1
|
Soler JJ, Barón MD, Martínez-Renau E, Zhang L, Liang W, Martín-Vivaldi M. Nesting hoopoes cultivate in their uropygial gland the microbial symbionts with the highest antimicrobial capacity. Sci Rep 2024; 14:30797. [PMID: 39730533 DOI: 10.1038/s41598-024-81062-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/25/2024] [Indexed: 12/29/2024] Open
Abstract
The European hoopoe (Upupa epops) conforms a paradigmatic example of animals cultivating bacteria in their uropygial gland that protect them against pathogenic infections. We here explore the hypothesis that enterococci are the responsible bacteria of such beneficial effect. We did so by comparing the antimicrobial activity against three indicator bacteria of colonies isolated from cultures of enterococci and mesophilic bacteria from the uropygial skin or secretion of nestlings, brooding or non-brooding females, and males of the subspecies longirostris in Hainan (China). In accordance with the hypothesis, enterococci isolated from nesting birds are more active than those from non-nesting birds. Moreover, enterococci from the uropygial secretion were more active than those isolated from the skin or than mesophilic bacteria isolates. These results therefore support the hypothesis that, during the nesting phase, hoopoe females and nestlings cultivate enterococci in their uropygial gland with relatively high antimicrobial activity.
Collapse
Affiliation(s)
- Juan José Soler
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (EEZA-CSIC), 04120, Almería, Spain.
- Unidad Asociada (CSIC): Coevolución: Cucos, Hospedadores y Bacterias Simbiontes, Universidad de Granada, 18003, Granada, Spain.
| | - María Dolores Barón
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (EEZA-CSIC), 04120, Almería, Spain
| | - Ester Martínez-Renau
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (EEZA-CSIC), 04120, Almería, Spain
| | - Lu Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
| | - Wei Liang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
| | - Manuel Martín-Vivaldi
- Unidad Asociada (CSIC): Coevolución: Cucos, Hospedadores y Bacterias Simbiontes, Universidad de Granada, 18003, Granada, Spain
- Departamento de Zoología, Facultad de Ciencias, Universidad de Granada, 18003, Granada, Spain
| |
Collapse
|
2
|
Corl A, Charter M, Rozman G, Turjeman S, Toledo S, Kamath PL, Getz WM, Nathan R, Bowie RCK. Social, environmental, and developmental factors affect the microbiota of barn owls (Tyto alba) in a cross-fostering experiment. Anim Microbiome 2024; 6:77. [PMID: 39719636 DOI: 10.1186/s42523-024-00365-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 12/11/2024] [Indexed: 12/26/2024] Open
Abstract
BACKGROUND Species host diverse microbial communities that can impact their digestion and health, which has led to much interest in understanding the factors that influence their microbiota. We studied the developmental, environmental, and social factors that influence the microbiota of nestling barn owls (Tyto alba) through a partial cross-fostering experiment that manipulated the social and nest environment of the nestlings. We then examined the nestling microbiota before and three weeks after the exchange of nestlings between nests, along with the microbiota of the adults at the nest and nestlings in unmanipulated nests. RESULTS We found that nestlings had higher bacterial diversity and different bacterial communities than adults. The microbiota of nestlings was more like that of their mothers than their fathers, but the similarity to the father tended to increase with the amount of time the father was in close proximity to the nest, as measured from movement data. Cross-fostered offspring had higher bacterial diversity and greater changes in bacterial community composition over time than control offspring. Cross-fostering led the microbiota of the nestlings in the experiment to converge on similar bacterial communities. The microbiota of nestling owls therefore rapidly changed along with alterations to their social and nest environments. CONCLUSIONS These results highlight the dynamic nature of the microbiota during early development and that social interactions can shape microbial communities.
Collapse
Affiliation(s)
- Ammon Corl
- Museum of Vertebrate Zoology, University of California, Berkeley, 3101 Valley Life Sciences Building, Berkeley, CA, 94720-3160, USA.
