartu, 50409, Estonia
| | - Kadri Põldmaa
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi St. 2, Tartu, 50409, Estonia
- Natural History Museum and Botanical Garden, University of Tartu, Vanemuise 46, Tartu, 51003, Estonia
| | - Leho Tedersoo
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi St. 2, Tartu, 50409, Estonia
| | - Farzad Aslani
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi St. 2, Tartu, 50409, Estonia
- School of Environmental and Rural Sciences, University of New England, Armidale, NSW, Australia
| | - Brendan Furneaux
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, Uppsala, 75236, Sweden
| | - Terry W Henkel
- Department of Biological Sciences, Humboldt State University, Arcata, CA, USA
| | - Irja Saar
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi St. 2, Tartu, 50409, Estonia
| | - Matthew E Smith
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
| | - Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, Uppsala, 756 51, Sweden
| |
Collapse
|
27
|
Microbial communities of ascocarps and soils in a natural habitat of Tuber indicum. Arch Microbiol 2022; 204:189. [PMID: 35194691 DOI: 10.1007/s00203-022-02763-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/02/2022]
Abstract
Truffles are the fruiting bodies of hypogeous fungi in the genus Tuber. Some truffle species usually grow in an area devoid of vegetation, called brûlé, but limited knowledge is available on the microbial composition and structure of them. Here, we investigated the bacterial and fungal communities of Tuber indicum ascocarps and soils inside and outside a characteristic brûlé from a poplar plantation with no truffle production history in northeastern China using a high-throughput sequencing approach. A predominance of members of the bacterial phylum Proteobacteria was observed in all samples. Members of Bacillus were the main genera in the ascocarps, while members of Lysobacter and unidentified Acidobacteria were more abundant in the soil. In addition, members of Gibberella, Fusarium, and Absidia were the dominant fungi in the ascocarps, while members of Tuber were enriched in the ascocarps and soils inside the brûlé. Some mycorrhization helper bacteria (Rhizobium) and ectomycorrhiza-associated bacteria (Lysobacter) were detected, indicating their potential roles in the complex development of underground fruiting bodies and brûlé formation. These findings may contribute to the protection and cultivation of truffles.
Collapse
|
28
|
Life Cycle and Phylogeography of True Truffles. Genes (Basel) 2022; 13:genes13010145. [PMID: 35052485 PMCID: PMC8775154 DOI: 10.3390/genes13010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 02/05/2023] Open
Abstract
True truffle (Tuber spp.) is one group of ascomycetes with great economic importance. During the last 30 years, numerous fine-scale population genetics studies were conducted on different truffle species, aiming to answer several key questions regarding their life cycles; these questions are important for their cultivation. It is now evident that truffles are heterothallic, but with a prevalent haploid lifestyle. Strains forming ectomycorrhizas and germinating ascospores act as maternal and paternal partners respectively. At the same time, a number of large-scale studies were carried out, highlighting the influences of the last glaciation and river isolations on the genetic structure of truffles. A retreat to southern refugia during glaciation, and a northward expansion post glaciation, were revealed in all studied European truffles. The Mediterranean Sea, acting as a barrier, has led to the existence of several refugia in different peninsulas for a single species. Similarly, large rivers in southwestern China act as physical barriers to gene flow for truffles in this region. Further studies can pay special attention to population genetics of species with a wide distribution range, such as T. himalayense, and the correlation between truffle genetic structure and the community composition of truffle-associated bacteria.
Collapse
|
29
|
Bai HY, Zhang AY, Mei Y, Xu M, Lu XL, Dai CC, Jia Y. Effects of ectomycorrhizal fungus bolete identity on the community assemblages of endofungal bacteria. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:852-861. [PMID: 34494716 DOI: 10.1111/1758-2229.13007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Ectomycorrhiza-associated bacteria, especially endofungal bacterial microbiota (EBM) in the fruiting body, play important roles in driving the establishment and function of ectomycorrhizae. However, the influence of ectomycorrhizal fungus bolete identity on their EBM is still unclear. We analysed the EBM of three different bolete fruiting body species on Thousand Island Lake, including Tylopilus felleus, Tylopilus areolatus and Boletus queletii, and compared them with their corresponding mycosphere soil bacterial microbiota by high-throughput sequencing. The EBM was classified into Bacillus, Pseudomonas, Burkholderia and Stenotrophomonas genera. Proteobacteria, Bacteroidetes and Acidobacteria were predominant in the EBM of bolete fruiting bodies as well as their mycosphere soil, while Firmicutes was significantly higher in the EBM. Moreover, the core microbiome (342 operational taxonomic units) of the EBM was shared among the three bolete fungal species. The relative abundances of gene families related to cell cycle control and nucleotide, coenzyme and lipid metabolism were significantly higher in the EBM than in the corresponding mycosphere soil bacterial microbiota, but there was no difference among the three different boletes. The results suggested that the host identity of ectomycorrhizal fungus boletes could affect the EBM, which might be mainly due to the selection of host fungi for the different functional EBM needed.
