1
|
Trenozhnikova LP, Baimakhanova GB, Baimakhanova BB, Balgimbayeva AS, Daugaliyeva ST, Faizulina ER, Tatarkina LG, Spankulova GA, Berillo DA, Beutler JA. Beyond traditional screening: Unveiling antibiotic potentials of actinomycetes in extreme environments. Heliyon 2024; 10:e40371. [PMID: 39641013 PMCID: PMC11617725 DOI: 10.1016/j.heliyon.2024.e40371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
Extreme ecosystems are a rich source of specialized metabolites that can overcome multidrug resistance. However, the low efficiency of traditional exploratory research in discovering new antibiotics remains a major limitation. We hypothesized that actinomycetes may have the ability to produce antibiotics in the extremes of a changing natural environment. This study introduces a novel approach to screening natural antibiotic producers from extreme habitats based on the relationship between organisms' adaptive traits and their metabolic activities. The antibacterial and antifungal properties of 667 actinomycete isolates, obtained from 160 samples of Kazakhstan's diverse extreme habitats, were studied under neutral, saline, and alkaline conditions against MRSA, E. coli, C. albicans, and A. niger. Among these isolates, 113 exhibited antibacterial properties, and 109 demonstrated antifungal properties. Notably, one-fifth of the antagonist isolates could produce active substances solely under extreme growth conditions. Fifty-three antagonistic actinomycetes, possessing these characteristics, have been categorized into groups and warrant further investigation as potential producers of new natural antibiotics. Molecular genetic analysis of the selected isolates revealed a high prevalence of Streptomyces and Nocardiopsis strains. Furthermore, 83.4 % of obtained isolates demonstrated the ability to thrive in all studied habitats-neutral, saline, and alkaline. 96.3 % of actinomycetes isolated from extreme environments exhibited adaptation to neutral conditions, highlighting their inherent versatility. Our findings underscore the nearly complete potential (99.7 %) of isolates to overcome the salinity barrier of 3.5 % NaCl, indicating their capacity to inhabit oceanic environments. We assert that actinomycetes should be perceived as a cohesive, globally adaptive group, capable of migrating between changing conditions or remaining stable within them. These studies lay the groundwork for the development of a new platform for screening natural antibiotics.
Collapse
Affiliation(s)
- Lyudmila P. Trenozhnikova
- LLP Research and Production Center for Microbiology and Virology, Almaty, Republic of Kazakhstan, Kazakhstan
| | - Gul B. Baimakhanova
- LLP Research and Production Center for Microbiology and Virology, Almaty, Republic of Kazakhstan, Kazakhstan
| | - Baiken B. Baimakhanova
- LLP Research and Production Center for Microbiology and Virology, Almaty, Republic of Kazakhstan, Kazakhstan
| | - Assya S. Balgimbayeva
- LLP Research and Production Center for Microbiology and Virology, Almaty, Republic of Kazakhstan, Kazakhstan
| | - Saule T. Daugaliyeva
- LLP Research and Production Center for Microbiology and Virology, Almaty, Republic of Kazakhstan, Kazakhstan
| | - Elmira R. Faizulina
- LLP Research and Production Center for Microbiology and Virology, Almaty, Republic of Kazakhstan, Kazakhstan
| | - Larisa G. Tatarkina
- LLP Research and Production Center for Microbiology and Virology, Almaty, Republic of Kazakhstan, Kazakhstan
| | - Gulzhan A. Spankulova
- LLP Research and Production Center for Microbiology and Virology, Almaty, Republic of Kazakhstan, Kazakhstan
| | - Dmitriy A. Berillo
- Department of Chemistry and Biochemical Engineering, Satbayev University, Almaty, Republic of Kazakhstan, Kazakhstan
- Department of Biochemistry, Asfendiyarov Kazakh National Medical University, Almaty, Republic of Kazakhstan, Kazakhstan
| | - John A. Beutler
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| |
Collapse
|
2
|
Chen Y, Lv AP, Li MM, OuYang YT, Lian ZH, Chen LB, Liu ZT, Liu L, Jiao JY, Li WJ. Ferviditalea candida gen. nov., sp. nov., a novel member of the family Paenibacillaceae isolated from a geothermal area. Anaerobe 2024; 88:102866. [PMID: 38797261 DOI: 10.1016/j.anaerobe.2024.102866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
OBJECTIVE The family Paenibacillaceae is linked to the order Caryophanales. Paenibacillaceae members residing in compost or soil play crucial roles in nutrient recycling and breaking down complex organic materials. However, our understanding of Paenibacillaceae remains limited. METHODS Strain SYSU GA230002T was conclusively identified using a polyphasic taxonomic approach frequently utilized in bacterial systematics. Standard microbiological techniques were employed to characterize the morphology and biochemistry of strain SYSU GA230002T. RESULTS An anaerobic and gram--negative bacterium, designated SYSU GA230002T, was isolated from geothermally heated soil of Tengchong, Yunnan Province, south-west China. Phylogenetic analyses based on 16S rRNA gene sequences and genomes showed that strain SYSU GA230002T belongs to the family Paenibacillaceae. 16S rRNA gene sequence similarity (<94.0 %), ANI (<71.95 %) and AAI values (<58.67 %) between strain SYSU GA230002T with other members of the family were lower than the threshold values recommended for distinguishing novel species. Growth was observed at 30-45 °C (optimum, 37 °C), pH 7.0-8.0 (optimum, pH 7.5) and in 0-3.0 % (w/v) NaCl concentrations (optimum, 0 %). The major fatty acids detected were anteiso-C15:0, iso-C16:0 and iso-C17:0. The polar lipids included diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, one unidentified phospholipid, one unidentified aminolipid and two unidentified glycolipids. The respiratory quinone was MK-7. The DNA G + C content of strain SYSU GA230002T was 49.87 %. CONCLUSION Based on the results of morphological, physiological properties, and chemotaxonomic characteristics, this strain is proposed to represent a new species of a new genus Ferviditalea candida gen. nov., sp. nov. The type strain of the type species is SYSU GA230002T (=KCTC 25726T = GDMCC 1.4160T).
Collapse
Affiliation(s)
- Ying Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Ai-Ping Lv
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Meng-Meng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Yu-Ting OuYang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Zheng-Han Lian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Le-Bin Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Ze-Tao Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Lan Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China.
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China.
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, Xinjiang, PR China.
| |
Collapse
|
3
|
Ye JJ, Zou RJ, Zhou DD, Deng XL, Wu NL, Chen DD, Xu J. Insights into the phylogenetic diversity, biological activities, and biosynthetic potential of mangrove rhizosphere Actinobacteria from Hainan Island. Front Microbiol 2023; 14:1157601. [PMID: 37323895 PMCID: PMC10264631 DOI: 10.3389/fmicb.2023.1157601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023] Open
Abstract
Mangrove rhizosphere soils host diverse Actinobacteria tolerant to numerous stresses and are inevitably capable of exhibiting excellent biological activity by producing impressive numbers of bioactive natural products, including those with potential medicinal applications. In this study, we applied an integrated strategy of combining phylogenetic diversity, biological activities, and biosynthetic gene clusters (BGCs) screening approach to investigate the biotechnological importance of Actinobacteria isolated from mangrove rhizosphere soils from Hainan Island. The actinobacterial isolates were identifified using a combination of colony morphological characteristics and 16S rRNA gene sequence analysis. Based on the results of PCR-detected BGCs screening, type I and II polyketide synthase (PKS) and non-ribosomal synthetase (NRPS) genes were detected. Crude extracts of 87 representative isolates were subjected to antimicrobial evaluation by determining the minimum inhibitory concentration of each strain against six indicator microorganisms, anticancer activities were determined on human cancer cell lines HepG2, HeLa, and HCT-116 using an MTT colorimetric assay, and immunosuppressive activities against the proliferation of Con A-induced T murine splenic lymphocytes in vitro. A total of 287 actinobacterial isolates affiliated to 10 genera in eight families of six orders were isolated from five different mangrove rhizosphere soil samples, specififically, Streptomyces (68.29%) and Micromonospora (16.03%), of which 87 representative strains were selected for phylogenetic analysis. The crude extracts of 39 isolates (44.83%) showed antimicrobial activity against at least one of the six tested indicator pathogens, especially ethyl acetate extracts of A-30 (Streptomyces parvulus), which could inhibit the growth of six microbes with MIC values reaching 7.8 μg/mL against Staphylococcus aureus and its resistant strain, compared to the clinical antibiotic ciproflfloxacin. Furthermore, 79 crude extracts (90.80%) and 48 (55.17%) of the isolates displayed anticancer and immunosuppressive activities, respectively. Besides, four rare strains exhibited potent immunosuppressive activity against the proliferation of Con A-induced T murine splenic lymphocyte in vitro with an inhibition rate over 60% at 10 μg/mL. Type I and II polyketide synthase (PKS) and non-ribosomal synthetase (NRPS) genes were detected in 49.43, 66.67, and 88.51% of the 87 Actinobacteria, respectively. Signifificantly, these strains (26 isolates, 29.89%) harbored PKS I, PKS II, and NRPS genes in their genomes. Nevertheless, their bioactivity is independent of BGCs in this study. Our findings highlighted the antimicrobial, immunosuppressive, and anticancer potential of mangrove rhizosphere Actinobacteria from Hainan Island and the biosynthetic prospects of exploiting the corresponding bioactive natural product.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jing Xu
- Collaborative Innovation Center of Ecological Civilization, School of Chemical Engineering and Technology, Hainan University, Haikou, China
| |
Collapse
|
4
|
Zhao J, Shakir Y, Deng Y, Zhang Y. Use of modified ichip for the cultivation of thermo-tolerant microorganisms from the hot spring. BMC Microbiol 2023; 23:56. [PMID: 36869305 PMCID: PMC9983152 DOI: 10.1186/s12866-023-02803-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Thermostable microorganisms are extremophiles. They have a special genetic background and metabolic pathway and can produce a variety of enzymes and other active substances with special functions. Most thermo-tolerant microorganisms from environmental samples have resisted cultivation on artificial growth media. Therefore, it is of great significance to isolate more thermo-tolerant microorganisms and study their characteristics to explore the origin of life and exploit more thermo-tolerant enzymes. Tengchong hot spring in Yunnan contains a lot of thermo-tolerant microbial resources because of its perennial high temperature. The ichip method was developed by D. Nichols in 2010 and can be used to isolate so-called "uncultivable" microorganisms from different environments. Here, we describe the first application of modified ichip to isolate thermo-tolerant bacteria from hot springs. RESULTS In this study, 133 strains of bacteria belonging to 19 genera were obtained. 107 strains of bacteria in 17 genera were isolated by modified ichip, and 26 strains of bacteria in 6 genera were isolated by direct plating methods. 25 strains are previously uncultured, 20 of which can only be cultivated after being domesticated by ichip. Two strains of previously unculturable Lysobacter sp., which can withstand 85 °C, were isolated for the first time. Alkalihalobacillus, Lysobacter and Agromyces genera were first found to have 85 °C tolerance. CONCLUSION Our results indicate that the modified ichip approach can be successfully applied in a hot spring environment.