- Department of Integrative Biology, University of California, Berkeley, 3060 Valley Life Sciences Building, Berkeley, CA, 94720, USA.
| | - Motti Charter
- The Shamir Research Institute, Department of Geography and Environmental Studies, University of Haifa, 199 Aba Hushi Boulevard, Mount Carmel, Haifa, 3498838, Israel
| | - Gabe Rozman
- Movement Ecology Lab, Department of Ecology, Evolution, and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem, 91904, Israel
| | - Sondra Turjeman
- Movement Ecology Lab, Department of Ecology, Evolution, and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem, 91904, Israel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel
| | - Sivan Toledo
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Pauline L Kamath
- School of Food and Agriculture, University of Maine, 5735 Hitchner Hall, Orono, ME, 04469, USA
- Maine Center for Genetics in the Environment, University of Maine, 5703 Alumni Hall, Orono, ME, 04469, USA
| | - Wayne M Getz
- Environmental Science, Policy, and Management, University of California, Berkeley, VLSB 5048-B, Berkeley, CA, 94720, USA
- School of Mathematical Sciences, University of KwaZulu, Natal, South Africa
| | - Ran Nathan
- Movement Ecology Lab, Department of Ecology, Evolution, and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem, 91904, Israel
| | - Rauri C K Bowie
- Museum of Vertebrate Zoology, University of California, Berkeley, 3101 Valley Life Sciences Building, Berkeley, CA, 94720-3160, USA.
- Department of Integrative Biology, University of California, Berkeley, 3060 Valley Life Sciences Building, Berkeley, CA, 94720, USA.
| |
Collapse
|
3
|
Martínez-Renau E, Martín-Platero AM, Bodawatta KH, Martín-Vivaldi M, Martínez-Bueno M, Poulsen M, Soler JJ. Social environment influences microbiota and potentially pathogenic bacterial communities on the skin of developing birds. Anim Microbiome 2024; 6:47. [PMID: 39148142 PMCID: PMC11325624 DOI: 10.1186/s42523-024-00327-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 06/28/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Animal bacterial symbionts are established early in life, either through vertical transmission and/or by horizontal transmission from both the physical and the social environment, such as direct contact with con- or heterospecifics. The social environment particularly can influence the acquisition of both mutualistic and pathogenic bacteria, with consequences for the stability of symbiotic communities. However, segregating the effects of the shared physical environment from those of the social interactions is challenging, limiting our current knowledge on the role of the social environment in structuring bacterial communities in wild animals. Here, we take advantage of the avian brood-parasite system of Eurasian magpies (Pica pica) and great spotted cuckoos (Clamator glandarius) to explore how the interspecific social environment (magpie nestlings developing with or without heterospecifics) affects bacterial communities on uropygial gland skin. RESULTS We demonstrated interspecific differences in bacterial community compositions in members of the two species when growing up in monospecific nests. However, the bacterial community of magpies in heterospecific nests was richer, more diverse, and more similar to their cuckoo nest-mates than when growing up in monospecific nests. These patterns were alike for the subset of microbes that could be considered core, but when looking at the subset of potentially pathogenic bacterial genera, cuckoo presence reduced the relative abundance of potentially pathogenic bacterial genera on magpies. CONCLUSIONS Our findings highlight the role of social interactions in shaping the assembly of the avian skin bacterial communities during the nestling period, as exemplified in a brood parasite-host system.
Collapse
Affiliation(s)
- Ester Martínez-Renau
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (CSIC), 04120, Almería, Spain.
| | - Antonio M Martín-Platero
- Departamento de Microbiología, Universidad de Granada, 18071, Granada, Spain
- Unidad Asociada (CSIC): Coevolución: Cucos, Hospedadores y Bacterias Simbiontes, Universidad de Granada, 18071, Granada, Spain
| | - Kasun H Bodawatta
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Manuel Martín-Vivaldi
- Unidad Asociada (CSIC): Coevolución: Cucos, Hospedadores y Bacterias Simbiontes, Universidad de Granada, 18071, Granada, Spain
- Departamento de Zoología, Universidad de Granada, 18071, Granada, Spain
| | - Manuel Martínez-Bueno
- Departamento de Microbiología, Universidad de Granada, 18071, Granada, Spain
- Unidad Asociada (CSIC): Coevolución: Cucos, Hospedadores y Bacterias Simbiontes, Universidad de Granada, 18071, Granada, Spain
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Juan José Soler
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (CSIC), 04120, Almería, Spain.