Collapse
Affiliation(s)
- Hong-Yan Bai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Ai-Yue Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Yan Mei
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Man Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Xiao-Lin Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Yong Jia
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
30
|
Krösser D, Dreyer B, Siebels B, Voß H, Krisp C, Schlüter H. Investigation of the Proteomes of the Truffles Tuber albidum pico, T. aestivum, T. indicum, T. magnatum, and T. melanosporum. Int J Mol Sci 2021; 22:ijms222312999. [PMID: 34884803 PMCID: PMC8658033 DOI: 10.3390/ijms222312999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022] Open
Abstract
Truffles of the Tuber species are known as expensive foods, mainly for their distinct aroma and taste. This high price makes them a profitable target of food fraud, e.g., the misdeclaration of cheaper truffle species as expensive ones. While many studies investigated truffles on the metabolomic level or the volatile organic compounds extruded by them, research at the proteome level as a phenotype determining basis is limited. In this study, a bottom-up proteomic approach based on LC-MS/MS measurements in data-independent acquisition mode was performed to analyze the truffle species Tuber aestivum, Tuber albidum pico, Tuber indicum, Tuber magnatum, and Tuber melanosporum, and a protein atlas of the investigated species was obtained. The yielded proteomic fingerprints are unique for each of the of the five truffle species and can now be used in case of suspected food fraud. First, a comprehensive spectral library containing 9000 proteins and 50,000 peptides was generated by two-dimensional liquid chromatography coupled to tandem mass spectrometry (2D-LC-MS/MS). Then, samples of the truffle species were analyzed in data-independent acquisition (DIA) proteomics mode yielding 2715 quantified proteins present in all truffle samples. Individual species were clearly distinguishable by principal component analysis (PCA). Quantitative proteome fingerprints were generated from 2066 ANOVA significant proteins, and side-by-side comparisons of truffles were done by T-tests. A further aim of this study was the annotation of functions for the identified proteins. For Tuber magnatum and Tuber melanosporum conclusive links to their superior aroma were found by enrichment of proteins responsible for sulfur-metabolic processes in comparison with other truffles. The obtained data in this study may serve as a reference library for food analysis laboratories in the future to tackle food fraud by misdeclaration of truffles. Further identified proteins with their corresponding abundance values in the different truffle species may serve as potential protein markers in the establishment of targeted analysis methods. Lastly, the obtained data may serve in the future as a basis for deciphering the biochemistry of truffles more deeply as well, when protein databases of the different truffle species will be more complete.
Collapse
|
31
|
Niimi J, Deveau A, Splivallo R. Aroma and bacterial communities dramatically change with storage of fresh white truffle Tuber magnatum. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Liu D, Herrera M, Zhang P, He X, Perez-Moreno J, Chater CCC, Yu F. Truffle species strongly shape their surrounding soil mycobiota in a Pinus armandii forest. Arch Microbiol 2021; 203:6303-6314. [PMID: 34652507 DOI: 10.1007/s00203-021-02598-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 11/24/2022]
Abstract
Truffles contribute to crucial soil systems dynamics, being involved in plentiful ecological functions important for ecosystems. Despite this, the interactions between truffles and their surrounding mycobiome remain unknown. Here, we investigate soil mycobiome differences between two truffle species, Tuber indicum (Ti) and Tuber pseudohimalayense (Tp), and their relative influence on surrounding soil mycobiota. Using traditional chemical analysis and ITS Illumina sequencing, we compared soil nutrients and the mycobiota, respectively, in soil, gleba, and peridium of the two truffle species inhabiting the same Pinus armandii forest in southwestern China. Tp soil was more acidic (pH 6.42) and had a higher nutrient content (total C, N content) than Ti soil (pH 6.62). Fungal richness and diversity of fruiting bodies (ascomata) and surrounding soils were significantly higher in Tp than in Ti. Truffle species recruited unique soil mycobiota around their ascomata: in Ti soil, fungal taxa, including Suillus, Alternaria, Phacidium, Mycosphaerella, Halokirschsteiniothelia, and Pseudogymnoascus, were abundant, while in Tp soil species of Melanophyllum, Inocybe, Rhizopogon, Rhacidium, and Lecanicillium showed higher abundances. Three dissimilarity tests, including adonis, anosim, and MRPP, showed that differences in fungal community structure between the two truffle species and their surrounding soils were stronger in Tp than in Ti, and these differences extended to truffle tissues (peridium and gleba). Redundancy analysis (RDA) further demonstrated that correlations between soil fungal taxa and soil properties changed from negative (Tp) to positive (Ti) and shifted from a moisture-driven (Tp) to a total N-driven (Ti) relationship. Overall, our results shed light on the influence that truffles have on their surrounding soil mycobiome. However, further studies are required on a broader range of truffle species in different soil conditions in order to determine causal relationships between truffles and their soil mycobiome.
Collapse
Affiliation(s)
- Dong Liu
- Key Laboratory for Fungal Diversity and Green Development, The Germplasm Bank of Wild Species, Kunming, Kunming Institute Botany, Chinese Academy of Sciences, Qingsong Road 21#, Kunming, 650201, Yunnan, China.
| | - Mariana Herrera
- Key Laboratory for Fungal Diversity and Green Development, The Germplasm Bank of Wild Species, Kunming, Kunming Institute Botany, Chinese Academy of Sciences, Qingsong Road 21#, Kunming, 650201, Yunnan, China
| | - Peng Zhang
- Key Laboratory for Fungal Diversity and Green Development, The Germplasm Bank of Wild Species, Kunming, Kunming Institute Botany, Chinese Academy of Sciences, Qingsong Road 21#, Kunming, 650201, Yunnan, China
| | - Xinhua He
- Key Laboratory for Fungal Diversity and Green Development, The Germplasm Bank of Wild Species, Kunming, Kunming Institute Botany, Chinese Academy of Sciences, Qingsong Road 21#, Kunming, 650201, Yunnan, China.,Department of Land, Air and Water Resources, University of California at Davis, Davis, CA, 95616, USA
| | - Jesús Perez-Moreno
- Colegio de Postgraduados, Campus Montecillo, Microbiología, Edafología, 56230, Montecillo, Texcoco, Mexico
| | | | - Fuqiang Yu
- Key Laboratory for Fungal Diversity and Green Development, The Germplasm Bank of Wild Species, Kunming, Kunming Institute Botany, Chinese Academy of Sciences, Qingsong Road 21#, Kunming, 650201, Yunnan, China.