Collapse
Affiliation(s)
- Juntian Zhao
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yasmeen Shakir
- Department of Biochemistry, Hazara University, Mansehra, Pakistan
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Ying Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
5
|
Świecimska M, Golińska P, Goodfellow M. Generation of a high quality library of bioactive filamentous actinomycetes from extreme biomes using a culture-based bioprospecting strategy. Front Microbiol 2023; 13:1054384. [PMID: 36741889 PMCID: PMC9893292 DOI: 10.3389/fmicb.2022.1054384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Introduction Filamentous actinomycetes, notably members of the genus Streptomyces, remain a rich source of new specialized metabolites, especially antibiotics. In addition, they are also a valuable source of anticancer and biocontrol agents, biofertilizers, enzymes, immunosuppressive drugs and other biologically active compounds. The new natural products needed for such purposes are now being sought from extreme habitats where harsh environmental conditions select for novel strains with distinctive features, notably an ability to produce specialized metabolites of biotechnological value. Methods A culture-based bioprospecting strategy was used to isolate and screen filamentous actinomycetes from three poorly studied extreme biomes. Actinomycetes representing different colony types growing on selective media inoculated with environmental suspensions prepared from high-altitude, hyper-arid Atacama Desert soils, a saline soil from India and from a Polish pine forest soil were assigned to taxonomically predictive groups based on characteristic pigments formed on oatmeal agar. One hundred and fifteen representatives of the colour-groups were identified based on 16S rRNA gene sequences to determine whether they belonged to validly named or to putatively novel species. The antimicrobial activity of these isolates was determined using a standard plate assay. They were also tested for their capacity to produce hydrolytic enzymes and compounds known to promote plant growth while representative strains from the pine forest sites were examined to determine their ability to inhibit the growth of fungal and oomycete plant pathogens. Results Comparative 16S rRNA gene sequencing analyses on isolates representing the colour-groups and their immediate phylogenetic neighbours showed that most belonged to either rare or novel species that belong to twelve genera. Representative isolates from the three extreme biomes showed different patterns of taxonomic diversity and characteristic bioactivity profiles. Many of the isolates produced bioactive compounds that inhibited the growth of one or more strains from a panel of nine wild strains in standard antimicrobial assays and are known to promote plant growth. Actinomycetes from the litter and mineral horizons of the pine forest, including acidotolerant and acidophilic strains belonging to the genera Actinacidiphila, Streptacidiphilus and Streptomyces, showed a remarkable ability to inhibit the growth of diverse fungal and oomycete plant pathogens. Discussion It can be concluded that selective isolation and characterization of dereplicated filamentous actinomyctes from several extreme biomes is a practical way of generating high quality actinomycete strain libraries for agricultural, industrial and medical biotechnology.
Collapse
Affiliation(s)
- Magdalena Świecimska
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Patrycja Golińska
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
6
|
Pipite A, Siro G, Subramani R, Srinivasan S. Microbiological analysis, antimicrobial activity, heavy-metals content and physico-chemical properties of Fijian mud pool samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158725. [PMID: 36108855 DOI: 10.1016/j.scitotenv.2022.158725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/28/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
The hot springs are home to a rich bacterial diversity which could be the source of enzymes, antibiotics and many other commercially important products. Most of the hot springs present in Fiji are unexplored and their analysis of microbial diversity could be of great interest in facilitating various industrial, agricultural and medicinal applications. This study is an attempt to evaluate the heavy metal concentration and to analyze the comprehensive bacterial diversity of two Fijian thermal mud pools, namely Sabeto and Tifajek. The two hot springs have a pH of 7.28 to 7.19 and a temperature of 32.2 to 38.8 °C, respectively. Mean metal concentrations of the studied mud samples ranged from 4.758 to 6.870 mg/kg and followed a decreasing sequence as Fe > Mn > Zn > Na > Ni > Cd > Ca > Cr > Cu. Levels of Fe, Na, Mn, Zn, Ni, Cd, Ca, Cr, Cu in the mud pool samples were within World Health Organisation (WHO) limits, while Cd was above regulatory limits. The heavy metals analysis results showed that both mud pools had high values for Cd, above the WHO limit of 3 mg/kg. In addition, 8 strains of actinomycetes were successfully identified for the first time in the Sabeto mud pool, where most of them showed antibacterial activity. The genetic identification of most isolates was determined in BLASTn analyses of their 16S rRNA sequences. Isolates were identified as that of Streptomyces, Nocardia and Rhodococcus genus. Further, AntiSMASH results of the closest relatives of cultured actinobacteria have shown to produce antibiotics, natural pesticides and other compounds of various usage. This study also found no fecal coliforms and supports existing knowledge and practice of using Fijian thermal mud pools for their therapeutic properties. Overall, the presented work indicated that the studied mud pools have therapeutic properties, harboring wealth of bacteria with antibiotic profiles and were risk free from health-related issues of heavy metals and disease-causing pathogens. It provides great insight into the studied mud pools which serves as a baseline from which further heavy metal monitoring or mitigation programs and microbial researches can be conducted.
Collapse
Affiliation(s)
- Atanas Pipite
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences (SAGEONS), The University of the South Pacific, Laucala Campus, Suva, Fiji
| | - Galana Siro
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences (SAGEONS), The University of the South Pacific, Laucala Campus, Suva, Fiji
| | - Ramesh Subramani
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences (SAGEONS), The University of the South Pacific, Laucala Campus, Suva, Fiji
| | - Sathiyaraj Srinivasan
- Department of Bio & Environmental Technology, Division of Environmental & Life Science, College of Natural Science, Seoul Women's University, 623 Hwarangno, Nowon-gu, Seoul 139-774, Republic of Korea.
| |
Collapse
|
7
|
Anand KP, Suthindhiran K. Microbial signature and biosynthetic gene cluster profiling of poly extremophilic marine actinobacteria isolated from Vhan Island, Tamil Nadu, India. GENE REPORTS 2023. [DOI: 10.1016/j.genrep.2023.101742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
8
|
Chen L, Wang XN, Bi HY, Wang GY. Antimicrobial Biosynthetic Potential and Phylogenetic Analysis of Culturable Bacteria Associated with the Sponge Ophlitaspongia sp. from the Yellow Sea, China. Mar Drugs 2022; 20:md20100588. [PMID: 36286412 PMCID: PMC9605435 DOI: 10.3390/md20100588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022] Open
Abstract
Sponge-derived bacteria are considered to be a promising source of novel drugs, owing to their abundant secondary metabolites that have diverse biological activities. In this study, we explored the antimicrobial biosynthetic potential and phylogenetics of culturable bacteria associated with the sponge Ophlitaspongia sp. from the Yellow Sea, China. Using culture-dependent methods, we obtained 151 bacterial strains, which were then analysed for their antimicrobial activities against seven indicator strains. The results indicate that 94 (62.3%) of the 151 isolated strains exhibited antimicrobial activities and inhibited at least one of the indicator strains. Fifty-two strains were selected for further phylogenetic analysis using 16S rRNA gene sequencing, as well as for the presence of polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) genes. These 52 strains belonged to 20 genera from 18 families in 4 phyla, including Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. Five strains with PKS genes and ten strains with NRPS genes were detected. Among them, two strains contained both PKS and NRPS genes. Notoacmeibacter sp. strain HMA008 (class Alphaproteobacteria) exhibited potent antimicrobial activity; thus, whole genome sequencing methods were used to analyse its secondary metabolite biosynthetic gene clusters. The genome of HMA008 contained 12 biosynthetic gene clusters that potentially encode secondary metabolites belonging to compound classes such as non-ribosomal peptides, prodigiosin, terpene, β-lactones, and siderophore, among others. This study indicates that the sponge Ophlitaspongia sp. harbours diverse bacterial strains with antimicrobial properties and may serve as a potential source of bioactive compounds.
Collapse
Affiliation(s)
- Lei Chen
- Department of Bioengineering, School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
- Correspondence: (L.C.); (G.-Y.W.)
| | - Xue-Ning Wang
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong-Yu Bi
- Department of Bioengineering, School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Guang-Yu Wang
- Department of Bioengineering, School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
- Correspondence: (L.C.); (G.-Y.W.)
| |
Collapse
|
9
|
DeCastro ME, Escuder-Rodríguez JJ, Becerra M, Rodríguez-Belmonte E, González-Siso MI. Comparative Metagenomic Analysis of Two Hot Springs From Ourense (Northwestern Spain) and Others Worldwide. Front Microbiol 2021; 12:769065. [PMID: 34899652 PMCID: PMC8661477 DOI: 10.3389/fmicb.2021.769065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/26/2021] [Indexed: 01/12/2023] Open
Abstract
With their circumneutral pH and their moderate temperature (66 and 68°C, respectively), As Burgas and Muiño da Veiga are two important human-use hot springs, previously studied with traditional culture methods, but never explored with a metagenomic approach. In the present study, we have performed metagenomic sequence-based analyses to compare the taxonomic composition and functional potential of these hot springs. Proteobacteria, Deinococcus-Thermus, Firmicutes, Nitrospirae, and Aquificae are the dominant phyla in both geothermal springs, but there is a significant difference in the abundance of these phyla between As Burgas and Muiño da Veiga. Phylum Proteobacteria dominates As Burgas ecosystem while Aquificae is the most abundant phylum in Muiño da Veiga. Taxonomic and functional analyses reveal that the variability in water geochemistry might be shaping the differences in the microbial communities inhabiting these geothermal springs. The content in organic compounds of As Burgas water promotes the presence of heterotrophic populations of the genera Acidovorax and Thermus, whereas the sulfate-rich water of Muiño da Veiga favors the co-dominance of genera Sulfurihydrogenibium and Thermodesulfovibrio. Differences in ammonia concentration exert a selective pressure toward the growth of nitrogen-fixing bacteria such as Thermodesulfovibrio in Muiño da Veiga. Temperature and pH are two important factors shaping hot springs microbial communities as was determined by comparative analysis with other thermal springs.
