1
|
Chen P, Yuan L, Zhou Z, Xu G, Chen W, Cao Y, Li C, Fu Q, Fan W, Hu S. Moso bamboo alleviates Uranium/Cadmium stress through altering the rhizosphere micro-environment and regulating roots carbon and nitrogen metabolism. ENVIRONMENTAL RESEARCH 2025; 276:121452. [PMID: 40120735 DOI: 10.1016/j.envres.2025.121452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
Uranium/cadmium (U/Cd) pollution poses a significant global environmental challenge, and phytoremediation offers a sustainable solution for heavy metal contamination. However, the mechanisms by which plants survive U/Cd stress remain unclear. Here, we conducted soil culture experiments of moso bamboo seedlings under U/Cd stress (U, Cd and U + Cd) to examine the effects of it on plant growth, mineral metabolism, and rhizosphere micro-environment. Our findings reveal that U/Cd stress inhibits seedling growth, enhances reactive oxygen species damage, and bolsters the antioxidant system. Additionally, Partial Least Squares Path Modeling (PLS-PM) was employed to uncover potential tolerance mechanisms in moso bamboo under U/Cd stress. U/Cd is mainly distributed in the root cell walls and also exists predominantly in the residual state within the roots. Correspondingly, U and Cd significantly disrupt mineral metabolism in plant. Metabolomic analyses indicate that U/Cd markedly suppress amino acid metabolism pathways, while they stimulate carbon metabolism to mitigate toxicity. Furthermore, U/Cd stress disrupts the rhizosphere microbial community structure, and the competitive interaction of nitrogen functions exists between rhizosphere microorganism and bamboo roots. PLS-PM reveal the U/Cd stress impacts the interaction of the soil-rhizosphere-plant system. Together, these findings offer new insights into the response mechanism of bamboo plants to heavy metal stress, and provide a theoretical foundation for screening heavy metal tolerant plants and managing mining areas.
Collapse
Affiliation(s)
- Peng Chen
- College of Life Science and Agri-forestry, Southwest University of Science and Technology, Mianyang, 621000, China; Sichuan Provincial Forestry and grass land Key Laboratory for Conservation and Sustainable utilization of bamboo genetic resources in Southwest of China, Mianyang, 621000, China
| | - Lili Yuan
- College of Life Science and Agri-forestry, Southwest University of Science and Technology, Mianyang, 621000, China; Sichuan Provincial Forestry and grass land Key Laboratory for Conservation and Sustainable utilization of bamboo genetic resources in Southwest of China, Mianyang, 621000, China
| | - Zijun Zhou
- College of Life Science and Agri-forestry, Southwest University of Science and Technology, Mianyang, 621000, China; Sichuan Provincial Forestry and grass land Key Laboratory for Conservation and Sustainable utilization of bamboo genetic resources in Southwest of China, Mianyang, 621000, China
| | - Gang Xu
- College of Life Science and Agri-forestry, Southwest University of Science and Technology, Mianyang, 621000, China; Sichuan Provincial Forestry and grass land Key Laboratory for Conservation and Sustainable utilization of bamboo genetic resources in Southwest of China, Mianyang, 621000, China
| | - Wenbo Chen
- College of Life Science and Agri-forestry, Southwest University of Science and Technology, Mianyang, 621000, China; Sichuan Provincial Forestry and grass land Key Laboratory for Conservation and Sustainable utilization of bamboo genetic resources in Southwest of China, Mianyang, 621000, China
| | - Yin Cao
- College of Life Science and Agri-forestry, Southwest University of Science and Technology, Mianyang, 621000, China; Sichuan Provincial Forestry and grass land Key Laboratory for Conservation and Sustainable utilization of bamboo genetic resources in Southwest of China, Mianyang, 621000, China
| | - Chen Li
- School of Chemistry and Environmental Science, Shaanxi University of Technology, Hanzhong, 723000, China
| | - Qinchao Fu
- School of Life Science, Leshan Normal University, Leshan, 614000, China
| | - Wei Fan
- College of Life Science and Agri-forestry, Southwest University of Science and Technology, Mianyang, 621000, China; Sichuan Provincial Forestry and grass land Key Laboratory for Conservation and Sustainable utilization of bamboo genetic resources in Southwest of China, Mianyang, 621000, China.