| |
Collapse
|
33
|
Monaco P, Bucci A, Naclerio G, Mello A. Heterogeneity of the white truffle Tuber magnatum in a limited geographic area of Central-Southern Italy. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:591-599. [PMID: 33943006 DOI: 10.1111/1758-2229.12956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 03/19/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Molise region (Central-Southern Italy) is one of the Italian richest areas of truffles and contributes significantly to the national production of the precious Tuber magnatum. Nevertheless, Molise truffle has received little scientific attention. Accordingly, in the present study, two T. magnatum populations collected in two different sites of Molise region were characterised from a morphological, genetic and microbiological point of view. A considerable variability between and within the two analysed groups emerged, suggesting an interesting heterogeneity of Molise white truffle populations. Ascocarps of the two groups significantly differed in size and maturation degree, although no linear correlation between weight and maturity was found. Genetic investigations focused on the Sequence-Characterised Amplified Region SCAR A21-inf. Three haplotypes, randomly distributed within the two truffle groups regardless of their collection sites, were detected. The 16S rRNA gene amplicon high-throughput sequencing provided an overview of the composition of the ascocarp-associated bacterial communities. A predominance of α-Proteobacteria was observed, with Bradyrhizobium among the main genera. However, some truffles showed unusual microbial profiles, with Pedobacter, Polaromonas and other bacterial genera as dominant taxa.
Collapse
Affiliation(s)
- Pamela Monaco
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, Pesche (IS), 86090, Italy
| | - Antonio Bucci
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, Pesche (IS), 86090, Italy
| | - Gino Naclerio
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, Pesche (IS), 86090, Italy
| | - Antonietta Mello
- Institute for Sustainable Plant Protection (IPSP), Turin Unit, National Research Council, Viale P.A. Mattioli 25, Turin, 10125, Italy
| |
Collapse
|
34
|
Truffle Microbiome Is Driven by Fruit Body Compartmentalization Rather than Soils Conditioned by Different Host Trees. mSphere 2021; 6:e0003921. [PMID: 34378984 PMCID: PMC8386477 DOI: 10.1128/msphere.00039-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Truffles are among the most expensive edible mushrooms; their value is worth billions of U.S. dollars annually in international markets. They establish ectomycorrhizal symbiotic relationships with diverse host tree roots and produce hypogeous ascomata. Their whole life cycle is closely related to their associated microbiome. However, whether truffle-associated compartments or host tree rhizospheres are the vital driver for truffle ascomata microbiome is unclear. To identify and compare fungal and bacterial communities in four truffle-associated compartments (Tuber indicum: bulk soil, adhering soil to peridium, peridium, and gleba) from three host trees, we sequenced their ITS (fungal) and 16S (bacterial) ribosomal DNA using the Illumina MiSeq high-throughput platform. We further applied the amplicon data to analyze the core microbiome and microbial ecological networks. Tuber indicum microbiome composition was strongly driven by its associated compartments rather than by their symbiotic host trees. Truffle microbiome was bacteria dominated, and its bacterial community formed a substantially more complex interacting network compared to that of the fungal community. The core fungal community changed from Basidiomycota dominated (bulk soil) to Rozellomycota dominated (interphase soil); the core bacterial community shifted from Bacteroidetes to Proteobacteria dominance from truffle peridium to gleba tissue. Especially, at the truffle and soil interphase, the niche-based selection of truffle microbiome was verified by (i) a clear exclusion of four bacterial phyla (Rokubacteria, Nitrospirae, Chloroflexi, and Planctomycetes) in gleba; (ii) a significant decrease in alpha-diversity (as revealed by Chao 1, Shannon, and Simpson indices); and (iii) the complexity of the network substantially decreased from bulk soil to soil-truffle interphase and further to the peridium and gleba. The network analysis of microbiome showed that the microbial positive interactions were higher in truffle tissues than in both bulk soil and peridium-adhering soil and that Cupriavidus, Bradyrhizobium, Aminobacter, and Mesorhizobium spp. were the keystone network hubs in the truffle gleba. This study provides insights into the factors that drive the truffle microbiome dynamics and the recruitment and function of the microbiome components. IMPORTANCE Currently, the factors that drive the microbiome associated with truffles, the most highly prized fungi in the world, are largely unknown. We demonstrate for the first time here that truffle microbiome composition is strongly driven by associated compartments rather than by symbiotic host trees. The truffle microbiome was bacteria dominated, and its bacterial community formed a substantially more complex (with the higher numbers of nodes, links, and modules) interacting network compared to that of the fungal community. Network analysis showed a higher number of positive microbial interactions with each other in truffle tissues than in both bulk soil and peridium-adhering soil. For the first time, the fungal community structure associated with truffles using high-throughput sequencing, microbial networks, and keystone species analyses is presented. This study provides novel insights into the factors that drive the truffle microbiome dynamics and the recruitment and function of the microbiome components, showing that they are more complex than previously thought.
Collapse
|
35
|
Arenas F, Navarro-Ródenas A, Marqués-Gálvez JE, Ghignone S, Mello A, Morte A. Different patterns in root and soil fungal diversity drive plant productivity of the desert truffle Terfezia claveryi in plantation. Environ Microbiol 2021; 23:5917-5933. [PMID: 34320277 DOI: 10.1111/1462-2920.15688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/22/2022]
Abstract
The desert truffle Terfezia claveryi is one of the few mycorrhizal fungi currently in cultivation in semiarid and arid areas. Agroclimatic parameters seem to affect its annual yield, but there is no information on the influence of biotic factors. In this study, fungal diversity was analysed by high-throughput sequencing of the ITS2 rDNA region from soil and root samples to compare productive and non-productive mycorrhizal plants in a 4-years old plantation (Murcia, Spain). The fungal metaprofile was dominated by Ascomycota phylum. Desert truffle productivity was driven by different patterns of fungal species composition in soil (species replacement) and root (species richness differences). Moreover, positive associations for ectomycorrhizal and negative for arbuscular mycorrhizal guilds were found in productive roots, and positive associations for fungal parasite-plant pathogen guild in non-productive ones. Soil samples were dominated by pathotroph and saprotroph trophic modes, showing positive associations for Aureobasidium pullulans and Alternaria sp. in productive areas, and positive associations for Fusarium sp. and Mortierella sp. were found in non-productive soils. Finally, some significant OTUs were identified and associated to ascocarp producing patches, which could serve as predictive and location markers of desert truffle production.