Collapse
Affiliation(s)
| | | | | | | | - María-Isabel González-Siso
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía, Facultade de Ciencias, Universidade da Coruña, A Coruña, Spain
| |
Collapse
|
10
|
Elfeki M, Mantri S, Clark CM, Green SJ, Ziemert N, Murphy BT. Evaluating the Distribution of Bacterial Natural Product Biosynthetic Genes across Lake Huron Sediment. ACS Chem Biol 2021; 16:2623-2631. [PMID: 34605624 DOI: 10.1021/acschembio.1c00653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Environmental microorganisms continue to serve as a major source of bioactive natural products (NPs) and as an inspiration for many other scaffolds in the toolbox of modern medicine. Nearly all microbial NP-inspired therapies can be traced to field expeditions to collect samples from the environment. Despite the importance of these expeditions in the search for new drugs, few studies have attempted to document the extent to which NPs or their corresponding production genes are distributed within a given environment. To gain insights into this, the geographic occurrence of NP ketosynthase (KS) and adenylation (A) domains was documented across 53 and 58 surface sediment samples, respectively, covering 59,590 square kilometers of Lake Huron. Overall, no discernible NP geographic distribution patterns were observed for 90,528 NP classes of nonribosomal peptides and polyketides detected in the survey. While each sampling location harbored a similar number of A domain operational biosynthetic units (OBUs), a limited overlap of OBU type was observed, suggesting that at the sequencing depth used in this study, no single location served as a NP "hotspot". These data support the hypothesis that there is ample variation in NP occurrence between sampling sites and suggest that extensive sample collection efforts are required to fully capture the functional chemical diversity of sediment microbial communities on a regional scale.
Collapse
Affiliation(s)
- Maryam Elfeki
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Shrikant Mantri
- German Centre for Infection Research (DZIF), Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Chase M. Clark
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Stefan J. Green
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, Illinois 60612, United States
| | - Nadine Ziemert
- German Centre for Infection Research (DZIF), Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Brian T. Murphy
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
11
|
Kumar S, Solanki DS, Parihar K, Tak A, Gehlot P, Pathak R, Singh SK. Actinomycetes isolates of arid zone of Indian Thar Desert and efficacy of their bioactive compounds against human pathogenic bacteria. Biol Futur 2021; 72:431-440. [PMID: 34554487 DOI: 10.1007/s42977-021-00073-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/16/2021] [Indexed: 11/30/2022]
Abstract
Twenty-six morphotypes of actinomycetes bacteria were isolated from the soils of arid zone of Indian Thar desert, Rajasthan. A significant and positive correlation was found between density of actinomycetes isolates and availability of nitrogen in sandy soil of arid zone suggesting the influence of soil nitrogen on occurrence and propagation of actinomycetes in this region. Molecular identification based on 16S rRNA gene sequencing revealed that the bacterial isolates belong to four actinomycetes genera, viz. Streptomyces (22 species), Nocardiopsis (two species), Saccharomonospora (one species) and Actinoalloteichus (one species). The preliminary screening of 26 isolates against five human pathogenic bacteria, viz. Escherichia coli, Vibrio cholera, Salmonella enterica typhimurium, Staphylococcus aureus and Enterococcus faecalis, showed that only four isolates, viz. Streptomyces sp. (ITD-27), S. enissocaesilis (ITD-29), S. Malachitospinus (ITD-35) and Streptomyces sp. (ITD-47), had antibacterial activity. The secondary screening of these four isolates revealed that the isolate S. malachitospinus (ITD-35) showed the maximum growth inhibition zone and inhibited the growth of all tested gram-positive and gram-negative pathogenic bacteria. Gas chromatography-mass spectrometry analysis of S. malachitospinus (ITD-35) cultural filtrate in n-butanol solvent identified three antibacterial compounds of medicinal significance, viz. 3-octanone, neopentyl isothiocyanate and 2-methyl butyl isothiocyanate.
Collapse
Affiliation(s)
- Surendra Kumar
- Mycology and Microbiology Laboratory, Department of Botany, JNV University, Jodhpur, 342001, India
| | - Dilip Singh Solanki
- Mycology and Microbiology Laboratory, Department of Botany, JNV University, Jodhpur, 342001, India
| | - Khushbu Parihar
- Mycology and Microbiology Laboratory, Department of Botany, JNV University, Jodhpur, 342001, India
| | - Alkesh Tak
- Mycology and Microbiology Laboratory, Department of Botany, JNV University, Jodhpur, 342001, India
| | - Praveen Gehlot
- Mycology and Microbiology Laboratory, Department of Botany, JNV University, Jodhpur, 342001, India.
| | - Rakesh Pathak
- ICAR-Central Arid Zone Research Institute, Jodhpur, 342003, India
| | | |
Collapse
|
12
|
Wang X, Pecoraro L. Diversity and Co-Occurrence Patterns of Fungal and Bacterial Communities from Alkaline Sediments and Water of Julong High-Altitude Hot Springs at Tianchi Volcano, Northeast China. BIOLOGY 2021; 10:894. [PMID: 34571771 PMCID: PMC8464750 DOI: 10.3390/biology10090894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/28/2021] [Accepted: 09/07/2021] [Indexed: 12/03/2022]
Abstract
The Julong high-altitude volcanic hot springs in northeast China are of undeniable interest for microbiological studies due to their unique, extreme environmental conditions. The objective of this study was to provide a comprehensive analysis of the unexplored fungal and bacterial community composition, structure and networks in sediments and water from the Julong hot springs using a combination of culture-based methods and metabarcoding. A total of 65 fungal and 21 bacterial strains were isolated. Fungal genera Trichoderma and Cladosporium were dominant in sediments, while the most abundant fungi in hot spring water were Aspergillus and Alternaria. Bacterial communities in sediments and water were dominated by the genera Chryseobacterium and Pseudomonas, respectively. Metabarcoding analysis revealed significant differences in the microorganism communities from the two hot springs. Results suggested a strong influence of pH on the analyzed microbial diversity, at least when the environmental conditions became clearly alkaline. Our analyses indicated that mutualistic interactions may play an essential role in shaping stable microbial networks in the studied hot springs. The much more complicated bacterial than fungal networks described in our study may suggest that the more flexible trophic strategies of bacteria are beneficial for their survival and fitness under extreme conditions.
Collapse
Affiliation(s)
- Xiao Wang
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Lorenzo Pecoraro
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| |
Collapse
|
13
|
The diversity and antibacterial activity of culturable actinobacteria isolated from the rhizosphere soil of Deschampsia antarctica (Galindez Island, Maritime Antarctic). Polar Biol 2021. [DOI: 10.1007/s00300-021-02924-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Samarasinghe SN, Wanigatunge RP, Magana-Arachchi DN. Bacterial Diversity in a Sri Lankan Geothermal Spring Assessed by Culture-Dependent and Culture-Independent Approaches. Curr Microbiol 2021; 78:3439-3452. [PMID: 34258683 DOI: 10.1007/s00284-021-02608-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
Hot springs harbour diverse and interesting groups of microorganisms adapted to extreme conditions. However, due to limitations in the culture-dependent approach, most of such thermophiles remain uncultured and unexplored. Hence, this study was conducted to gain a comprehensive understanding of the bacterial diversity of Mahapelessa hot spring, Sri Lanka using both culture-dependent and culture-independent approaches. The in situ temperature of the water sample was 44.5 °C and the pH was 8.14. 16S rRNA Sanger sequencing of DNA extracted from the 18 bacterial isolates revealed the presence of eight genera belonging to two phyla: Proteobacteria (84%) and Firmicutes (16%) and the most abundant genus being Klebsiella. A total of 23 bacterial phyla representing 80 classes, 43 orders, 123 families, 205 genera and 83 species were detected by 16S rRNA V3-V4 region by amplicon metagenome sequencing of DNA extracted from water samples, where the most abundant phylum was the Proteobacteria (57.39%), followed by Firmicutes (23.7%) and Chloroflexi (4.14%). The three phyla Actinobacteria, Planctomycetes and Bacteroidetes were also detected less than 3% in abundance while 4.48% of bacteria could not be fit into any known phylum. The most abundant genera were Burkholderia (14.87%), Desulfotomaculum (7.23%) and Stenotrophomonas (6.1%). Four strictly anaerobic bacteria, Anaerosolibacter carboniphilus (0.71%), Bellilinea caldifistulae (0.04%), Salimesophilobacter vulgaris (0.1%), Anaerobacterium chartisolvens (0.12%); two potential plant growth-promoting bacteria, Azospirillum halopraeferens (0.04%) and Bradyrhizobium liaoningense (0.16%) and one potential alkali tolerant and sulphate-reducing bacterium, Desulfovibrio alkalitolerans (0.45%) were recorded. Pigmentiphaga sp. was isolated from Mahapelessa hot spring and to the best of our knowledge, this is the first record of this genus from a hot spring. This study gives insight into the vast bacterial diversity present in the Mahapelessa hot spring from the culture-independent approach which could not be identified using standard culturing techniques.
Collapse
Affiliation(s)
- Supun N Samarasinghe
- Molecular Microbiology and Human Diseases Research Group, National Institute of Fundamental Studies, Hantana Road, Kandy, Sri Lanka
| | - Rasika P Wanigatunge
- Department of Plant and Molecular Biology, University of Kelaniya, Kelaniya, Sri Lanka
| | - Dhammika N Magana-Arachchi
- Molecular Microbiology and Human Diseases Research Group, National Institute of Fundamental Studies, Hantana Road, Kandy, Sri Lanka.
| |
Collapse
|
15
|
Chen L, Wang Z, Du S, Wang G. Antimicrobial Activity and Functional Genes of Actinobacteria from Coastal Wetland. Curr Microbiol 2021; 78:3058-3067. [PMID: 34156543 DOI: 10.1007/s00284-021-02560-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/28/2021] [Indexed: 11/28/2022]
Abstract
Isolation of culturable actinobacteria from coastal wetlands and screening of their potential biological activities are important for the development of new marine natural products. We collected and isolated 109 actinobacteria from the Sanggou Bay and the Swan Lake wetlands, in the coast of Weihai, China. Of the 109 isolates, 104 had antimicrobial activity against at least one indicator strain. The 35 strains with the strongest inhibitory effects were chosen for the screening of the biosynthesis gene clusters of polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS). Four strains with the PKS gene, six strains with the NRPS gene, and three strains with both genes were detected. Eight of the 13 strains with PKS or NRPS genes belong to the genera Streptomyces, and other strains belonged to genus Micromonospora, Nocardiopsis, Rhodococcus, Saccharomonospora, and Staphylococcus. Our results reveal that the culturable actinobacteria isolated from coastal wetlands showed broad-spectrum antimicrobial activities, and some strains with antimicrobial activities possessed PKS and NRPS genes. Thus, culturable actinobacteria from coastal wetlands may contain potential new bioactive substances.