| | - Shanglian Hu
- College of Life Science and Agri-forestry, Southwest University of Science and Technology, Mianyang, 621000, China; Sichuan Provincial Forestry and grass land Key Laboratory for Conservation and Sustainable utilization of bamboo genetic resources in Southwest of China, Mianyang, 621000, China.
| |
Collapse
|
2
|
Zhao H, Yue W, Cao C, Zhang BT, Zan Z, Lian G, Zheng F, Xu G, Dou J. Microbial production of methyl-uranium via the Wood-Ljungdahl pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176844. [PMID: 39396778 DOI: 10.1016/j.scitotenv.2024.176844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/22/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
The misuse of uranium is a major threat to human health and the environment. In microbial ecosystems, microbes deploy various strategies to cope with uranium-induced stress. However, the exact ecological strategies and mechanisms underlying uranium tolerance in microbes remain unclear. Therefore, this study aimed to investigate the survival strategies and tolerance mechanisms of microbial communities in uranium-contaminated soil and groundwater. Microbial co-occurrence networks and molecular biology techniques were used to analyze the properties of microbes in groundwater and soil samples from various depths of uranium-contaminated areas in Northwest China. Uranium pollution altered microbial ecological strategies. Uranium stress facilitated the formation of microbial community structures, leading to symbiosis. Furthermore, microbes primarily resisted uranium hazards by producing polysaccharides and phosphate groups that chelate uranium, releasing phosphate substances that precipitate uranium, and reducing U(VI) through sulfate- and iron-reducing processes. The relative abundance of metal-methylation genes in soil microorganisms positively correlated with uranium concentration, indicating that soil microorganisms can produce methyl uranium via the Wood-Ljungdahl pathway. Furthermore, soil and groundwater microorganisms demonstrated different responses to uranium stress. This study provides new insights into microbial responses to uranium stress and novel approaches for the bioremediation of uranium-contaminated sites.
Collapse
Affiliation(s)
- Hangzheng Zhao
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Weifeng Yue
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China.
| | - Changming Cao
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Bo-Tao Zhang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Ziyi Zan
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Guoxi Lian
- School of Environment, Beijing Normal University, Beijing 100875, China; Nuclear and Radiation Safety Center, Ministry of Ecology and Environment, Beijing 100082, China
| | - Fuxin Zheng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Guangming Xu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Junfeng Dou
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| |
Collapse
|
3
|
MacGregor H, Fukai I, Ash K, Arkin AP, Hazen TC. Potential applications of microbial genomics in nuclear non-proliferation. Front Microbiol 2024; 15:1410820. [PMID: 39360321 PMCID: PMC11445143 DOI: 10.3389/fmicb.2024.1410820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024] Open
Abstract
As nuclear technology evolves in response to increased demand for diversification and decarbonization of the energy sector, new and innovative approaches are needed to effectively identify and deter the proliferation of nuclear arms, while ensuring safe development of global nuclear energy resources. Preventing the use of nuclear material and technology for unsanctioned development of nuclear weapons has been a long-standing challenge for the International Atomic Energy Agency and signatories of the Treaty on the Non-Proliferation of Nuclear Weapons. Environmental swipe sampling has proven to be an effective technique for characterizing clandestine proliferation activities within and around known locations of nuclear facilities and sites. However, limited tools and techniques exist for detecting nuclear proliferation in unknown locations beyond the boundaries of declared nuclear fuel cycle facilities, representing a critical gap in non-proliferation safeguards. Microbiomes, defined as "characteristic communities of microorganisms" found in specific habitats with distinct physical and chemical properties, can provide valuable information about the conditions and activities occurring in the surrounding environment. Microorganisms are known to inhabit radionuclide-contaminated sites, spent nuclear fuel storage pools, and cooling systems of water-cooled nuclear reactors, where they can cause radionuclide migration and corrosion of critical structures. Microbial transformation of radionuclides is a well-established process that has been documented in numerous field and laboratory studies. These studies helped to identify key bacterial taxa and microbially-mediated processes that directly and indirectly control the transformation, mobility, and fate of radionuclides in the environment. Expanding on this work, other studies have used microbial genomics integrated with machine learning models to successfully monitor and predict the occurrence of heavy metals, radionuclides, and other process wastes in the environment, indicating the potential role of nuclear activities in shaping microbial community structure and function. Results of this previous body of work suggest fundamental geochemical-microbial interactions occurring at nuclear fuel cycle facilities could give rise to microbiomes that are characteristic of nuclear activities. These microbiomes could provide valuable information for monitoring nuclear fuel cycle facilities, planning environmental sampling campaigns, and developing biosensor technology for the detection of undisclosed fuel cycle activities and proliferation concerns.