Collapse
Affiliation(s)
- Francisco Arenas
- Departamento Biología Vegetal, Facultad de Biología, CEIR Campus Mare Nostrum (CMN, Universidad de Murcia, Campus de Espinardo, Murcia, 30100, Spain
| | - Alfonso Navarro-Ródenas
- Departamento Biología Vegetal, Facultad de Biología, CEIR Campus Mare Nostrum (CMN, Universidad de Murcia, Campus de Espinardo, Murcia, 30100, Spain
| | - José Eduardo Marqués-Gálvez
- Departamento Biología Vegetal, Facultad de Biología, CEIR Campus Mare Nostrum (CMN, Universidad de Murcia, Campus de Espinardo, Murcia, 30100, Spain
| | - Stefano Ghignone
- Institute for Sustainable Plant Protection - SS Turin, CNR, Torino, 10125, Italy
| | - Antonietta Mello
- Institute for Sustainable Plant Protection - SS Turin, CNR, Torino, 10125, Italy
| | - Asunción Morte
- Departamento Biología Vegetal, Facultad de Biología, CEIR Campus Mare Nostrum (CMN, Universidad de Murcia, Campus de Espinardo, Murcia, 30100, Spain
| |
Collapse
|
36
|
Lü BB, Wu GG, Sun Y, Zhang LS, Wu X, Jiang W, Li P, Huang YN, Wang JB, Zhao YC, Liu H, Song LL, Mo Q, Pan AH, Yang Y, Long XQ, Cui WD, Zhang C, Wang X, Tang XM. Comparative Transcriptome and Endophytic Bacterial Community Analysis of Morchella conica SH. Front Microbiol 2021; 12:682356. [PMID: 34354681 PMCID: PMC8329594 DOI: 10.3389/fmicb.2021.682356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/10/2021] [Indexed: 12/13/2022] Open
Abstract
The precious rare edible fungus Morchella conica is popular worldwide for its rich nutrition, savory flavor, and varieties of bioactive components. Due to its high commercial, nutritional, and medicinal value, it has always been a hot spot. However, the molecular mechanism and endophytic bacterial communities in M. conica were poorly understood. In this study, we sequenced, assembled, and analyzed the genome of M. conica SH. Transcriptome analysis reveals significant differences between the mycelia and fruiting body. As shown in this study, 1,329 and 2,796 genes were specifically expressed in the mycelia and fruiting body, respectively. The Gene Ontology (GO) enrichment showed that RNA polymerase II transcription activity-related genes were enriched in the mycelium-specific gene cluster, and nucleotide binding-related genes were enriched in the fruiting body-specific gene cluster. Further analysis of differentially expressed genes in different development stages resulted in finding two groups with distinct expression patterns. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment displays that glycan degradation and ABC transporters were enriched in the group 1 with low expressed level in the mycelia, while taurine and hypotaurine metabolismand tyrosine metabolism-related genes were significantly enriched in the group 2 with high expressed level in mycelia. Moreover, a dynamic shift of bacterial communities in the developing fruiting body was detected by 16S rRNA sequencing, and co-expression analysis suggested that bacterial communities might play an important role in regulating gene expression. Taken together, our study provided a better understanding of the molecular biology of M. conica SH and direction for future research on artificial cultivation.
Collapse
Affiliation(s)
- Bei B Lü
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Guo G Wu
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yu Sun
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Liang S Zhang
- Institute of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiao Wu
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Wei Jiang
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Peng Li
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yan N Huang
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jin B Wang
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yong C Zhao
- Institute of Edible Fungi, Yunnan Academy of Agricultural Sciences, Yunnan, China
| | - Hua Liu
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Li L Song
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Qin Mo
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ai H Pan
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xuan Q Long
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Wei D Cui
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Chao Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xu Wang
- Department of Pathobiology, Auburn University, Auburn, AL, United States.,HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Xue M Tang
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
37
|
Koch RA, Yoon GM, Aryal UK, Lail K, Amirebrahimi M, LaButti K, Lipzen A, Riley R, Barry K, Henrissat B, Grigoriev IV, Herr JR, Aime MC. Symbiotic nitrogen fixation in the reproductive structures of a basidiomycete fungus. Curr Biol 2021; 31:3905-3914.e6. [PMID: 34245690 DOI: 10.1016/j.cub.2021.06.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/09/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022]
Abstract
Nitrogen (N) fixation is a driving force for the formation of symbiotic associations between N2-fixing bacteria and eukaryotes.1 Limited examples of these associations are known in fungi, and none with sexual structures of non-lichenized species.2-6 The basidiomycete Guyanagaster necrorhizus is a sequestrate fungus endemic to the Guiana Shield.7 Like the root rot-causing species in its sister genera Armillaria and Desarmillaria, G. necrorhizus sporocarps fruit from roots of decaying trees (Figures 1A-1C),8 and genome sequencing is consistent with observations that G. necrorhizus is a white-rotting decomposer. This species also represents the first documentation of an arthropod-dispersed sequestrate fungus. Numerous species of distantly related wood-feeding termites, which scavenge for N-rich food, feed on the mature spore-bearing tissue, or gleba, of G. necrorhizus. During feeding, mature spores adhere to termites for subsequent dispersal.9 Using chemical assays, isotope analysis, and high-throughput sequencing, we show that the sporocarps harbor actively N2-fixing Enterobacteriaceae species and that the N content within fungal tissue increases with maturation. Untargeted proteomic profiling suggests that ATP generation in the gleba is accomplished via fermentation. The use of fermentation-an anaerobic process-indicates that the sporocarp environment is anoxic, likely an adaptation to protect the oxygen-sensitive nitrogenase enzyme. Sporocarps also have a thick outer covering, possibly to limit oxygen diffusion. The enriched N content within mature sporocarps may offer a dietary inducement for termites in exchange for spore dispersal. These results show that the flexible metabolic capacity of fungi may facilitate N2-fixing associations, as well as higher-level organismal associations.