- Unidad Asociada (CSIC): Coevolución: Cucos, Hospedadores y Bacterias Simbiontes, Universidad de Granada, 18071, Granada, Spain.
| |
Collapse
|
4
|
Provisioning challenge: self-consumption versus nestling provisioning, an experimental study. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Adams NE, Becker MA, Edmands S. Effect of Geography and Captivity on Scat Bacterial Communities in the Imperiled Channel Island Fox. Front Microbiol 2021; 12:748323. [PMID: 34925262 PMCID: PMC8672056 DOI: 10.3389/fmicb.2021.748323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/21/2021] [Indexed: 11/20/2022] Open
Abstract
With developing understanding that host-associated microbiota play significant roles in individual health and fitness, taking an interdisciplinary approach combining microbiome research with conservation science is increasingly favored. Here we establish the scat microbiome of the imperiled Channel Island fox (Urocyon littoralis) and examine the effects of geography and captivity on the variation in bacterial communities. Using high throughput 16S rRNA gene amplicon sequencing, we discovered distinct bacterial communities in each island fox subspecies. Weight, timing of the sample collection, and sex contributed to the geographic patterns. We uncovered significant taxonomic differences and an overall decrease in bacterial diversity in captive versus wild foxes. Understanding the drivers of microbial variation in this system provides a valuable lens through which to evaluate the health and conservation of these genetically depauperate foxes. The island-specific bacterial community baselines established in this study can make monitoring island fox health easier and understanding the implications of inter-island translocation clearer. The decrease in bacterial diversity within captive foxes could lead to losses in the functional services normally provided by commensal microbes and suggests that zoos and captive breeding programs would benefit from maintaining microbial diversity.
Collapse
Affiliation(s)
- Nicole E Adams
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Madeleine A Becker
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Suzanne Edmands
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
6
|
Díaz-Lora S, Pérez-Contreras T, Azcárate-García M, Peralta-Sánchez JM, Martínez-Bueno M, José Soler J, Martín-Vivaldi M. Cosmetic coloration of cross-fostered eggs affects paternal investment in the hoopoe ( Upupa epops). Proc Biol Sci 2021; 288:20203174. [PMID: 33947236 PMCID: PMC8097196 DOI: 10.1098/rspb.2020.3174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/06/2021] [Indexed: 11/12/2022] Open
Abstract
The signalling hypothesis suggests that avian eggshell coloration is a sexually selected female signal advertising her quality to its male partner, thereby stimulating his provisioning rate. This hypothesis has been tested for structural eggshell pigments, but not for cosmetic colorations, such as that produced by the uropygial secretion on eggshells. During the breeding season, female hoopoes (Upupa epops) host in their uropygial glands symbiotic bacteria. Females actively smear the eggshells with their secretion, protecting embryos from pathogenic trans-shell infections and changing eggshell coloration. Because the colour of the secretions is related to their antimicrobial potential, cosmetic eggshell coloration may act as a cue or even as a post-mating sexually selected signal if it affects male provisioning rates. To experimentally test this hypothesis, we cross-fostered already-smeared clutches between hoopoe nests, and quantified male feeding behaviour to females before and after the experiment. This approach allows disentanglement of the effects of female quality and of egg coloration on male investment. In accordance with the hypothesis, males adjusted their provisioning rate to the eggshell cosmetic coloration. This is, to our knowledge, the first experimental demonstration that egg colour stained with uropygial secretion could act as a post-mating sexual signal of female quality to males.
Collapse
Affiliation(s)
- Silvia Díaz-Lora
- Departamento de Zoología, Facultad de Ciencias, Universidad de Granada (UGR), Granada, Spain
| | - Tomás Pérez-Contreras
- Departamento de Zoología, Facultad de Ciencias, Universidad de Granada (UGR), Granada, Spain
- Unidad asociada: Coevolución: cucos, hospedadores y bacterias simbiontes, Universidad de Granada (UGR), Granada, Spain
| | - Manuel Azcárate-García
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (EEZA-CSIC), Almería, Spain
| | | | - Manuel Martínez-Bueno
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada (UGR), Granada, Spain
- Unidad asociada: Coevolución: cucos, hospedadores y bacterias simbiontes, Universidad de Granada (UGR), Granada, Spain
| | - Juan José Soler
- Unidad asociada: Coevolución: cucos, hospedadores y bacterias simbiontes, Universidad de Granada (UGR), Granada, Spain
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (EEZA-CSIC), Almería, Spain
| | - Manuel Martín-Vivaldi
- Departamento de Zoología, Facultad de Ciencias, Universidad de Granada (UGR), Granada, Spain
- Unidad asociada: Coevolución: cucos, hospedadores y bacterias simbiontes, Universidad de Granada (UGR), Granada, Spain
| |
Collapse
|
7
|
Mazorra-Alonso M, Tomás G, Soler JJ. Microbially Mediated Chemical Ecology of Animals: A Review of Its Role in Conspecific Communication, Parasitism and Predation. BIOLOGY 2021; 10:274. [PMID: 33801728 PMCID: PMC8065758 DOI: 10.3390/biology10040274] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023]
Abstract
Microbial symbionts are nowadays considered of pivotal importance for animal life. Among the many processes where microorganisms are involved, an emerging research avenue focuses on their major role in driving the evolution of chemical communication in their hosts. Volatiles of bacterial origin may underlie chemical communication and the transfer of social information through signals, as well as inadvertent social information. We reviewed the role of microorganisms in animal communication between conspecifics, and, because the microbiome may cause beneficial as well as deleterious effects on their animal hosts, we also reviewed its role in determining the outcome of the interactions with parasites and predators. Finally, we paid special attention to the hypothetical role of predation and parasitism in driving the evolution of the animal microbiome. We highlighted the novelty of the theoretical framework derived from considering the microbiota of animals in scenarios of communication, parasitism, and predation. We aimed to encourage research in these areas, suggesting key predictions that need to be tested to better understand what is one of the main roles of bacteria in animal biology.