Collapse
Affiliation(s)
| | - Isis Fukai
- Bredesen Center, University of Tennessee, Knoxville, TN, United States
| | - Kurt Ash
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, United States
| | - Adam Paul Arkin
- University of California, Berkeley, Berkeley, CA, United States
| | - Terry C. Hazen
- Bredesen Center, University of Tennessee, Knoxville, TN, United States
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, United States
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
4
|
Freches A, Fradinho JC. The biotechnological potential of the Chloroflexota phylum. Appl Environ Microbiol 2024; 90:e0175623. [PMID: 38709098 PMCID: PMC11218635 DOI: 10.1128/aem.01756-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024] Open
Abstract
In the next decades, the increasing material and energetic demand to support population growth and higher standards of living will amplify the current pressures on ecosystems and will call for greater investments in infrastructures and modern technologies. A valid approach to overcome such future challenges is the employment of sustainable bio-based technologies that explore the metabolic richness of microorganisms. Collectively, the metabolic capabilities of Chloroflexota, spanning aerobic and anaerobic conditions, thermophilic adaptability, anoxygenic photosynthesis, and utilization of toxic compounds as electron acceptors, underscore the phylum's resilience and ecological significance. These diverse metabolic strategies, driven by the interplay between temperature, oxygen availability, and energy metabolism, exemplify the complex adaptations that enabled Chloroflexota to colonize a wide range of ecological niches. In demonstrating the metabolic richness of the Chloroflexota phylum, specific members exemplify the diverse capabilities of these microorganisms: Chloroflexus aurantiacus showcases adaptability through its thermophilic and phototrophic growth, whereas members of the Anaerolineae class are known for their role in the degradation of complex organic compounds, contributing significantly to the carbon cycle in anaerobic environments, highlighting the phylum's potential for biotechnological exploitation in varying environmental conditions. In this context, the metabolic diversity of Chloroflexota must be considered a promising asset for a large range of applications. Currently, this bacterial phylum is organized into eight classes possessing different metabolic strategies to survive and thrive in a wide variety of extreme environments. This review correlates the ecological role of Chloroflexota in such environments with the potential application of their metabolisms in biotechnological approaches.
Collapse
Affiliation(s)
- André Freches
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
- Department of Chemistry, UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Joana Costa Fradinho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
- Department of Chemistry, UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| |
Collapse
|
5
|
Mallet C, Rossi F, Hassan-Loni Y, Holub G, Thi-Hong-Hanh L, Diez O, Michel H, Sergeant C, Kolovi S, Chardon P, Montavon G. Assessing the chronic effect of the bioavailable fractions of radionuclides and heavy metals on stream microbial communities: A case study at the Rophin mining site. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170692. [PMID: 38325491 DOI: 10.1016/j.scitotenv.2024.170692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/08/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
This study aimed to assess the potential impact of long-term chronic exposure (69 years) to naturally-occurring radionuclides (RNs) and heavy metals on microbial communities in sediment from a stream flowing through a watershed impacted by an ancient mining site (Rophin, France). Four sediment samples were collected along a radioactivity gradient (for 238U368 to 1710 Bq.Kg-1) characterized for the presence of the bioavailable fractions of radionuclides (226Ra, 210Po), and trace metal elements (Th, U, As, Pb, Cu, Zn, Fe). Results revealed that the available fraction of contaminants was significant although it varied considerably from one element to another (0 % for As and Th, 5-59 % for U). Nonetheless, microbial communities appeared significantly affected by such chronic exposure to (radio)toxicities. Several microbial functions carried by bacteria and related with carbon and nitrogen cycling have been impaired. The high values of fungal diversity and richness observed with increasing downstream contamination (H' = 4.4 and Chao1 = 863) suggest that the community had likely shifted toward a more adapted/tolerant one as evidenced, for example, by the presence of the species Thelephora sp. and Tomentella sp. The bacterial composition was also affected by the contaminants with enrichment in Myxococcales, Acidovorax or Nostocales at the most contaminated points. Changes in microbial composition and functional structure were directly related to radionuclide and heavy metal contaminations, but also to organic matter which also significantly affected, directly or indirectly, bacterial and fungal compositions. Although it was not possible to distinguish the specific effects of RNs from heavy metals on microbial communities, it is essential to continue studies considering the available fraction of elements, which is the only one able to interact with microorganisms.