Collapse
Affiliation(s)
- Rachel A Koch
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA; Department of Plant Pathology, University of Nebraska, Lincoln, NE 68520, USA.
| | - Gyeong Mee Yoon
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Uma K Aryal
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA; Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Kathleen Lail
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Mojgan Amirebrahimi
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kurt LaButti
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Robert Riley
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille 13288, France; Institut National de la Recherche Agronomique, USC1408 Architecture et Fonction des Macromolécules Biologiques, Marseille 13288, France; Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Joshua R Herr
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68520, USA; Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68520, USA
| | - M Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
38
|
Niimi J, Deveau A, Splivallo R. Geographical-based variations in white truffle Tuber magnatum aroma is explained by quantitative differences in key volatile compounds. THE NEW PHYTOLOGIST 2021; 230:1623-1638. [PMID: 33555031 DOI: 10.1111/nph.17259] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
The factors that vary the aroma of Tuber magnatum fruiting bodies are poorly understood. The study determined the headspace aroma composition, sensory aroma profiles, maturity and bacterial communities from T. magnatum originating from Italy, Croatia, Hungary, and Serbia, and tested if truffle aroma is dependent on provenance and if fruiting body volatiles are explained by maturity and/or bacterial communities. Headspace volatile profiles were determined using gas chromatography-mass spectrometry-olfactometry (GC-MS-O) and aroma of fruiting body extracts were sensorially assessed. Fruiting body maturity was estimated through spore melanisation. Bacterial community was determined using 16S rRNA amplicon sequencing. Main odour active compounds were present in all truffles but varied in concentration. Aroma of truffle extracts were sensorially discriminated by sites. However, volatile profiles of individual fruiting bodies varied more within sites than across geographic area, while maturity level did not play a role. Bacterial communities varied highly and were partially explained by provenance. A few rare bacterial operational taxonomical units associated with a select few nonodour active volatile compounds. Specificities of the aroma of T. magnatum truffles are more likely to be linked to individual properties than provenance. Some constituents of bacteria may provide biomarkers of provenance and be linked to nonodour active volatiles.
Collapse
Affiliation(s)
- Jun Niimi
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Str. 9, Frankfurt am Main, 60438, Germany
| | - Aurélie Deveau
- Institut national de la recherche agronomique (INRA), Unité Mixte de Recherche 1136 INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Centre INRA-Grand Est-Nancy, Champenoux, 54280, France
| | - Richard Splivallo
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Str. 9, Frankfurt am Main, 60438, Germany
- Nectariss Sàrl, Avenue de Senalèche 9, Pully, 1009, Switzerland
| |
Collapse
|
39
|
Embacher J, Neuhauser S, Zeilinger S, Kirchmair M. Microbiota Associated with Different Developmental Stages of the Dry Rot Fungus Serpula lacrymans. J Fungi (Basel) 2021; 7:354. [PMID: 33946450 PMCID: PMC8147175 DOI: 10.3390/jof7050354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/19/2022] Open
Abstract
The dry rot fungus Serpula lacrymans causes significant structural damage by decaying construction timber, resulting in costly restoration procedures. Dry rot fungi decompose cellulose and hemicellulose and are often accompanied by a succession of bacteria and other fungi. Bacterial-fungal interactions (BFI) have a considerable impact on all the partners, ranging from antagonistic to beneficial relationships. Using a cultivation-based approach, we show that S. lacrymans has many co-existing, mainly Gram-positive, bacteria and demonstrate differences in the communities associated with distinct fungal parts. Bacteria isolated from the fruiting bodies and mycelia were dominated by Firmicutes, while bacteria isolated from rhizomorphs were dominated by Proteobacteria. Actinobacteria and Bacteroidetes were less abundant. Fluorescence in situ hybridization (FISH) analysis revealed that bacteria were not present biofilm-like, but occurred as independent cells scattered across and within tissues, sometimes also attached to fungal spores. In co-culture, some bacterial isolates caused growth inhibition of S. lacrymans, and vice versa, and some induced fungal pigment production. It was found that 25% of the isolates could degrade pectin, 43% xylan, 17% carboxymethylcellulose, and 66% were able to depolymerize starch. Our results provide first insights for a better understanding of the holobiont S. lacrymans and give hints that bacteria influence the behavior of S. lacrymans in culture.
Collapse
Affiliation(s)
| | | | | | - Martin Kirchmair
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria; (J.E.); (S.N.); (S.Z.)
| |
Collapse
|
40
|
Liu D, He X, Chater CCC, Perez-Moreno J, Yu F. Microbiome Community Structure and Functional Gene Partitioning in Different Micro-Niches Within a Sporocarp-Forming Fungus. Front Microbiol 2021; 12:629352. [PMID: 33859628 PMCID: PMC8042227 DOI: 10.3389/fmicb.2021.629352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 03/10/2021] [Indexed: 02/03/2023] Open
Abstract
Thelephora ganbajun is a wild edible mushroom highly appreciated throughout China. The microbiomes of some fungal sporocarps have been studied, however, their potential functional roles currently remain uncharacterized. Here, functional gene microarrays (GeoChip 5.0) and amplicon sequencing were employed to define the taxonomic and functional attributes within three micro-niches of T. ganbajun. The diversity and composition of bacterial taxa and their functional genes differed significantly (p < 0.01) among the compartments. Among 31,117 functional genes detected, some were exclusively recorded in one sporocarp compartment: 1,334 genes involved in carbon (mdh) and nitrogen fixation (nifH) in the context; 524 genes influencing carbon (apu) and sulfite reduction (dsrB, dsra) in the hymenophore; and 255 genes involved in sulfur oxidation (soxB and soxC) and polyphosphate degradation (ppx) in the pileipellis. These results shed light on a previously unknown microbiome and functional gene partitioning in sporome compartments of Basidiomycota. This also has great implications for their potential ecological and biogeochemical functions, demonstrating a higher genomic complexity than previously thought.