Collapse
Affiliation(s)
- Lei Chen
- Department of Bioengineering, School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, China
| | - Ziwei Wang
- Department of Bioengineering, School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, China
| | - Shuang Du
- Department of Bioengineering, School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, China
| | - Guangyu Wang
- Department of Bioengineering, School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, China.
| |
Collapse
|
16
|
Hui MLY, Tan LTH, Letchumanan V, He YW, Fang CM, Chan KG, Law JWF, Lee LH. The Extremophilic Actinobacteria: From Microbes to Medicine. Antibiotics (Basel) 2021; 10:682. [PMID: 34201133 PMCID: PMC8230038 DOI: 10.3390/antibiotics10060682] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/24/2022] Open
Abstract
Actinobacteria constitute prolific sources of novel and vital bioactive metabolites for pharmaceutical utilization. In recent years, research has focused on exploring actinobacteria that thrive in extreme conditions to unearth their beneficial bioactive compounds for natural product drug discovery. Natural products have a significant role in resolving public health issues such as antibiotic resistance and cancer. The breakthrough of new technologies has overcome the difficulties in sampling and culturing extremophiles, leading to the outpouring of more studies on actinobacteria from extreme environments. This review focuses on the diversity and bioactive potentials/medically relevant biomolecules of extremophilic actinobacteria found from various unique and extreme niches. Actinobacteria possess an excellent capability to produce various enzymes and secondary metabolites to combat harsh conditions. In particular, a few strains have displayed substantial antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA), shedding light on the development of MRSA-sensitive antibiotics. Several strains exhibited other prominent bioactivities such as antifungal, anti-HIV, anticancer, and anti-inflammation. By providing an overview of the recently found extremophilic actinobacteria and their important metabolites, we hope to enhance the understanding of their potential for the medical world.
Collapse
Affiliation(s)
- Martha Lok-Yung Hui
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (M.L.-Y.H.); (L.T.-H.T.); (V.L.)
| | - Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (M.L.-Y.H.); (L.T.-H.T.); (V.L.)
- Clinical School Johor Bahru, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Johor Bahru 80100, Malaysia
| | - Vengadesh Letchumanan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (M.L.-Y.H.); (L.T.-H.T.); (V.L.)
| | - Ya-Wen He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China;
| | - Chee-Mun Fang
- Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, Semenyih, Selangor 43500, Malaysia;
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
- International Genome Centre, Jiangsu University, Zhenjiang 212013, China
- Faculty of Applied Sciences, UCSI University, Kuala Lumpur 50600, Malaysia
| | - Jodi Woan-Fei Law
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (M.L.-Y.H.); (L.T.-H.T.); (V.L.)
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (M.L.-Y.H.); (L.T.-H.T.); (V.L.)
| |
Collapse
|
17
|
Narsing Rao MP, Dong ZY, Luo ZH, Li MM, Liu BB, Guo SX, Hozzein WN, Xiao M, Li WJ. Physicochemical and Microbial Diversity Analyses of Indian Hot Springs. Front Microbiol 2021; 12:627200. [PMID: 33763045 PMCID: PMC7982846 DOI: 10.3389/fmicb.2021.627200] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/08/2021] [Indexed: 12/31/2022] Open
Abstract
In the present study, physicochemical and microbial diversity analyses of seven Indian hot springs were performed. The temperature at the sample sites ranged from 32 to 67°C, and pH remained neutral to slightly alkaline. pH and temperature influenced microbial diversity. Culture-independent microbial diversity analysis suggested bacteria as the dominant group (99.3%) when compared with the archaeal group (0.7%). Alpha diversity analysis showed that microbial richness decreased with the increase of temperature, and beta diversity analysis showed clustering based on location. A total of 131 strains (divided into 12 genera and four phyla) were isolated from the hot spring samples. Incubation temperatures of 37 and 45°C and T5 medium were more suitable for bacterial isolation. Some of the isolated strains shared low 16S rRNA gene sequence similarity, suggesting that they may be novel bacterial candidates. Some strains produced thermostable enzymes. Dominant microbial communities were found to be different depending on the culture-dependent and culture-independent methods. Such differences could be attributed to the fact that most microbes in the studied samples were not cultivable under laboratory conditions. Culture-dependent and culture-independent microbial diversities suggest that these springs not only harbor novel microbial candidates but also produce thermostable enzymes, and hence, appropriate methods should be developed to isolate the uncultivated microbial taxa.
Collapse
Affiliation(s)
- Manik Prabhu Narsing Rao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhou-Yan Dong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Department of Pathogenic Biology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, China
| | - Zhen-Hao Luo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Meng-Meng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bing-Bing Liu
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, College of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, China
| | - Shu-Xian Guo
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, College of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, China
| | - Wael N Hozzein
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia.,Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Min Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
18
|
Martin-Pozas T, Sanchez-Moral S, Cuezva S, Jurado V, Saiz-Jimenez C, Perez-Lopez R, Carrey R, Otero N, Giesemann A, Well R, Calaforra JM, Fernandez-Cortes A. Biologically mediated release of endogenous N 2O and NO 2 gases in a hydrothermal, hypoxic subterranean environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 747:141218. [PMID: 32777502 DOI: 10.1016/j.scitotenv.2020.141218] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
The migration of geogenic gases in continental areas with geothermal activity and active faults is an important process releasing greenhouse gases (GHG) to the lower troposphere. In this respect, caves in hypogenic environments are natural laboratories to study the compositional evolution of deep-endogenous fluids through the Critical Zone. Vapour Cave (Alhama, Murcia, Spain) is a hypogenic cave formed by the upwelling of hydrothermal CO2-rich fluids. Anomalous concentrations of N2O and NO2 were registered in the cave's subterranean atmosphere, averaging ten and five times the typical atmospheric backgrounds, respectively. We characterised the thermal conditions, gaseous compositions, sediments, and microbial communities at different depths in the cave. We did so to understand the relation between N-cycling microbial groups and the production and transformation of nitrogenous gases, as well as their coupled evolution with CO2 and CH4 during their migration through the Critical Zone to the lower troposphere. Our results showed an evident vertical stratification of selected microbial groups (Archaea and Bacteria) depending on the environmental parameters, including O2, temperature, and GHG concentration. Both the N2O isotope ratios and the predicted ecological functions of bacterial and archaeal communities suggest that N2O and NO2 emissions mainly depend on the nitrification by ammonia-oxidising microorganisms. Denitrification and abiotic reactions of the reactive intermediates NH2OH, NO, and NO2- are also plausible according to the results of the phylogenetic analyses of the microbial communities. Nitrite-dependent anaerobic methane oxidation by denitrifying methanotrophs of the NC10 phylum was also identified as a post-genetic process during migration of this gas to the surface. To the best of our knowledge, our report provides, for the first time, evidence of a niche densely populated by Micrarchaeia, which represents more than 50% of the total archaeal abundance. This raises many questions on the metabolic behaviour of this and other archaeal phyla.
Collapse
Affiliation(s)
- Tamara Martin-Pozas
- Department of Geology, National Museum of Natural Sciences (MNCN-CSIC), 28006 Madrid, Spain.
| | - Sergio Sanchez-Moral
- Department of Geology, National Museum of Natural Sciences (MNCN-CSIC), 28006 Madrid, Spain.
| | - Soledad Cuezva
- Plants and Ecosystems, Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium.
| | - Valme Jurado
- Department of Agrochemistry, Environmental Microbiology and Soil Conservation, Institute of Natural Resources and Agricultural Biology (IRNAS-CSIC), 41012 Seville, Spain.
| | - Cesareo Saiz-Jimenez
- Department of Agrochemistry, Environmental Microbiology and Soil Conservation, Institute of Natural Resources and Agricultural Biology (IRNAS-CSIC), 41012 Seville, Spain.
| | - Raul Perez-Lopez
- Geological Hazard Division, Geological Survey of Spain (IGME), 28003 Madrid, Spain.
| | - Raul Carrey
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica i Geomicrobiologia, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona (UB), 08028 Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), UB, 08001 Barcelona, Spain.
| | - Neus Otero
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica i Geomicrobiologia, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona (UB), 08028 Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), UB, 08001 Barcelona, Spain.
| | - Anette Giesemann
- Thünen Institute of Climate-Smart Agriculture, Federal Research Institute for Rural Areas, Forestry and Fisheries, 38116 Braunschweig, Germany.
| | - Reinhard Well
- Thünen Institute of Climate-Smart Agriculture, Federal Research Institute for Rural Areas, Forestry and Fisheries, 38116 Braunschweig, Germany.
| | - Jose M Calaforra
- Department of Biology and Geology, University of Almeria, 04120 Almeria, Spain.
| | | |
Collapse
|
19
|
Benammar L, İnan Bektaş K, Menasria T, Beldüz AO, Güler HI, Bedaida IK, Gonzalez JM, Ayachi A. Diversity and enzymatic potential of thermophilic bacteria associated with terrestrial hot springs in Algeria. Braz J Microbiol 2020; 51:1987-2007. [PMID: 32959204 DOI: 10.1007/s42770-020-00376-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/03/2020] [Indexed: 11/30/2022] Open
Abstract
This study aims to determine the diversity of culturable thermophilic bacteria isolated from eight terrestrial hot springs in Northeastern of Algeria using the conventional methods, SDS-PAGE fingerprinting of whole-cell proteins and 16S rRNA gene sequencing. In addition, their hydrolytic enzyme activities were also investigated. A total of 293 strains were isolated from the hot springs' water and sediment using different culture media. Overall, five distinct bacterial groups were characterized by whole-cell protein pattern analysis. Based on the 16S rRNA gene sequencing of 100 selected strains, the isolates were assigned to the following three major phyla: Firmicutes (93%), Deinococcus-Thermus (5%), and Actinobacteria (2%), which included 27 distinct species belonging to 12 different phylotypes, Aeribacillus, Aneurinibacillus, Anoxybacillus, Bacillus, Brevibacillus, Geobacillus, Laceyella, Meiothermus, Saccharomonospora, Thermoactinomyces, Thermobifida, and Thermus. The screening for nine extracellular enzymes showed that 65.87% of the isolates presented at least five types of enzyme activities, and 6.48% of strains combined all tested enzymes (amylase, cellulase, pectinase, esculinase, protease, gelatinase, lipase, lecithinase, and nuclease). It was found that Bacillus, Anoxybacillus, Aeribacillus, and Aneurinibacillus were the genera showing the highest activities. Likewise, the study showed an abundant and diverse thermophilic community with novel taxa presenting a promising source of thermozymes with important biotechnological applications. This study showed that a combined identification method using SDS-PAGE profiles of whole-cell proteins and subsequent 16S rRNA gene sequence analysis could successfully differentiate thermophilic bacteria from Algerian hot springs.
Collapse
Affiliation(s)
- L Benammar
- Department of Microbiology and Biochemistry, Faculty of Natural and Life Sciences, University of Batna 2, 05078, Batna, Algeria.