Collapse
Affiliation(s)
- Clarisse Mallet
- Université Clermont-Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63170 Aubière, France; LTSER "Zone Atelier Territoires Uranifères", F-63170, France.
| | - Florent Rossi
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, Canada; Centre de recherche de l'institut de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Yahaya Hassan-Loni
- SUBATECH, IMT Atlantique, Nantes Université, CNRS, F-44000 Nantes, France
| | - Guillaume Holub
- Univ. Bordeaux, CNRS, LP2I Bordeaux, UMR5797, F- 33170 Gradignan, France; LTSER "Zone Atelier Territoires Uranifères", F-63170, France
| | - Le Thi-Hong-Hanh
- ICN UMR 7272, Université Côte d'Azur, 28 avenue Valrose, 06108 Nice, France; LTSER "Zone Atelier Territoires Uranifères", F-63170, France
| | - Olivier Diez
- Institut de Radioprotection et Sureté Nucléaire (IRSN), PSE-ENV/SPDR/LT2S, 31 Avenue de la division Leclerc, F-922602 Fontenay-aux-Roses, France; LTSER "Zone Atelier Territoires Uranifères", F-63170, France
| | - Hervé Michel
- ICN UMR 7272, Université Côte d'Azur, 28 avenue Valrose, 06108 Nice, France; LTSER "Zone Atelier Territoires Uranifères", F-63170, France
| | - Claire Sergeant
- Univ. Bordeaux, CNRS, LP2I Bordeaux, UMR5797, F- 33170 Gradignan, France; LTSER "Zone Atelier Territoires Uranifères", F-63170, France
| | - Sofia Kolovi
- Université Clermont-Auvergne, CNRS, LPC Clermont, F-63170 Aubière, France; LTSER "Zone Atelier Territoires Uranifères", F-63170, France
| | - Patrick Chardon
- Université Clermont-Auvergne, CNRS, LPC Clermont, F-63170 Aubière, France; LTSER "Zone Atelier Territoires Uranifères", F-63170, France
| | - Gilles Montavon
- SUBATECH, IMT Atlantique, Nantes Université, CNRS, F-44000 Nantes, France; LTSER "Zone Atelier Territoires Uranifères", F-63170, France.
| |
Collapse
|
6
|
Liu S, Liu J, She J, Xie Z, Zhou L, Dai Q, Zhang X, Wan Y, Yin M, Dong X, Zhao M, Chen D, Wang J. Microbial features with uranium pollution in artificial reservoir sediments at different depths under drought stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170694. [PMID: 38325477 DOI: 10.1016/j.scitotenv.2024.170694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 12/22/2023] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
The uranium (U) containing leachate from uranium tailings dam into the natural settings, may greatly affect the downstream environment. To reveal such relationship between uranium contamination and microbial communities in the most affected downstream environment under drought stress, a 180 cm downstream artificial reservoir depth sediment profile was collected, and the microbial communities and related genes were analyzed by 16S rDNA and metagenomics. Besides, the sequential extraction scheme was employed to shed light on the distinct role of U geochemical speciations in shaping microbial community structures. The results showed that U content ranged from 28.1 to 70.1 mg/kg, with an average content of 44.9 mg/kg, significantly exceeding the value of background sediments. Further, U in all the studied sediments was related to remarkably high portions of mobile fractions, and U was likely deposited layer by layer depending on the discharge/leachate inputs from uranium-involving anthoropogenic facilities/activities upstream. The nexus between U speciation, physico-chemical indicators and microbial composition showed that Fe, S, and N metabolism played a vital role in microbial adaptation to U-enriched environment; meanwhile, the fraction of Ureducible and the Fe and S contents had the most significant effects on microbial community composition in the sediments under drought stress.