Collapse
Affiliation(s)
- Dong Liu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xinhua He
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Department of Land, Air and Water Resources, University of California, Davis, Davis, CA, United States
| | - Caspar C. C. Chater
- Department of Natural Capital and Plant Health, Royal Botanic Gardens, Kew, Richmond, United Kingdom
| | | | - Fuqiang Yu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
41
|
Gohar D, Pent M, Põldmaa K, Bahram M. Bacterial community dynamics across developmental stages of fungal fruiting bodies. FEMS Microbiol Ecol 2021; 96:5894922. [PMID: 32816035 DOI: 10.1093/femsec/fiaa175] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/18/2020] [Indexed: 12/30/2022] Open
Abstract
Increasing evidence suggest that bacteria form diverse communities in various eukaryotic hosts, including fungi. However, little is known about their succession and the functional potential at different host development stages. Here we examined the effect of fruiting body parts and developmental stages on the structure and potential function of fungus-associated bacterial communities. Using high-throughput sequencing, we characterized bacterial communities and their associated potential functions in fruiting bodies from ten genera belonging to four major mushroom-forming orders and three different developmental stages of a model host species Cantharellus cibarius. Our results demonstrate that bacterial community structure differs between internal and external parts of the fruiting body but not between inner tissues. The structure of the bacterial communities showed significant variation across fruiting body developmental stages. We provide evidence that certain functional groups, such as those related to nitrogen fixation, persist in fruiting bodies during the maturation, but are replaced by putative parasites/pathogens afterwards. These data suggest that bacterial communities inhabiting fungal fruiting bodies may play important roles in their growth and development.
Collapse
Affiliation(s)
- Daniyal Gohar
- Institute of Ecology and Earth Sciences, University of Tartu, 14a Ravila, 50411, Tartu, Estonia
| | - Mari Pent
- Institute of Ecology and Earth Sciences, University of Tartu, 14a Ravila, 50411, Tartu, Estonia
| | - Kadri Põldmaa
- Institute of Ecology and Earth Sciences, University of Tartu, 14a Ravila, 50411, Tartu, Estonia
| | - Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, 756 51, Uppsala, Sweden
| |
Collapse
|
42
|
Lack of Linkages among Fruiting Depth, Weight, and Maturity in Irrigated Truffle Fungi Marks the Complexity of Relationships among Morphogenetic Stages. J Fungi (Basel) 2021; 7:jof7020102. [PMID: 33535599 PMCID: PMC7912816 DOI: 10.3390/jof7020102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 01/28/2021] [Indexed: 11/16/2022] Open
Abstract
The highly prized black truffle (Tuber melanosporum) has become a model species for ectomycorrhizal fungi biology. However, several questions concerning its reproductive phase remain unanswered. To provide new hypotheses on the fruitbody formation process, we have explored the causal links among development characters of black truffle fruitbodies that are primarily linked to either the mating process, fruitbody growing stage, or maturation. Path analysis was applied to test causal models outlining the relationships among fruitbody development characters such as fruiting depth, weight, shape, and spore maturity. These characters were investigated over a two-season survey and three soil typologies (plus peat-based substrate) under irrigated conditions. We found a clear and generalized relationship between fruitbody weight and shape. Among clusters of fruitbodies we found a positive relationship between the weight of the largest fruitbody and the weight of the remaining fruitbodies. However, no generalized relationships among characters linked to different development stages appeared. Our results were noticeably consistent across soil typologies, both for fruitbodies growing singly and in clusters, indicating that early-developing fruitbody characters did not influence characters linked to subsequent morphogenetic stages. The lack of links among stages opens new perspectives for pre-harvest quality management with stage-specific cultivation practices.
Collapse
|
43
|
Krauß S, Vetter W. Geographical and Species Differentiation of Truffles ( Tuber spp.) by Means of Stable Isotope Ratio Analysis of Light Elements (H, C, and N). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14386-14392. [PMID: 32378890 DOI: 10.1021/acs.jafc.0c01051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Truffles (Tuber spp.) are considered the most expensive edible fungi and, therefore, are highly prone to food fraud. In this study, authentic truffles from different countries of origin and species were characterized by the determination of their stable carbon, nitrogen, and hydrogen isotope ratios (bulk δ2H, δ13C, and δ15N values). Chinese truffles from Yunnan or related provinces (n = 19) could be well-separated from all European samples (eight countries; n = 105) by means of their significantly (p < 0.05) more negative δ2H values. Furthermore, samples of the second most expensive European species Tuber magnatum were both more enriched in 15N and more depleted in 13C compared to the remaining samples, which allowed for an unequivocal differentiation. Hence, stable isotope ratio analysis could be of high value in terms of authentication of truffles.