- Molecular Biology Research Laboratory, Department of Biology, Faculty of Science, Karadeniz Technical University, 61080, Trabzon, Turkey.
- Bacteriology Laboratory, Veterinary and Agricultural Sciences Institute, Department of Veterinary Sciences, University of Batna 1, 05000, Batna, Algeria.
| | - K İnan Bektaş
- Department of Molecular Biology and Genetics, Faculty of Science, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - T Menasria
- Department of Applied Biology, Faculty of Exact Sciences and Natural and Life Sciences, University of Larbi Tebessi, 12002, Tebessa, Algeria.
| | - A O Beldüz
- Molecular Biology Research Laboratory, Department of Biology, Faculty of Science, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - H I Güler
- Department of Molecular Biology and Genetics, Faculty of Science, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - I K Bedaida
- Department of Microbiology and Biochemistry, Faculty of Natural and Life Sciences, University of Batna 2, 05078, Batna, Algeria
| | - J M Gonzalez
- Spanish National Research Council Seville (CSIC), Institute of Natural Resources and Agrobiology of Seville (IRNAS), Seville, Spain
| | - A Ayachi
- Bacteriology Laboratory, Veterinary and Agricultural Sciences Institute, Department of Veterinary Sciences, University of Batna 1, 05000, Batna, Algeria
| |
Collapse
|
20
|
Dalmastri C, Gastaldo L, Berini F, Marinelli F, Marcone GL. Description of the bacterial RNA polymerase inhibitor GE23077-producer Actinomadura sp. NRRL B-65521 T as Actinomadura lepetitiana sp. nov. Int J Syst Evol Microbiol 2020; 70:4782-4790. [PMID: 32701429 DOI: 10.1099/ijsem.0.004348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The filamentous actinomycete that produces the antibiotic GE23077 was isolated by the Lepetit Research Group from a soil sample collected in Thailand, and it was classified as a member of the genus Actinomadura on the basis of its morphology and cell-wall composition. Phylogenetic analysis based on 16S rRNA gene sequences indicated that this strain formed a distinct monophyletic line within the genus Actinomadura, and it was most closely related to Actinomadura bangladeshensis DSM 45347T (99.31 % similarity) and Actinomadura mexicana DSM 44485T (98.94 %). The GE23077-producing strain formed an extensively branched, non-fragmented vegetative mycelium; no pseudosporangia were formed and the arthrospores were organized in slightly twisted chains. The cell wall contained meso-2,6-diaminopimelic acid and the diagnostic sugar was madurose. The predominant menaquinone was MK-9(H6), with minor amounts of MK-9(H8) and MK-9(H4). The diagnostic phospholipids were phosphatidylinositol and diphosphatidylglycerol. The major cellular fatty acids were C16 : 0 and tuberculostearic acid (10-methyloctadecanoic acid), followed by minor amounts of C18:1ω9c, C16:1ω7c and 10-methylheptadecanoic acid. The genomic DNA G+C content was 71.77 mol%. Significant differences in the morphological, chemotaxonomic and biochemical data, and the low DNA-DNA relatedness between the GE23077-producing strain and closely related type strains clearly demonstrate that it represents a novel species of the genus Actinomadura, for which the name Actinomadura lepetitiana sp. nov. is proposed. The type strain is NRRL B-65521T(=LMG 31258T=DSM 109019T).
Collapse
Affiliation(s)
- Claudia Dalmastri
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, Department for Sustainability, C.R. Casaccia, 00123 Rome, Italy
| | - Luciano Gastaldo
- University of Insubria, Department of Biotechnology and Life Sciences, 21100 Varese, Italy
| | - Francesca Berini
- University of Insubria, Department of Biotechnology and Life Sciences, 21100 Varese, Italy
| | - Flavia Marinelli
- University of Insubria, Department of Biotechnology and Life Sciences, 21100 Varese, Italy
| | | |
Collapse
|
21
|
Li LH, Luo HM, Feng JH, Ming YZ, Zheng ML, Deng GY, Chen C, Li WJ, Xiao M, Qu PH. Francisella salimarina sp. nov., isolated from coastal seawater. Int J Syst Evol Microbiol 2020; 70:3264-3272. [PMID: 32375983 DOI: 10.1099/ijsem.0.004164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Four strains (SYSU SYW-1T, SYW-2, SYW-3 and XLW-1) were isolated from seawater near the shore in Guangdong Province, China. Cells were Gram-stain-negative, aerobic, non-motile and non-spore-forming. Growth was observed at a temperature range of 16-40 °C (optimum, 32 °C), a pH range of 4-8 (optimum, pH 7) and in the presence of up to 10 % (w/v) NaCl. The major polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine and an unidentified phospholipid. The respiratory quinone was ubiquinone 8 (UQ-8), and the predominant fatty acids were C18 : 0 3-OH, C10 : 0, C14 : 0 and C18 : 1ω9c. Comparison of 16S rRNA gene and genome sequences confirmed that these strains represented a novel member of the genus Francisella, with less than 98.8 % 16S rRNA gene sequence similarity and less than 95 % genomic average nucleotide identity to recognized Francisella species. The phylogenetic tree based on 16S rRNA gene sequences and the protein-concatamer tree based on a concatenation of 28 protein marker sequences both indicated that the strains clustered with 'Francisella salina' TX07-7308 and 'Francisella marina' E95-16, but formed a distinct lineage group among the other members of the genus Francisella. The DNA G+C contents of the four strains were determined to be 32.9, 32.7, 32.9 and 32.9 %, respectively (genome). On the basis of phenotypic and genotypic features, the strains are considered to represent a novel species of the genus Francisella, for which the name Francisella salimarina sp. nov. is proposed. The type strain is SYSU SYW-1T (=CGMCC 1.17031T=NBRC 113781T).
Collapse
Affiliation(s)
- Liang-Hui Li
- The Second Clinic Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Hai-Min Luo
- The Second Clinic Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Jun-Hui Feng
- The Second Clinic Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Yu-Zhen Ming
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Min-Ling Zheng
- The Second Clinic Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Guang-Yuan Deng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510006, PR China.,The Second Clinic Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Cha Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510006, PR China.,The Second Clinic Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Wen-Jun Li
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Urumqi, 830011, PR China.,State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Min Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Ping-Hua Qu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510006, PR China.,The Second Clinic Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| |
Collapse
|
22
|
Antimicrobial biosynthetic potential and diversity of culturable soil actinobacteria from forest ecosystems of Northeast India. Sci Rep 2020; 10:4104. [PMID: 32139731 PMCID: PMC7057963 DOI: 10.1038/s41598-020-60968-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
Actinobacteria is a goldmine for the discovery of abundant secondary metabolites with diverse biological activities. This study explores antimicrobial biosynthetic potential and diversity of actinobacteria from Pobitora Wildlife Sanctuary and Kaziranga National Park of Assam, India, lying in the Indo-Burma mega-biodiversity hotspot. A total of 107 actinobacteria were isolated, of which 77 exhibited significant antagonistic activity. 24 isolates tested positive for at least one of the polyketide synthase type I, polyketide synthase type II or non-ribosomal peptide synthase genes within their genome. Their secondary metabolite pathway products were predicted to be involved in the production of ansamycin, benzoisochromanequinone, streptogramin using DoBISCUIT database. Molecular identification indicated that these actinobacteria predominantly belonged to genus Streptomyces, followed by Nocardia and Kribbella. 4 strains, viz. Streptomyces sp. PB-79 (GenBank accession no. KU901725; 1313 bp), Streptomyces sp. Kz-28 (GenBank accession no. KY000534; 1378 bp), Streptomyces sp. Kz-32 (GenBank accession no. KY000536; 1377 bp) and Streptomyces sp. Kz-67 (GenBank accession no. KY000540; 1383 bp) showed ~89.5% similarity to the nearest type strain in EzTaxon database and may be considered novel. Streptomyces sp. Kz-24 (GenBank accession no. KY000533; 1367 bp) showed only 96.2% sequence similarity to S. malaysiensis and exhibited minimum inhibitory concentration of 0.024 µg/mL against methicilin resistant Staphylococcus aureus ATCC 43300 and Candida albicans MTCC 227. This study establishes that actinobacteria isolated from the poorly explored Indo-Burma mega-biodiversity hotspot may be an extremely rich reservoir for production of biologically active compounds for human welfare.
Collapse
|
23
|
Lan K, Cai YM, Li LH, Zeng JM, Yu XG, Qu PH, Li HL, Liu YY, Chen L, Chen C, Huang B. Vogesella urethralis sp. nov., isolated from human urine, and emended descriptions of Vogesella perlucida and Vogesella mureinivorans. Int J Syst Evol Microbiol 2020; 70:624-630. [PMID: 31697226 DOI: 10.1099/ijsem.0.003802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
A novel Vogesella strain, YM-1T, was recovered from human urine in PR China in 2017. Cells of strain YM-1T were Gram-stain-negative, rod-shaped, aerobic, motile, non-spore-forming and poly-β-hydroxybutyrate-accumulating. The strain contained C16:1ω6c/C 16:1ω7c, C16:0 and C18:0ω7c as major fatty acids; phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and an unidentified phospholipid as major polar lipids; and ubiquinone-8 as the predominant respiratory quinone. Comparison of 16S rRNA gene sequences indicated that this strain had highest similarities to Vogesella perlucida DS-28T (98.8 %) and Vogesella mureinivorans 389T (98.1 %). The results of phylogenetic analysis based on the 16S rRNA gene sequences revealed that the novel strain was clustered and well separated with V. perlucida DS-28T and V. mureinivorans 389T within the genus Vogesella. The average nucleotide identity (ANI) and amino acid identity (AAI) analyses showed that this strain was not identified as V. perlucida DS-28T or V. mureinivorans 389T, with values well below the threshold limit for species demarcation (ANI <88.1 %, AAI <88.6 %). Based on the above results, strain YM-1T is proposed to be a novel species of the genus Vogesella with the name Vogesella urethralis sp. nov. (YM-1T=NBRC 113779=CGMCC 1.17135).