Collapse
Affiliation(s)
- Siyu Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Juan Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Jingye She
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Zhenyu Xie
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Lei Zhou
- School of Environment and Resource, Key Laboratory of Solid Waste Treatment and Resource Recycling, Ministry of Education, Southwest University of Science and Technology, Mianyang, China
| | - Qunwei Dai
- School of Environment and Resource, Key Laboratory of Solid Waste Treatment and Resource Recycling, Ministry of Education, Southwest University of Science and Technology, Mianyang, China
| | - Xing Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Yuebing Wan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Meiling Yin
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Xinjiao Dong
- School of Life & Environmental Science, Wenzhou University, Wenzhou, China
| | - Min Zhao
- School of Life & Environmental Science, Wenzhou University, Wenzhou, China
| | - Diyun Chen
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou, China
| | - Jin Wang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou, China.
| |
Collapse
|
7
|
Yuan W, She J, Liu J, Zhang Q, Wei X, Huang L, Zeng X, Wang J. Insight into microbial functional genes' role in geochemical distribution and cycling of uranium: The evidence from covering soils of uranium tailings dam. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132630. [PMID: 37774604 DOI: 10.1016/j.jhazmat.2023.132630] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/26/2023] [Accepted: 09/23/2023] [Indexed: 10/01/2023]
Abstract
There exists a research gap on microbial functional genes' role in U geochemical behavior and cycling in U contaminated soils, which has been poorly understood. Herein, 16S rRNA sequencing gene amplifiers and metagenome analysis were applied to probe microbial community structure and functional metabolism of different depth layers of covering soils in U tailings dam. Results showed that the soils were highly enriched with U (47.5-123.3 mg/kg) and a remarkable portion of 35-70% was associated with the labile fractions. It was found that U geochemical distribution was notably interacted with functional genes from N, S, Fe and P related microbes. Importantly, diminution in gene NirK and amplification in nrfH involving in nitrate reduction could induce microbial tolerance to U. Moreover, gene Sat in microbial sulfate reduction, NosZ and NorB in nitrate reduction, phnD, upgA and upgC in P transportation and phnI, phnK, phoA and opd in microbial organic P mineralization, were all closely linked to U geochemical distribution, species and cycling. All these findings disclose the functional genes that may control the transfer and transformation behavior of U in soil environment, which provides important and novel indications for the bio-remediation strategies towards U polluted sites.
Collapse
Affiliation(s)
- Wenhuan Yuan
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Jingye She
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Juan Liu
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Qiong Zhang
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Xudong Wei
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Liting Huang
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Xuan Zeng
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Jin Wang
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China.
| |
Collapse
|
8
|
Videvall E, Burraco P, Orizaola G. Impact of ionizing radiation on the environmental microbiomes of Chornobyl wetlands. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121774. [PMID: 37178954 DOI: 10.1016/j.envpol.2023.121774] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Radioactive contamination has the potential to cause damage to DNA and other biomolecules. Anthropogenic sources of radioactive contamination include accidents in nuclear power plants, such as the one in Chornobyl in 1986 which caused long-term radioactive pollution. Studies on animals within radioactive zones have provided us with a greater understanding of how wildlife can persevere despite chronic radiation exposure. However, we still know very little about the effects of radiation on the microbial communities in the environment. We examined the impact of ionizing radiation and other environmental factors on the diversity and composition of environmental microbiomes in the wetlands of Chornobyl. We combined detailed field sampling along a gradient of radiation together with 16 S rRNA high-throughput metabarcoding. While radiation did not affect the alpha diversity of the microbiomes in sediment, soil, or water, it had a significant effect on the beta diversity in all environment types, indicating that the microbial composition was affected by ionizing radiation. Specifically, we detected several microbial taxa that were more abundant in areas with high radiation levels within the Chornobyl Exclusion Zone, including bacteria and archaea known to be radioresistant. Our results reveal the existence of rich and diverse microbiomes in Chornobyl wetlands, with multiple taxonomic groups that are able to thrive despite the radioactive contamination. These results, together with additional field and laboratory-based approaches examining how microbes cope with ionizing radiation will help to forecast the functionality and re-naturalization dynamics of radiocontaminated environments.