Collapse
Affiliation(s)
- Stephanie Krauß
- Institute of Food Chemistry (170b), University of Hohenheim, Garbenstraße 28, D-70599 Stuttgart, Germany
| | - Walter Vetter
- Institute of Food Chemistry (170b), University of Hohenheim, Garbenstraße 28, D-70599 Stuttgart, Germany
| |
Collapse
|
44
|
Liu D, Herrera M, Yu F, Pèrez-Moreno J. Provenances originate morphological and microbiome variation of Tuber pseudobrumale in southwestern China despite strong genetic consistency. Mycol Prog 2020. [DOI: 10.1007/s11557-020-01645-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
45
|
Perlińska-Lenart U, Piłsyk S, Gryz E, Turło J, Hilszczańska D, Kruszewska JS. Identification of bacteria and fungi inhabiting fruiting bodies of Burgundy truffle (Tuber aestivum Vittad.). Arch Microbiol 2020; 202:2727-2738. [PMID: 32734321 PMCID: PMC7538415 DOI: 10.1007/s00203-020-02002-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 11/29/2022]
Abstract
Tuber species may be regarded as complex microhabitats hosting diverse microorganisms inside their fruiting bodies. Here, we investigated the structure of microbial communities inhabiting the gleba of wild growing (in stands) T. aestivum, using Illumina sequencing and culture-based methods. The two methods used in combination allowed to extract more information on complex microbiota of Tuber aestivum gleba. Analysis of the V3-V4 region of 16S rDNA identified nine phyla of bacteria present in the gleba of T. aestivum ascomata, mostly Proteobacteria from the family Bradyrhizobiaceae. Our results ideally match the earlier data for other Tuber species where the family Bradyrhizobiaceae was the most represented. The ITS1 region of fungal rDNA represented six alien fungal species belonging to three phyla. To complement the metagenomic analysis, cultivable fungi and bacteria were obtained from the gleba of the same T. aestivum fruiting bodies. The identified fungi mostly belong to the phylum Basidiomycota and same to Ascomycota. Analysis of cultivable bacteria revealed that all the specimens were colonized by different strains of Bacillus. Fungal community inhabiting T. aestivum fruiting bodies was never shown before.
Collapse
Affiliation(s)
| | - Sebastian Piłsyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Elżbieta Gryz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jadwiga Turło
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Warsaw, Poland
| | - Dorota Hilszczańska
- Department of Forest Ecology, Forest Research Institute, Sękocin Stary, Poland.
| | - Joanna S Kruszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
46
|
Gómez-Molina E, Sánchez S, Parladé J, Cirujeda A, Puig-Pey M, Marco P, Garcia-Barreda S. Glyphosate treatments for weed control affect early stages of root colonization by Tuber melanosporum but not secondary colonization. MYCORRHIZA 2020; 30:725-733. [PMID: 33047180 DOI: 10.1007/s00572-020-00990-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
The cultivation of the ectomycorrhizal fungus Tuber melanosporum has considerably spread in recent years throughout the world. During the first years of truffle cultivation, weed control is a key practice to improve the establishment of host trees and the proliferation of the fungus in the soil. Glyphosate is nowadays the most commonly used herbicide in Spanish truffle orchards. We explored the effect of glyphosate on the proliferation of T. melanosporum mycorrhizae, on extraradical mycelium and on the inoculum potential of T. melanosporum spores in greenhouse experiments using Quercus ilex seedlings as host plants. No detrimental effect on the secondary infection of T. melanosporum was found after three sequential glyphosate applications in young seedlings during one vegetative period. Instead, a change in the distribution of fine roots and T. melanosporum mycorrhizae along soil depth was observed. On the other hand, results indicate that high application rates of glyphosate hinder the infectivity of T. melanosporum spore inoculum, without apparent impact on the host performance. Our results suggest that glyphosate has the potential to jeopardise the role of the soil spore bank as inoculum source for the colonisation of new roots, also raising the question of whether glyphosate could hinder the presumed role of spores in sexual mating.
Collapse
Affiliation(s)
- Eva Gómez-Molina
- Centro de Investigación y Experimentación en Truficultura (CIET), Diputación Provincial de Huesca, Polígono Fabardo s/n, 22430, Graus, Spain.
| | - Sergio Sánchez
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059, Zaragoza, Spain
- Instituto Agroalimentario de Aragón - A2 (CITA-Universidad de Zaragoza), Zaragoza, Spain
| | - Javier Parladé
- IRTA, Centre de Cabrils, Ctra. de Cabrils km. 2, Cabrils, 08348, Barcelona, Spain
| | - Alicia Cirujeda
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059, Zaragoza, Spain
- Instituto Agroalimentario de Aragón - A2 (CITA-Universidad de Zaragoza), Zaragoza, Spain
| | - Meritxell Puig-Pey
- Centro de Investigación y Experimentación en Truficultura (CIET), Diputación Provincial de Huesca, Polígono Fabardo s/n, 22430, Graus, Spain
| | - Pedro Marco
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059, Zaragoza, Spain
- Instituto Agroalimentario de Aragón - A2 (CITA-Universidad de Zaragoza), Zaragoza, Spain
| | - Sergi Garcia-Barreda
- Centro de Investigación y Experimentación en Truficultura (CIET), Diputación Provincial de Huesca, Polígono Fabardo s/n, 22430, Graus, Spain
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059, Zaragoza, Spain
- Instituto Agroalimentario de Aragón - A2 (CITA-Universidad de Zaragoza), Zaragoza, Spain
| |
Collapse
|
47
|
Pent M, Bahram M, Põldmaa K. Fruitbody chemistry underlies the structure of endofungal bacterial communities across fungal guilds and phylogenetic groups. THE ISME JOURNAL 2020; 14:2131-2141. [PMID: 32409757 PMCID: PMC7368025 DOI: 10.1038/s41396-020-0674-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 01/06/2023]
Abstract
Eukaryote-associated microbiomes vary across host taxa and environments but the key factors underlying their diversity and structure in fungi are still poorly understood. Here we determined the structure of bacterial communities in fungal fruitbodies in relation to the main chemical characteristics in ectomycorrhizal (EcM) and saprotrophic (SAP) mushrooms as well as in the surrounding soil. Our analyses revealed significant differences in the structure of endofungal bacterial communities across fungal phylogenetic groups and to a lesser extent across fungal guilds. These variations could be partly ascribed to differences in fruitbody chemistry, particularly the carbon-to-nitrogen ratio and pH. Fungal fruitbodies appear to represent nutrient-rich islands that derive their microbiome largely from the underlying continuous soil environment, with a larger overlap of operational taxonomic units observed between SAP fruitbodies and the surrounding soil, compared with EcM fungi. In addition, bacterial taxa involved in the decomposition of organic material were relatively more abundant in SAP fruitbodies, whereas those involved in release of minerals were relatively more enriched in EcM fruitbodies. Such contrasts in patterns and underlying processes of the microbiome structure between SAP and EcM fungi provide further evidence that bacteria can support the functional roles of these fungi in terrestrial ecosystems.