Collapse
Affiliation(s)
- Mónica Mazorra-Alonso
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas, 04120 Almería, Spain
| | - Gustavo Tomás
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas, 04120 Almería, Spain
- Unidad Asociada (Consejo Superior de Investigaciones Científicas): Coevolución: Cucos, Hospedadores y Bacterias Simbiontes, Universidad de Granada, 18071 Granada, Spain
| | - Juan José Soler
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas, 04120 Almería, Spain
- Unidad Asociada (Consejo Superior de Investigaciones Científicas): Coevolución: Cucos, Hospedadores y Bacterias Simbiontes, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
8
|
Jose PA, Ben-Yosef M, Lahuatte P, Causton CE, Heimpel GE, Jurkevitch E, Yuval B. Shifting microbiomes complement life stage transitions and diet of the bird parasite Philornis downsi from the Galapagos Islands. Environ Microbiol 2021; 23:5014-5029. [PMID: 33587780 DOI: 10.1111/1462-2920.15435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/12/2021] [Indexed: 01/04/2023]
Abstract
Domestication disconnects an animal from its natural environment and diet, imposing changes in the attendant microbial community. We examine these changes in Philornis downsi (Muscidae), an invasive parasitic fly of land birds in the Galapagos Islands. Using a 16S rDNA profiling approach we studied the microbiome of larvae and adults of wild and laboratory-reared populations. These populations diverged in their microbiomes, significantly more so in larval than in adult flies. In field-collected second-instar larvae, Klebsiella (70.3%) was the most abundant taxon, while in the laboratory Ignatzschineria and Providencia made up 89.2% of the community. In adults, Gilliamella and Dysgonomonas were key members of the core microbiome of field-derived females and males but had no or very low representation in the laboratory. Adult flies harbour sex-specific microbial consortia in their gut, as male core microbiomes were significantly dominated by Klebsiella. Thus, P. downsi microbiomes are dynamic and shift correspondingly with life cycle and diet. Sex-specific foraging behaviour of adult flies and nest conditions, which are absent in the laboratory, may contribute to shaping distinct larval, and adult male and female microbiomes. We discuss these findings in the context of microbe-host co-evolution and the implications for control measures.
Collapse
Affiliation(s)
- Polpass Arul Jose
- Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7612001, Israel
| | - Michael Ben-Yosef
- Department of Entomology, Agricultural Research Organization, Gilat Center, M. P. Negev, 85280, Israel
| | - Paola Lahuatte
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora, Galapagos, 200350, Ecuador
| | - Charlotte E Causton
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora, Galapagos, 200350, Ecuador
| | - George E Heimpel
- Department of Entomology, University of Minnesota, 1980 Folwell Avenue, MN, 55108, USA
| | - Edouard Jurkevitch
- Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7612001, Israel
| | - Boaz Yuval
- Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7612001, Israel
| |
Collapse
|
9
|
Campos-Cerda F, Bohannan BJM. The Nidobiome: A Framework for Understanding Microbiome Assembly in Neonates. Trends Ecol Evol 2020; 35:573-582. [PMID: 32360079 DOI: 10.1016/j.tree.2020.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/08/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023]
Abstract
The importance of microbial associations to animals' development, physiology, and fitness is widely recognized. In most animals, these microbial associations must be developed anew with every generation, making microbiome assembly a critical ecological and evolutionary process. To fully understand neonate microbial colonization, we need to study the interacting effects of neonate, parents, nest, and external environment. We propose an integrative approach based on the concept of the 'nidobiome', a new unit of microbiome-host interactions, which brings together these key elements. We discuss the contribution of each element on microbial colonization at different stages of host development, and we provide a framework based on key developmental events to compare microbiome assembly across animal species.