Collapse
Affiliation(s)
- Elin Videvall
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI, 02912, USA; Institute at Brown for Environment and Society, Brown University, Providence, RI, 02912, USA; Center for Conservation Genomics, Smithsonian Conservation Biology Institute, 20013, Washington, DC, USA; Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 75236, Uppsala, Sweden
| | - Pablo Burraco
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 75236, Uppsala, Sweden; Doñana Biological Station, Spanish Research Council (EBD-CSIC), 41092, Sevilla, Spain
| | - Germán Orizaola
- IMIB-Biodiversity Research Institute (Univ. Oviedo-CSIC-Princip. Asturias), 33600, Mieres, Asturias, Spain; Zoology Unit, Department of Biology of Organisms and Systems, University of Oviedo, 33071, Oviedo, Asturias, Spain.
| |
Collapse
|
9
|
Huang R, Mao P, Xiong L, Qin G, Zhou J, Zhang J, Li Z, Wu J. Negatively charged nano-hydroxyapatite can be used as a phosphorus fertilizer to increase the efficacy of wollastonite for soil cadmium immobilization. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130291. [PMID: 36345064 DOI: 10.1016/j.jhazmat.2022.130291] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Improper application of phosphorus (P) fertilizer during soil cadmium (Cd) immobilization reduces the efficiency of fertilizer and Cd remediation. In this study, we synthesized three types of nano-hydroxyapatite (NHAP) with different surface charges as slow-release P fertilizers during Cd immobilization. We also evaluated the effects of wollastonite application with or without NHAP addition, in comparison with triple superphosphate (TSP) or bulk hydroxyapatite, on Cd accumulation in Amaranthus tricolor L. The results showed that adding wollastonite significantly reduced P availability (23.5%) in the soil, but it did not inhibit plant P uptake. In wollastonite-amended soil, the application of negatively/positively charged NHAP significantly increased plant biomass by 643-865% and decreased Cd uptake by 74.8-75.1% compared to the unamended soil as well as showed greater efficiency than those with TSP. This was ascribed to the increased soil pH (from 3.94 to 6.52-6.63) and increased abundance of organic acids (including citric acid, malic acid, lactic acid, and acetic acid) secreted by plants. In addition, the P-preferring bacterial class Bacteroidia was specific to soils amended with both wollastonite and NHAP-. These results suggest that NHAP- may be an appropriate P fertilizer for soil Cd immobilization using wollastonite.
Collapse
Affiliation(s)
- Rong Huang
- Xiaoliang Research Station for Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410221, China
| | - Peng Mao
- Xiaoliang Research Station for Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China
| | - Lei Xiong
- Smart Water Affairs Research Center, Shenzhen University, Shenzhen 518000, China
| | - Guoming Qin
- Xiaoliang Research Station for Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China
| | - Jinge Zhou
- Xiaoliang Research Station for Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China
| | - Jingfan Zhang
- Xiaoliang Research Station for Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China
| | - Zhian Li
- Xiaoliang Research Station for Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China
| | - Jingtao Wu
- Xiaoliang Research Station for Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China.