Collapse
Affiliation(s)
- Kai Lan
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510000, PR China.,Department of Clinical Laboratory, The Second Clinic Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510000, PR China
| | - Yi-Mei Cai
- Department of Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China
| | - Liang-Hui Li
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510000, PR China.,Department of Clinical Laboratory, The Second Clinic Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510000, PR China
| | - Jian-Ming Zeng
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510000, PR China.,Department of Clinical Laboratory, The Second Clinic Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510000, PR China
| | - Xue-Gao Yu
- Department of Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China
| | - Ping-Hua Qu
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510000, PR China.,Department of Clinical Laboratory, The Second Clinic Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510000, PR China
| | - Hong-Lin Li
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510000, PR China.,Department of Clinical Laboratory, The Second Clinic Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510000, PR China
| | - Yu-Yang Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China
| | - Liang Chen
- Hackensack-Meridian Health Center for Discovery and Innovation, Nutley, NJ 07110, USA
| | - Cha Chen
- Department of Clinical Laboratory, The Second Clinic Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510000, PR China.,Department of Clinical Laboratory, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510000, PR China
| | - Bin Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China
| |
Collapse
|
24
|
Xiao M, Zheng ML, Salam N, Jiao JY, Dong L, Liu L, Chen C, Li WJ, Qu PH. Facilibium subflavum gen. nov., sp. nov. and Cysteiniphilum halobium sp. nov., new members of the family Fastidiosibacteraceae isolated from coastal seawater. Int J Syst Evol Microbiol 2019; 69:3757-3764. [DOI: 10.1099/ijsem.0.003676] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Min Xiao
- State Key Laboratory of Biocontrol and Guangdong Provincial, Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Min-Ling Zheng
- The Second Clinic Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Nimaichand Salam
- State Key Laboratory of Biocontrol and Guangdong Provincial, Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol and Guangdong Provincial, Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Lei Dong
- State Key Laboratory of Biocontrol and Guangdong Provincial, Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Lan Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial, Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Cha Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510006, PR China
- The Second Clinic Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Wen-Jun Li
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, 830011, PR China
- State Key Laboratory of Biocontrol and Guangdong Provincial, Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Ping-Hua Qu
- The Second Clinic Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510006, PR China
| |
Collapse
|
25
|
Chen L, Du S, Qu W, Guo F, Wang G. Biosynthetic potential of culturable bacteria associated with
Apostichopus japonicus. J Appl Microbiol 2019; 127:1686-1697. [DOI: 10.1111/jam.14453] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/19/2019] [Accepted: 09/06/2019] [Indexed: 11/28/2022]
Affiliation(s)
- L. Chen
- Department of Bioengineering School of Marine Science and Technology Harbin Institute of Technology Weihai China
| | - S. Du
- Department of Bioengineering School of Marine Science and Technology Harbin Institute of Technology Weihai China
| | - W.‐Y. Qu
- Department of Bioengineering School of Marine Science and Technology Harbin Institute of Technology Weihai China
| | - F.‐R. Guo
- Department of Bioengineering School of Marine Science and Technology Harbin Institute of Technology Weihai China
| | - G.‐Y. Wang
- Department of Bioengineering School of Marine Science and Technology Harbin Institute of Technology Weihai China
| |
Collapse
|
26
|
Demain AL, Gómez-Ortiz B, Ruiz-Villafán B, Rodríguez-Sanoja R, Sánchez S. Recent findings of molecules with anti-infective activity: screening of non-conventional sources. Curr Opin Pharmacol 2019; 48:40-47. [DOI: 10.1016/j.coph.2019.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 10/26/2022]
|
27
|
Chen P, Zhang C, Ju X, Xiong Y, Xing K, Qin S. Community Composition and Metabolic Potential of Endophytic Actinobacteria From Coastal Salt Marsh Plants in Jiangsu, China. Front Microbiol 2019; 10:1063. [PMID: 31139174 PMCID: PMC6527748 DOI: 10.3389/fmicb.2019.01063] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/26/2019] [Indexed: 12/31/2022] Open
Abstract
The diversity and functional roles of the plant associated endophytic actinobacteria in unique habitats remain poorly understood. In this paper, we examined the phylogenetic diversity and community composition of endophytic actinobacteria associated with native coastal salt marsh plants in Jiangsu, China using a combination of cultivation and 16S rRNA gene-based high-throughput sequencing (HTS) methods. Further, we evaluated the antifungal, fibrinolytic activities and the secondary metabolite biosynthesis potential of isolates via gene screening. A total of 278 actinobacterial isolates were isolated from 19 plant samples. 16S rRNA gene sequencing revealed that the isolates were highly diverse and belonged to 23 genera within the Actinomycetales order, with Streptomyces, Saccharopolyspora, and Pseudonocardia comprising the most abundant genera. In addition, more than 10 of the isolates were novel actinobacterial taxa distributed across eight genera. HTS analyses of seven representative plant root samples revealed that Actinobacteria phylum constituted 0.04–28.66% of root endophytic bacterial communities. A total of four actinobacterial classes, 14 orders, 35 families, and 63 known genera were detected via HTS, and these communities were found to be dominated by the members of the order Actinomycetales including the genera Streptomyces, Mycobacterium, Arthrobacter, Nocardioides, and Micromonospora. In addition, 30.4% of the representative isolates exhibited antifungal activities, 40.5% of them showed fibrinolytic activities, while 43.0% of the strains harbored secondary metabolite biosynthesis genes. These results demonstrated that coastal salt marsh plants in the Jiangsu Province represented an underexplored new reservoir of diverse and novel endophytic actinobacteria that may be of potential interest in the discovery of bioactive compounds with potential as biocontrol agents and for fibrinolytic enzyme production.
Collapse
Affiliation(s)
- Pan Chen
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Chunmei Zhang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Xiuyun Ju
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Youwei Xiong
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Ke Xing
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Sheng Qin
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
28
|
Mehetre GT, J S V, Burkul BB, Desai D, B S, Dharne MS, Dastager SG. Bioactivities and molecular networking-based elucidation of metabolites of potent actinobacterial strains isolated from the Unkeshwar geothermal springs in India. RSC Adv 2019; 9:9850-9859. [PMID: 35520740 PMCID: PMC9062624 DOI: 10.1039/c8ra09449g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/15/2019] [Indexed: 02/03/2023] Open
Abstract
The bioactive potential of Actinobacteria endemic to hot springs has rarely been investigated. This study highlights the cultivable diversity and bioactivities of Actinobacteria associated with the Unkeshwar hot springs, India. Potent strains were evaluated for their biosynthetic potentials and metabolite analysis was performed using effective dereplication molecular networking tools. A total of 86 actinobacterial strains were isolated and grouped into 21 distinct genera, based on 16S rRNA gene sequence analysis. These strains included rare members such as Micromonospora, Marmoricola, Actinomadura, Cellulomonas, Cellulosimicrobium, Janibacter, Rothia, Barrentisimonas, Dietzia and Glycomyces. In antimicrobial screening, Micromonospora sp. strain GH99 and Streptomyces sp. strain GH176 were found to be potent antimicrobial strains. The metabolic extracts of these strains exhibited strong antimicrobial activity against Staphylococcus epidermidis (NCIM 2493), Shigella flexneri (NCIM 5265), Klebsiella pneumonia (NCIM 2098), and Salmonella abony (NCIM 2257). The extracts also displayed strong anti-biofilm and anticancer activities against Pseudomonas aeruginosa (NCIM 5029), Acinetobacter junii (NCIM 5188) and breast cancer cell line MCF7, respectively. Both strains also tested positive for the presence of the PKS biosynthetic gene cluster in their genomes. To effectively delineate the secondary metabolites, the extracts were subjected to MS/MS-guided molecular networking analysis. Structurally diverse compounds including the polyketides 22-dehydroxymethyl-kijanolide (GH99 strain) and Abyssomicin I (GH176 strain) were detected in the extracts. Interestingly, Brevianamide F was detected in the extract of Micromonospora, which has previously been mostly found in fungal species. Other compounds such as cyclic tripeptides, Cyclo(l-Pro-d-Ile) and Cyclo(d-Pro-l-Phe), were also identified in this strain. In summary, for the first time, we explored the diversity of Actinobacteria and evaluated their bioactive potential from the Unkeshwar hot springs. The potent strains isolated in the study could be useful in drug discovery programs. The bioactive potential of Actinobacteria endemic to hot springs has rarely been investigated.![]()
Collapse
Affiliation(s)
- Gajanan T Mehetre
- NCIM Resource Centre, CSIR-National Chemical Laboratory Pune India .,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Vinodh J S
- NCIM Resource Centre, CSIR-National Chemical Laboratory Pune India .,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Bhushan B Burkul
- Centre for Materials Characterization, CSIR-National Chemical Laboratory Pune India
| | - D Desai
- National Center for Nanoscience and Nanotechnology, University of Mumbai India
| | - Santhakumari B
- Centre for Materials Characterization, CSIR-National Chemical Laboratory Pune India
| | - Mahesh S Dharne
- NCIM Resource Centre, CSIR-National Chemical Laboratory Pune India .,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Syed G Dastager
- NCIM Resource Centre, CSIR-National Chemical Laboratory Pune India .,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| |
Collapse
|
29
|
Sánchez-González M, Álvarez-Uribe H, Rivera-Solís R, González-Burgos A, Escalante-Réndiz D, Rojas-Herrera R. Analysis of a phenol-adapted microbial community: degradation capacity, taxonomy and metabolic description. J Appl Microbiol 2019; 126:771-779. [DOI: 10.1111/jam.14166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 11/13/2018] [Accepted: 11/19/2018] [Indexed: 12/24/2022]
Affiliation(s)
- M. Sánchez-González
- Facultad de Ingeniería Química; Universidad Autónoma de Yucatán; Mérida, Yucatán México
| | - H. Álvarez-Uribe
- Facultad de Ingeniería Química; Universidad Autónoma de Yucatán; Mérida, Yucatán México
| | - R. Rivera-Solís
- Facultad de Ingeniería Química; Universidad Autónoma de Yucatán; Mérida, Yucatán México
| | - A. González-Burgos
- Facultad de Ingeniería Química; Universidad Autónoma de Yucatán; Mérida, Yucatán México
| | - D. Escalante-Réndiz
- Facultad de Ingeniería Química; Universidad Autónoma de Yucatán; Mérida, Yucatán México
| | - R. Rojas-Herrera
- Facultad de Ingeniería Química; Universidad Autónoma de Yucatán; Mérida, Yucatán México
| |
Collapse
|
30
|
Pseudofrancisella aestuarii gen. nov., sp. nov., a novel member of the family Francisellaceae isolated from estuarine seawater. Antonie van Leeuwenhoek 2019; 112:877-886. [PMID: 30603801 DOI: 10.1007/s10482-018-01220-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/13/2018] [Indexed: 10/27/2022]
Abstract
A Gram-negative, aerobic, non-motile and non-spore forming bacterium, designated strain SYSU WZ-2T, was isolated from an estuarine seawater sample. Growth of strain SYSU WZ-2T was observed at temperature range of 10-40° C (optimum, 32 °C), pH range of 6-10 (optimum, pH 7-8) and in the presence of up to 5.0% NaCl (w/v). The DNA G+C content of the novel strain was determined to be 30.1% (genome). The major polar lipids were found to be diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, an unidentified aminolipid, two unidentified aminophospholipids and two unidentified phospholipids. The major fatty acids were C18:0 3-OH (27.5%), C18:1ω9c (19.3%), C16:0 (17.0%) and C14:0 (12.9%). The respiratory quinone was found to be ubiquinone Q8. Pairwise comparison of the 16S rRNA gene sequence showed that strain SYSU WZ-2T shares high identities with members of the genera Francisella (94.8-95.9%) and Allofrancisella (93.8-94.2%). The phylogenetic dendrograms based on 16S rRNA gene sequences with the members of the family Francisellaceae showed that the strain SYSU WZ-2T formed a distinct phylogenetic lineage well separated from the members of the genera Francisella and Allofrancisella. MALDI-TOF mass spectrometric analysis also depicted a different profile for strain SYSU WZ-2T compared with those of members of the genera Francisella and Allofrancisella. Based on the above results and differences in phenotypic and chemotaxonomic features, strain SYSU WZ-2T is characterized to represent a new species of a novel genus, for which the name Pseudofrancisella aestuarii gen. nov., sp. nov. is proposed (type strain SYSU WZ-2T = KCTC 52557T = CGMCC 1.13718T).