Collapse
Affiliation(s)
- Felipe Campos-Cerda
- Institute of Ecology and Evolution, Biology Department, University of Oregon, Eugene, OR 97405, USA.
| | - Brendan J M Bohannan
- Institute of Ecology and Evolution, Biology Department, University of Oregon, Eugene, OR 97405, USA
| |
Collapse
|
10
|
Whittaker DJ, Kuzel M, Burrell MJ, Soini HA, Novotny MV, DuVal EH. Chemical profiles reflect heterozygosity and seasonality in a tropical lekking passerine bird. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Rodríguez-Ruano SM, Martín-Vivaldi M, Peralta-Sánchez JM, García-Martín AB, Martínez-García Á, Soler JJ, Valdivia E, Martínez-Bueno M. Seasonal and Sexual Differences in the Microbiota of the Hoopoe Uropygial Secretion. Genes (Basel) 2018; 9:E407. [PMID: 30103505 PMCID: PMC6115775 DOI: 10.3390/genes9080407] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/23/2018] [Accepted: 08/03/2018] [Indexed: 02/07/2023] Open
Abstract
The uropygial gland of hoopoe nestlings and nesting females hosts bacterial symbionts that cause changes in the characteristics of its secretion, including an increase of its antimicrobial activity. These changes occur only in nesting individuals during the breeding season, possibly associated with the high infection risk experienced during the stay in the hole-nests. However, the knowledge on hoopoes uropygial gland microbial community dynamics is quite limited and based so far on culture-dependent and molecular fingerprinting studies. In this work, we sampled wild and captive hoopoes of different sex, age, and reproductive status, and studied their microbiota using quantitative polymerase chain reaction (qPCR), fluorescence in situ hybridization (FISH) and pyrosequencing. Surprisingly, we found a complex bacterial community in all individuals (including non-nesting ones) during the breeding season. Nevertheless, dark secretions from nesting hoopoes harbored significantly higher bacterial density than white secretions from breeding males and both sexes in winter. We hypothesize that bacterial proliferation may be host-regulated in phases of high infection risk (i.e., nesting). We also highlight the importance of specific antimicrobial-producing bacteria present only in dark secretions that may be key in this defensive symbiosis. Finally, we discuss the possible role of environmental conditions in shaping the uropygial microbiota, based on differences found between wild and captive hoopoes.
Collapse
Affiliation(s)
- Sonia M Rodríguez-Ruano
- Departamento de Microbiología, Universidad de Granada, E-18071 Granada, Spain.
- Faculty of Science, University of South Bohemia, CZ-370 05 Ceske Budejovice, Czechia.
| | - Manuel Martín-Vivaldi
- Departamento de Zoología, Universidad de Granada, E-18071 Granada, Spain.
- Unidad Asociada Coevolución: Cucos, Hospedadores y Bacterias Simbiontes, Universidad de Granada, E-18071 Granada, Spain.
| | | | | | - Ángela Martínez-García
- Estación Experimental de Zonas Áridas (Consejo Superior de Investigaciones Científicas, CSIC), E-04120 Almeria, Spain.
| | - Juan J Soler
- Unidad Asociada Coevolución: Cucos, Hospedadores y Bacterias Simbiontes, Universidad de Granada, E-18071 Granada, Spain.
- Estación Experimental de Zonas Áridas (Consejo Superior de Investigaciones Científicas, CSIC), E-04120 Almeria, Spain.
| | - Eva Valdivia
- Departamento de Microbiología, Universidad de Granada, E-18071 Granada, Spain.
- Unidad Asociada Coevolución: Cucos, Hospedadores y Bacterias Simbiontes, Universidad de Granada, E-18071 Granada, Spain.
- Instituto de Biotecnología, Universidad de Granada, E-18071 Granada, Spain.
| | - Manuel Martínez-Bueno
- Departamento de Microbiología, Universidad de Granada, E-18071 Granada, Spain.
- Unidad Asociada Coevolución: Cucos, Hospedadores y Bacterias Simbiontes, Universidad de Granada, E-18071 Granada, Spain.