| |
Collapse
|
10
|
Gallois N, Alpha-Bazin B, Bremond N, Ortet P, Barakat M, Piette L, Mohamad Ali A, Lemaire D, Legrand P, Theodorakopoulos N, Floriani M, Février L, Den Auwer C, Arnoux P, Berthomieu C, Armengaud J, Chapon V. Discovery and characterization of UipA, a uranium- and iron-binding PepSY protein involved in uranium tolerance by soil bacteria. THE ISME JOURNAL 2022; 16:705-716. [PMID: 34556817 PMCID: PMC8857325 DOI: 10.1038/s41396-021-01113-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023]
Abstract
Uranium is a naturally occurring radionuclide. Its redistribution, primarily due to human activities, can have adverse effects on human and non-human biota, which poses environmental concerns. The molecular mechanisms of uranium tolerance and the cellular response induced by uranium exposure in bacteria are not yet fully understood. Here, we carried out a comparative analysis of four actinobacterial strains isolated from metal and radionuclide-rich soils that display contrasted uranium tolerance phenotypes. Comparative proteogenomics showed that uranyl exposure affects 39-47% of the total proteins, with an impact on phosphate and iron metabolisms and membrane proteins. This approach highlighted a protein of unknown function, named UipA, that is specific to the uranium-tolerant strains and that had the highest positive fold-change upon uranium exposure. UipA is a single-pass transmembrane protein and its large C-terminal soluble domain displayed a specific, nanomolar binding affinity for UO22+ and Fe3+. ATR-FTIR and XAS-spectroscopy showed that mono and bidentate carboxylate groups of the protein coordinated both metals. The crystal structure of UipA, solved in its apo state and bound to uranium, revealed a tandem of PepSY domains in a swapped dimer, with a negatively charged face where uranium is bound through a set of conserved residues. This work reveals the importance of UipA and its PepSY domains in metal binding and radionuclide tolerance.
Collapse
Affiliation(s)
- Nicolas Gallois
- grid.5399.60000 0001 2176 4817Aix Marseille Université, CEA, CNRS, BIAM, 13108 Saint Paul-Lez-Durance, France
| | - Béatrice Alpha-Bazin
- grid.5583.b0000 0001 2299 8025Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, 30200 Bagnols-sur-Cèze, France
| | - Nicolas Bremond
- grid.5399.60000 0001 2176 4817Aix Marseille Université, CEA, CNRS, BIAM, 13108 Saint Paul-Lez-Durance, France
| | - Philippe Ortet
- grid.5399.60000 0001 2176 4817Aix Marseille Université, CEA, CNRS, BIAM, 13108 Saint Paul-Lez-Durance, France
| | - Mohamed Barakat
- grid.5399.60000 0001 2176 4817Aix Marseille Université, CEA, CNRS, BIAM, 13108 Saint Paul-Lez-Durance, France
| | - Laurie Piette
- grid.5399.60000 0001 2176 4817Aix Marseille Université, CEA, CNRS, BIAM, 13108 Saint Paul-Lez-Durance, France
| | - Abbas Mohamad Ali
- grid.5399.60000 0001 2176 4817Aix Marseille Université, CEA, CNRS, BIAM, 13108 Saint Paul-Lez-Durance, France
| | - David Lemaire
- grid.5399.60000 0001 2176 4817Aix Marseille Université, CEA, CNRS, BIAM, 13108 Saint Paul-Lez-Durance, France
| | - Pierre Legrand
- grid.426328.9Synchrotron SOLEIL. L’Orme des Merisiers Saint-Aubin. BP 48, 91192 Gif-sur-Yvette, France
| | - Nicolas Theodorakopoulos
- grid.5399.60000 0001 2176 4817Aix Marseille Université, CEA, CNRS, BIAM, 13108 Saint Paul-Lez-Durance, France ,grid.418735.c0000 0001 1414 6236IRSN, PSE-ENV/SRTE/LR2T, B.P. 3, 13115 Saint Paul-lez-Durance, Cedex France
| | - Magali Floriani
- grid.418735.c0000 0001 1414 6236IRSN, PSE-ENV/SRTE/LECO, B.P. 3, 13115 Saint Paul-lez-Durance, Cedex France
| | - Laureline Février
- grid.418735.c0000 0001 1414 6236IRSN, PSE-ENV/SRTE/LR2T, B.P. 3, 13115 Saint Paul-lez-Durance, Cedex France
| | - Christophe Den Auwer
- grid.462124.70000 0004 0384 8488Université Côte d’Azur, CNRS, ICN, 06108 Nice, France
| | - Pascal Arnoux
- grid.5399.60000 0001 2176 4817Aix Marseille Université, CEA, CNRS, BIAM, 13108 Saint Paul-Lez-Durance, France
| | - Catherine Berthomieu
- grid.5399.60000 0001 2176 4817Aix Marseille Université, CEA, CNRS, BIAM, 13108 Saint Paul-Lez-Durance, France
| | - Jean Armengaud
- grid.5583.b0000 0001 2299 8025Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, 30200 Bagnols-sur-Cèze, France
| | - Virginie Chapon
- Aix Marseille Université, CEA, CNRS, BIAM, 13108, Saint Paul-Lez-Durance, France.