Collapse
|
31
|
Najar IN, Sherpa MT, Das S, Das S, Thakur N. Microbial ecology of two hot springs of Sikkim: Predominate population and geochemistry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 637-638:730-745. [PMID: 29758429 DOI: 10.1016/j.scitotenv.2018.05.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/03/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
Northeastern regions of India are known for their floral and faunal biodiversity. Especially the state of Sikkim lies in the eastern Himalayan ecological hotspot region. The state harbors many sulfur rich hot springs which have therapeutic and spiritual values. However, these hot springs are yet to be explored for their microbial ecology. The development of neo generation techniques such as metagenomics has provided an opportunity for inclusive study of microbial community of different environment. The present study describes the microbial diversity in two hot springs of Sikkim that is Polok and Borong with the assist of culture dependent and culture independent approaches. The culture independent techniques used in this study were next generation sequencing (NGS) and Phospholipid Fatty Acid Analysis (PLFA). Having relatively distinct geochemistry both the hot springs are thermophilic environments with the temperature range of 50-77 °C and pH range of 5-8. Metagenomic data revealed the dominance of bacteria over archaea. The most abundant phyla were Proteobacteria and Bacteroidetes although other phyla were also present such as Acidobacteria, Nitrospirae, Firmicutes, Proteobacteria, Parcubacteria and Spirochaetes. The PLFA studies have shown the abundance of Gram Positive bacteria followed by Gram negative bacteria. The culture dependent technique was correlative with PLFA studies. Most abundant bacteria as isolated and identified were Gram-positive genus Geobacillus and Anoxybacillus. The genus Geobacillus has been reported for the first time in North-Eastern states of India. The Geobacillus species obtained from the concerned hot springs were Geobacillus toebii, Geobacillus lituanicus, Geobacillus Kaustophillus and the Anoxybacillus species includes Anoxybacillus gonensis and Anoxybacillus Caldiproteolyticus. The distribution of major genera and their statistical correlation analyses with the geochemistry of the springs predicted that the temperature, pH, alkalinity, Ca2+, Mg2+, Cl2+, and sulfur were main environmental variables influencing the microbial community composition and diversity. Also the piper diagram suggested that the water of both the hot springs are Ca-HCO3- type and can be predicted as shallow fresh ground waters. This study has provided an insight into the ecological interaction of the diverse microbial communities and associated physicochemical parameters, which will help in determining the future studies on different biogeochemical pathways in these hot springs.
Collapse
Affiliation(s)
- Ishfaq Nabi Najar
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok 737102, Sikkim, India
| | - Mingma Thundu Sherpa
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok 737102, Sikkim, India
| | - Sayak Das
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok 737102, Sikkim, India
| | - Saurav Das
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok 737102, Sikkim, India
| | - Nagendra Thakur
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok 737102, Sikkim, India.
| |
Collapse
|
32
|
Hug JJ, Bader CD, Remškar M, Cirnski K, Müller R. Concepts and Methods to Access Novel Antibiotics from Actinomycetes. Antibiotics (Basel) 2018; 7:E44. [PMID: 29789481 PMCID: PMC6022970 DOI: 10.3390/antibiotics7020044] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 12/25/2022] Open
Abstract
Actinomycetes have been proven to be an excellent source of secondary metabolites for more than half a century. Exhibiting various bioactivities, they provide valuable approved drugs in clinical use. Most microorganisms are still untapped in terms of their capacity to produce secondary metabolites, since only a small fraction can be cultured in the laboratory. Thus, improving cultivation techniques to extend the range of secondary metabolite producers accessible under laboratory conditions is an important first step in prospecting underexplored sources for the isolation of novel antibiotics. Currently uncultured actinobacteria can be made available by bioprospecting extreme or simply habitats other than soil. Furthermore, bioinformatic analysis of genomes reveals most producers to harbour many more biosynthetic gene clusters than compounds identified from any single strain, which translates into a silent biosynthetic potential of the microbial world for the production of yet unknown natural products. This review covers discovery strategies and innovative methods recently employed to access the untapped reservoir of natural products. The focus is the order of actinomycetes although most approaches are similarly applicable to other microbes. Advanced cultivation methods, genomics- and metagenomics-based approaches, as well as modern metabolomics-inspired methods are highlighted to emphasise the interplay of different disciplines to improve access to novel natural products.
Collapse
Affiliation(s)
- Joachim J Hug
- Department Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.
| | - Chantal D Bader
- Department Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.
| | - Maja Remškar
- Department Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.
| | - Katarina Cirnski
- Department Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.
| | - Rolf Müller
- Department Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.
| |
Collapse
|
33
|
Mohamad OAA, Li L, Ma JB, Hatab S, Xu L, Guo JW, Rasulov BA, Liu YH, Hedlund BP, Li WJ. Evaluation of the Antimicrobial Activity of Endophytic Bacterial Populations From Chinese Traditional Medicinal Plant Licorice and Characterization of the Bioactive Secondary Metabolites Produced by Bacillus atrophaeus Against Verticillium dahliae. Front Microbiol 2018; 9:924. [PMID: 29867835 PMCID: PMC5954123 DOI: 10.3389/fmicb.2018.00924] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 04/20/2018] [Indexed: 12/13/2022] Open
Abstract
Endophytic bacteria associated with medicinal plants possess unique strategies that enhance growth and suvival of host plants, many of which are mediated by distinctive secondary metabolites. These bacteria and their secondary metabolites are important subjects for both basic and applied research aimed at sustainable agriculture. In the present study, 114 endophytic strains isolated from the wild ethnomedicinal plant Glycyrrhiza uralensis (licorice) were screened for their in vitro antimicrobial activities against common fungal pathogens of tomato (Fusarium oxysporum f. sp., Fulvia fulva, Alternaria solani), cotton (Fusarium oxysporum f. sp. Vesinfectum, Verticillium dahliae), pomegranite (Ceratocystis fimbriata), Cymbidinium (Colletotrichum gloeosporioides), and Tsao-ko (Pestalotiopsis microspora and Fusarium graminearum) and the common bacteria Staphylococcus aureus, Bacillus cereus, Salmonella enteritidis, and Escherichia coli. Several Bacillus strains, particularly Bacillus atrophaeus and Bacillus mojavensis, had a broad spectrum of antifungal and antibacterial activity. A total of 16 strains, selected based on broad antimicrobial activity, were shown to contain at least one putative secondary metabolite-encoding gene (i.e., polyketide synthase or non-ribosomal peptide synthetase) and/or one lytic enzyme (i.e., protease, cellulase, lipase, chitinase), which may be important mediators of antagonistic activity against pathogens. Five strains, representing Bacillus atrophaeus and Bacillus mojavensis, were selected for plant growth chamber experiments based on strong in vitro antifungal activities. All five strains significantly reduced disease severity in Arabidopsis thaliana plants challenged with V. dahlia infection. Gas-chromatography/mass-spectrometry analysis of cell-free extracts of Bacillus atrophaeus strain XEGI50 showed that at least 13 compounds were produced only during co-cultivation with V. dahlia, including putative compounds known to have antimicrobial activity, such as 1,2-benzenedicarboxylic acid, bis (2-methylpropyl) ester; 9,12-octadecadienoic acid (Z,Z)-, methyl ester; 9-octadecenoic acid, methyl ester, (E)-; and decanedioic acid, bis(2-ethylhexyl) ester. To our knowledge, this study is the first to report that bacteria isolated from G. uralensis have biocontrol abilities. Our findings provide new insights into the antimicrobial activities of natural endophytes, particularly B. atrophaeus, and suggest this species may a promising candidate as a biocontrol agent to confer resistance to Verticillium wilt disease and other phytopathogens in cotton and other crops.
Collapse
Affiliation(s)
- Osama A. A. Mohamad
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Environmental Science Department, Institute of Environmental Studies, Arish University, El-Arish, Egypt
| | - Li Li
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Jin-Biao Ma
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Shaimaa Hatab
- Department of Food Science and Technology, College of Environmental Agricultural Sciences, Arish University, El-Arish, Egypt
| | - Lin Xu
- Key Laboratory of Hexi Corridor Resources Utilization, Hexi University, Zhangye, China
| | - Jian-Wei Guo
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Key Laboratory of Crops with High Quality and Efficient Cultivation and Security Control, Yunnan Higher Education Institutions, Honghe University, Mengzi, China
| | - Bakhtiyor A. Rasulov
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Institute of Genetics and Plant Experimental Biology, Uzbekistan Academy of Sciences, Tashkent, Uzbekistan
| | - Yong-Hong Liu
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Brian P. Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Wen-Jun Li
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
34
|
Untapped bacterial diversity and metabolic potential within Unkeshwar hot springs, India. Arch Microbiol 2018; 200:753-770. [PMID: 29396619 DOI: 10.1007/s00203-018-1484-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 01/04/2023]
Abstract
Hot springs support diverse and interesting groups of microorganisms adapted to extreme conditions and gaining attention in biotechnological applications. However, due to limitations of cultivation methods, a majority of such extremophiles remain uncultivated and unexplored. The advent of multiple cultivation conditions and specialized culture media could possibly aid to access the unexplored microbial portion of hot springs. In the present study, different media and isolation strategies were applied to isolate hitherto unexplored bacterial taxa in the water samples collected from Unkeshwar hot springs, India. Molecular, phylogenetic and predictive functional characterization of the isolated bacterial population was done using 16S rRNA sequencing coupled with Tax4Fun tools. Furthermore, representative isolates were screened for important enzymes (cellulase, xylanase, amylase, and protease) and heavy metal tolerance (chromium, arsenic) properties. A total of 454 bacterial isolates obtained were mapped into 57 unique bacterial genera and 4 different bacterial phyla. Interestingly, 37 genera not previously isolated from Indian hot springs, were isolated for the first time in the present study. However, most of these genera (23 out of 37) were reported only in metagenomics studies from Indian and global hot springs. Furthermore, around 14 genera not previously cultivated and not detected in metagenomics studies of hot springs are documented here. The metabolic potential was ascertained by determining the abundance of specific genes using in silico based Tax4Fun tool, which identified around 315 metabolic pathways for metabolism of carbohydrates, synthesis of secondary metabolites and degradation of xenobiotic compounds. Bioprospection study revealed that 33 and 25 bacterial genera were positive for enzyme production and resistance to the heavy metals, respectively. The present study revealed the advantages of cultivation methods using a comprehensive multiple isolation approach for exploring untapped and unique bacterial diversity, and also utilities for various biotechnological and environmental applications.