Collapse
Affiliation(s)
- Mari Pent
- Institute of Ecology and Earth Sciences, University of Tartu, 14a Ravila, 50411, Tartu, Estonia.
| | - Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, 756 51, Uppsala, Sweden.
| | - Kadri Põldmaa
- Institute of Ecology and Earth Sciences, University of Tartu, 14a Ravila, 50411, Tartu, Estonia
| |
Collapse
|
48
|
Monaco P, Toumi M, Sferra G, Tóth E, Naclerio G, Bucci A. The bacterial communities of Tuber aestivum: preliminary investigations in Molise region, Southern Italy. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01586-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
49
|
Zhang X, Li X, Ye L, Huang Y, Kang Z, Zhang B, Zhang X. Colonization by Tuber melanosporum and Tuber indicum affects the growth of Pinus armandii and phoD alkaline phosphatase encoding bacterial community in the rhizosphere. Microbiol Res 2020; 239:126520. [PMID: 32526628 DOI: 10.1016/j.micres.2020.126520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/18/2020] [Accepted: 05/23/2020] [Indexed: 12/17/2022]
Abstract
The synthesis of truffle ectomycorrhizae and the ecology of truffle-colonized seedlings in the early symbiotic stage are important for the successful truffle cultivation. In this study, two black truffle species, Tuber melanosporum and Tuber indicum, were selected to colonize Pinus armandii seedlings. 2, 4, 6 and 8 months after inoculation, the growth performance of the host and the rhizosphere soil properties were detected. The dynamic changes of two mating type genes in substrate were also monitored to assess the sexual distribution of truffles. Additionally, the variation of soil bacterial communities encoded by phoD alkaline phosphatase genes was investigated through next-generation sequencing. The results indicated that both T. melanosporum and T. indicum colonization promoted the growth of P. armandii seedlings to some extent, including improving their biomass, total root surface area, root superoxide dismutases and peroxidase activity. The organic matter and available phosphorus in rhizosphere soil were also significantly enhanced by two truffles' colonization. The phoD-harboring bacterial community structure was altered by both truffles, and T. melanosporum decreased their diversity or richness on the 6th and 8th month after inoculation. Pseudomonas, Xanthomonas, and Sinorhizobium, a N2-fixer with phoD genes, were found more abundant in truffle-colonized treatments. The mating type distribution of the two truffles was uneven, with MAT1-1-1 gene occupying the majority. Overall, T. melanosporum and T. indicum colonization affected the micro-ecology of truffle symbionts during the early symbiotic stage. These results could give us a better understanding on the truffle-plant-soil-microbe interactions, which would be beneficial to the subsequent truffle cultivation.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China; Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xiaolin Li
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China.
| | - Lei Ye
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yue Huang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China; Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Zongjing Kang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China; Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Bo Zhang
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xiaoping Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
50
|
Cullings K, Stott MB, Marinkovich N, DeSimone J, Bhardwaj S. Phylum-level diversity of the microbiome of the extremophilic basidiomycete fungus Pisolithus arhizus (Scop.) Rauschert: An island of biodiversity in a thermal soil desert. Microbiologyopen 2020; 9:e1062. [PMID: 32478485 PMCID: PMC7424252 DOI: 10.1002/mbo3.1062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 11/16/2022] Open
Abstract
We used high‐throughput DNA sequencing methods combined with bio‐geochemical profiles to characterize the internal environment and community structure of the microbiome of the basidiomycete fungus Pisolithus arhizus (Scop.) Rauschert from soils within a geothermal feature of Yellowstone National Park. Pisolithus arhizus is unique in that it forms closed fruiting bodies that sequester visible sulfur within. Fourier transform infrared spectroscopy (FTIR) analysis demonstrates that the P. arhizus fruiting body also concentrates copper, manganese, nickel, and zinc and contains pure granular silica. Gas chromatography‐mass spectrometry (GC‐MS) analysis indicates an environment rich in hydrocarbons. Oxygen probe analysis reveals that zones of up to 4× atmospheric oxygen exist within nanometers of zones of near anoxia. Analysis of microbial community structure using high‐throughput DNA sequencing methods shows that the fruiting body supports a microbiome that reflects the physiochemical environment of the fruiting body. Diversity and richness measures indicate a microbiome that is significantly richer and more diverse than that of the soils in which P. arhizus grows. Further, P. arhizus sporocarps are enriched significantly in Proteobacteria (primarily Burkholderia) Gemmatimonadetes, Bacteroidetes, Verrucomicrobia, Nitrospirae, Elusimicrobia, and Latescibacteria (WS3) while soils are enriched in Actinobacteria (primarily Mycobacterium), Dormibacteraeota (AD3), and Eremiobacteraeota (WPS‐2). Finally, pairwise % similarity comparisons indicate that P. arhizus harbors two lineages that may represent new groups in the candidate phylum radiation (CPR). Together, these results demonstrate that P. arhizus provides a novel environment for microbiome studies and provides for interesting hypotheses regarding the evolution, origins, and functions of symbioses and novel microbes.
Collapse
Affiliation(s)
- Ken Cullings
- JQ Division, NASA-Ames Research Center, Moffett Field, California, USA
| | - Matthew B Stott
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | | | - Julia DeSimone
- JQ Division, NASA-Ames Research Center, Moffett Field, California, USA
| | - Shilpa Bhardwaj
- JQ Division, NASA-Ames Research Center, Moffett Field, California, USA
| |
Collapse
|