- Instituto de Biotecnología, Universidad de Granada, E-18071 Granada, Spain.
| |
Collapse
|
12
|
Maraci Ö, Engel K, Caspers BA. Olfactory Communication via Microbiota: What Is Known in Birds? Genes (Basel) 2018; 9:E387. [PMID: 30065222 PMCID: PMC6116157 DOI: 10.3390/genes9080387] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/27/2018] [Accepted: 07/27/2018] [Indexed: 12/11/2022] Open
Abstract
Animal bodies harbour a complex and diverse community of microorganisms and accumulating evidence has revealed that microbes can influence the hosts' behaviour, for example by altering body odours. Microbial communities produce odorant molecules as metabolic by-products and thereby modulate the biochemical signalling profiles of their animal hosts. As the diversity and the relative abundance of microbial species are influenced by several factors including host-specific factors, environmental factors and social interactions, there are substantial individual variations in the composition of microbial communities. In turn, the variations in microbial communities would consequently affect social and communicative behaviour by influencing recognition cues of the hosts. Therefore, microbiota studies have a great potential to expand our understanding of recognition of conspecifics, group members and kin. In this review, we aim to summarize existing knowledge of the factors influencing the microbial communities and the effect of microbiota on olfactory cue production and social and communicative behaviour. We concentrate on avian taxa, yet we also include recent research performed on non-avian species when necessary.
Collapse
Affiliation(s)
- Öncü Maraci
- Research Group Chemical Signalling, Department of Animal Behaviour, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany.
| | - Kathrin Engel
- Research Group Chemical Signalling, Department of Animal Behaviour, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany.
| | - Barbara A Caspers
- Research Group Chemical Signalling, Department of Animal Behaviour, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany.
| |
Collapse
|
13
|
Martín-Vivaldi M, Soler JJ, Martínez-García Á, Arco L, Juárez-García-Pelayo N, Ruiz-Rodríguez M, Martínez-Bueno M. Acquisition of Uropygial Gland Microbiome by Hoopoe Nestlings. MICROBIAL ECOLOGY 2018; 76:285-297. [PMID: 29250734 DOI: 10.1007/s00248-017-1125-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 12/06/2017] [Indexed: 06/07/2023]
Abstract
Mutualistic symbioses between animals and bacteria depend on acquisition of appropriate symbionts while avoiding exploitation by non-beneficial microbes. The mode of acquisition of symbionts would determine, not only the probability of encountering but also evolutionary outcomes of mutualistic counterparts. The microbiome inhabiting the uropygial gland of the European hoopoe (Upupa epops) includes a variety of bacterial strains, some of them providing antimicrobial benefits. Here, the mode of acquisition and stability of this microbiome is analyzed by means of Automated rRNA Intergenic Spacer Analysis and two different experiments. The first experiment impeded mothers' access to their glands, thus avoiding direct transmission of microorganisms from female to offspring secretions. The second experiment explored the stability of the microbiomes by inoculating glands with secretions from alien nests. The first experiment provoked a reduction in similarity of microbiomes of mother and nestlings. Interestingly, some bacterial strains were more often detected when females had not access to their glands, suggesting antagonistic effects among bacteria from different sources. The second experiment caused an increase in richness of the microbiome of receivers in terms of prevalence of Operational Taxonomic Units (OTUs) that reduced differences in microbiomes of donors and receivers. That occurred because OTUs that were present in donors but not in receivers incorporated to the microbiome of the latter, which provoked that cross-inoculated nestlings got similar final microbiomes that included the most prevalent OTUs. The results are therefore consistent with a central role of vertical transmission in bacterial acquisition by nestling hoopoes and support the idea that the typical composition of the hoopoe gland microbiome is reached by the incorporation of some bacteria during the nestling period. This scenario suggests the existence of a coevolved core microbiome composed by a mix of specialized vertically transmitted strains and facultative symbionts able to coexist with them. The implications of this mixed mode of transmission for the evolution of the mutualism are discussed.
Collapse
Affiliation(s)
- Manuel Martín-Vivaldi
- Departamento de Zoología, Universidad de Granada, 18071, Granada, Spain.
- Estación Experimental de Zonas Áridas (CSIC), 04120, Almería, Spain.
| | - Juan José Soler
- Estación Experimental de Zonas Áridas (CSIC), 04120, Almería, Spain
| | | | - Laura Arco
- Departamento de Zoología, Universidad de Granada, 18071, Granada, Spain
| | | | | | | |
Collapse
|