Collapse
|
35
|
Rhabdanaerobium thermarum gen. nov., sp. nov., a novel anaerobic bacterium isolated from a hot spring. Int J Syst Evol Microbiol 2017; 67:4584-4588. [DOI: 10.1099/ijsem.0.002335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
36
|
Amin A, Ahmed I, Salam N, Kim BY, Singh D, Zhi XY, Xiao M, Li WJ. Diversity and Distribution of Thermophilic Bacteria in Hot Springs of Pakistan. MICROBIAL ECOLOGY 2017; 74:116-127. [PMID: 28105510 DOI: 10.1007/s00248-017-0930-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 01/02/2017] [Indexed: 06/06/2023]
Abstract
Chilas and Hunza areas, located in the Main Mantle Thrust and Main Karakoram Thrust of the Himalayas, host a range of geochemically diverse hot springs. This Himalayan geothermal region encompassed hot springs ranging in temperature from 60 to 95 °C, in pH from 6.2 to 9.4, and in mineralogy from bicarbonates (Tato Field), sulfates (Tatta Pani) to mixed type (Murtazaabad). Microbial community structures in these geothermal springs remained largely unexplored to date. In this study, we report a comprehensive, culture-independent survey of microbial communities in nine samples from these geothermal fields by employing a bar-coded pyrosequencing technique. The bacterial phyla Proteobacteria and Chloroflexi were dominant in all samples from Tato Field, Tatta Pani, and Murtazaabad. The community structures however depended on temperature, pH, and physicochemical parameters of the geothermal sites. The Murtazaabad hot springs with relatively higher temperature (90-95 °C) favored the growth of phylum Thermotogae, whereas the Tatta Pani thermal spring site TP-H3-b (60 °C) favored the phylum Proteobacteria. At sites with low silica and high temperature, OTUs belonging to phylum Chloroflexi were dominant. Deep water areas of the Murtazaabad hot springs favored the sulfur-reducing bacteria. About 40% of the total OTUs obtained from these samples were unclassified or uncharacterized, suggesting the presence of many undiscovered and unexplored microbiota. This study has provided novel insights into the nature of ecological interactions among important taxa in these communities, which in turn will help in determining future study courses in these sites.
Collapse
Affiliation(s)
- Arshia Amin
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, People's Republic of China
- Institute of Microbial Culture Collection of Pakistan (IMCCP), National Agricultural Research Centre (NARC), Islamabad, 45500, Pakistan
- Department of Microbiology, Quaid-e-Azam University, Islamabad, 45320, Pakistan
| | - Iftikhar Ahmed
- Institute of Microbial Culture Collection of Pakistan (IMCCP), National Agricultural Research Centre (NARC), Islamabad, 45500, Pakistan.
| | - Nimaichand Salam
- State Key Laboratory of Biocontrol and Guandong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Byung-Yong Kim
- Chun Lab Inc., Seoul National University, Seoul, 151-742, Republic of South Korea
| | - Dharmesh Singh
- Environmental Genomics Division, National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, 440024, India
| | - Xiao-Yang Zhi
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Min Xiao
- State Key Laboratory of Biocontrol and Guandong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Wen-Jun Li
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, People's Republic of China.
- State Key Laboratory of Biocontrol and Guandong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, 830011, People's Republic of China.
| |
Collapse
|
37
|
Liu L, Salam N, Jiao JY, E SM, Chen C, Fang BZ, Xiao M, Li M, Li WJ, Qu PH. Cysteiniphilum litorale gen. nov., sp. nov., isolated from coastal seawater. Int J Syst Evol Microbiol 2017; 67:2178-2183. [PMID: 28671520 DOI: 10.1099/ijsem.0.001917] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Lan Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Nimaichand Salam
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Shun-Mei E
- Department of Laboratory Medical Science, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510006, PR China
| | - Cha Chen
- Department of Laboratory Medical Science, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510006, PR China
| | - Bao-Zhu Fang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Min Xiao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Mo Li
- Department of Laboratory Medical Science, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510006, PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Ping-Hua Qu
- Department of Laboratory Medical Science, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510006, PR China
| |
Collapse
|
38
|
Arocha-Garza HF, Canales-Del Castillo R, Eguiarte LE, Souza V, De la Torre-Zavala S. High diversity and suggested endemicity of culturable Actinobacteria in an extremely oligotrophic desert oasis. PeerJ 2017; 5:e3247. [PMID: 28480140 PMCID: PMC5417069 DOI: 10.7717/peerj.3247] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/29/2017] [Indexed: 11/20/2022] Open
Abstract
The phylum Actinobacteria constitutes one of the largest and anciently divergent phyla within the Bacteria domain. Actinobacterial diversity has been thoroughly researched in various environments due to its unique biotechnological potential. Such studies have focused mostly on soil communities, but more recently marine and extreme environments have also been explored, finding rare taxa and demonstrating dispersal limitation and biogeographic patterns for Streptomyces. To test the distribution of Actinobacteria populations on a small scale, we chose the extremely oligotrophic and biodiverse Cuatro Cienegas Basin (CCB), an endangered oasis in the Chihuahuan desert to assess the diversity and uniqueness of Actinobacteria in the Churince System with a culture-dependent approach over a period of three years, using nine selective media. The 16S rDNA of putative Actinobacteria were sequenced using both bacteria universal and phylum-specific primer pairs. Phylogenetic reconstructions were performed to analyze OTUs clustering and taxonomic identification of the isolates in an evolutionary context, using validated type species of Streptomyces from previously phylogenies as a reference. Rarefaction analysis for total Actinobacteria and for Streptomyces isolates were performed to estimate species’ richness in the intermediate lagoon (IL) in the oligotrophic Churince system. A total of 350 morphologically and nutritionally diverse isolates were successfully cultured and characterized as members of the Phylum Actinobacteria. A total of 105 from the total isolates were successfully subcultured, processed for DNA extraction and 16S-rDNA sequenced. All strains belong to the order Actinomycetales, encompassing 11 genera of Actinobacteria; the genus Streptomyces was found to be the most abundant taxa in all the media tested throughout the 3-year sampling period. Phylogenetic analysis of our isolates and another 667 reference strains of the family Streptomycetaceae shows that our isolation effort produced 38 unique OTUs in six new monophyletic clades. This high biodiversity and uniqueness of Actinobacteria in an extreme oligotrophic environment, which has previously been reported for its diversity and endemicity, is a suggestive sign of microbial biogeography of Actinobacteria and it also represents an invaluable source of biological material for future ecological and bioprospecting studies.
Collapse
Affiliation(s)
- Hector Fernando Arocha-Garza
- Facultad de Ciencias Biológicas, Instituto de Biotecnología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Ricardo Canales-Del Castillo
- Facultad de Ciencias Biológicas, Laboratorio de Biología de la Conservación, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| | - Luis E Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Susana De la Torre-Zavala
- Facultad de Ciencias Biológicas, Instituto de Biotecnología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Mexico
| |
Collapse
|
39
|
Abdallah RA, Beye M, Diop A, Bakour S, Raoult D, Fournier PE. The impact of culturomics on taxonomy in clinical microbiology. Antonie van Leeuwenhoek 2017; 110:1327-1337. [PMID: 28389704 DOI: 10.1007/s10482-017-0871-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/04/2017] [Indexed: 02/06/2023]
Abstract
Over the past decade, new culture methods coupled to genome and metagenome sequencing have enabled the number of isolated bacterial species with standing in nomenclature to rise to more than 15,000 whereas it was only 1791 in 1980. 'Culturomics', a new approach based on the diversification of culture conditions, has enabled the isolation of more than 1000 distinct human-associated bacterial species since 2012, including 247 new species. This strategy was demonstrated to be complementary to metagenome sequencing for the exhaustive study of the human microbiota and its roles in health and diseases. However, by identifying a large number of new bacterial species in a short time, culturomics has highlighted a need for taxonomic approaches adapted to clinical microbiology that would include the use of modern and reproducible tools, including high throughput genomic and proteomic analyses. Herein, we review the development of culturomics and genomics in the clinical microbiology field and their impact on bacterial taxonomy.
Collapse
Affiliation(s)
- Rita Abou Abdallah
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63CNRS 7278IRD 198Inserm 1095IHU Méditerranée Infection, Faculté de Médecine, Aix-Marseille Université, 27 Bd Jean Moulin, 13385, Marseille Cedex5, France
| | - Mamadou Beye
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63CNRS 7278IRD 198Inserm 1095IHU Méditerranée Infection, Faculté de Médecine, Aix-Marseille Université, 27 Bd Jean Moulin, 13385, Marseille Cedex5, France
| | - Awa Diop
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63CNRS 7278IRD 198Inserm 1095IHU Méditerranée Infection, Faculté de Médecine, Aix-Marseille Université, 27 Bd Jean Moulin, 13385, Marseille Cedex5, France
| | - Sofiane Bakour
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63CNRS 7278IRD 198Inserm 1095IHU Méditerranée Infection, Faculté de Médecine, Aix-Marseille Université, 27 Bd Jean Moulin, 13385, Marseille Cedex5, France
| | - Didier Raoult
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63CNRS 7278IRD 198Inserm 1095IHU Méditerranée Infection, Faculté de Médecine, Aix-Marseille Université, 27 Bd Jean Moulin, 13385, Marseille Cedex5, France
| | - Pierre-Edouard Fournier
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), UM 63CNRS 7278IRD 198Inserm 1095IHU Méditerranée Infection, Faculté de Médecine, Aix-Marseille Université, 27 Bd Jean Moulin, 13385, Marseille Cedex5, France.
| |
Collapse
|
40
|
Charlesworth J, P. Burns B. Extremophilic adaptations and biotechnological applications in diverse environments. AIMS Microbiol 2016. [DOI: 10.3934/microbiol.2016.3.251] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|