| |
Collapse
|
11
|
Draft Genome Sequence of Desulfovibrio sp. Strain CSMB_222, Isolated from Coal Seam Formation Water. Microbiol Resour Announc 2021; 10:e0056421. [PMID: 34854698 PMCID: PMC8638610 DOI: 10.1128/mra.00564-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Subsurface coal seams contain microbial consortia with various taxa, each with a different role in the degradation of coal organic matter. This study presents the sequenced and annotated genome of Desulfovibrio sp. strain CSMB_222, a bacterium isolated from eastern Australian coal seams.
Collapse
|
12
|
Kavehei A, Gore DB, Chariton AA, Hose GC. Impact assessment of ephemeral discharge of contamination downstream of two legacy base metal mines using environmental DNA. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126483. [PMID: 34216969 DOI: 10.1016/j.jhazmat.2021.126483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Mining and processing metalliferous ores can degrade the environment well beyond the footprint of the mine, particularly where on-site containment and post-mining remediation has been insufficient to prevent releases of solid and aqueous mine wastes. In this study, we investigated the potential of sediment and water chemistry coupled with environmental (e)DNA metabarcoding to evaluate discrete and cumulative ecological impacts of two legacy base metal (copper (Cu), zinc (Zn), lead (Pb)) mines (Peelwood and Cordillera) which discharge metals via ephemeral tributaries into perennial Peelwood Creek. Although the two mine streams exceeded Australian guidelines for sediment and freshwater quality for Cu, Zn and Pb, Peelwood Creek had relatively low sediment and water metal concentrations, suggesting a low potential for environmental toxicity. Although sediment and water chemistry defined the extent of biological impacts, metabarcoding showed that Peelwood and Cordillera mines had discrete impacts and Peelwood mine was the main source of contamination of Peelwood Creek. Metabarcoding showed that prokaryotes can be good indicators of metal contamination whereas eukaryotes did not reflect contamination impacts in Peelwood Creek. Metabarcoding results showed that benthic communities downstream of Cordillera mine were less impacted than those below Peelwood mine, suggesting that Peelwood mine should be considered for further remediation.
Collapse
Affiliation(s)
- Armin Kavehei
- Department of Earth and Environmental Sciences, Macquarie University, Sydney 2109, Australia.
| | - Damian B Gore
- Department of Earth and Environmental Sciences, Macquarie University, Sydney 2109, Australia
| | - Anthony A Chariton
- Department of Biological Sciencs, Macquarie University, Sydney 2109, Australia
| | - Grant C Hose
- Department of Biological Sciencs, Macquarie University, Sydney 2109, Australia
| |
Collapse
|
13
|
Kavehei A, Hose GC, Chariton AA, Gore DB. Application of environmental DNA for assessment of contamination downstream of a legacy base metal mine. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125794. [PMID: 33862483 DOI: 10.1016/j.jhazmat.2021.125794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/11/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Acid Rock Drainage (ARD) from legacy mines can negatively impact the biota in sediments and waters for tens of kilometers downstream. Here we used environmental (e)DNA metabarcoding to assess the impacts of metal contaminants on biota in sediment and water downstream of a legacy base metal sulfide mine in southeastern Australia, as exemplar of similar mines elsewhere. Concentrations of metals in water were below Australian water quality guideline values at 20 km downstream for copper (Cu), 40 km downstream for zinc (Zn) and 10 km downstream for lead (Pb). Sediment metal concentrations were below national guideline concentrations at 10 km downstream for Cu, 60 km downstream for Zn and 20 km downstream for Pb. In contrast, metabarcoding showed that biological communities from sediment samples at 10 km and 20 km downstream were similar to sites close to the mine and thus indicative of being impacted, despite metal concentrations being relatively low. As we illustrate, when combined with sediment and water chemistry, metabarcoding can provide more ecological robust perspective on the downstream effects of legacy mines, capturing the sensitivities of a diverse range of organisms.
Collapse
Affiliation(s)
- Armin Kavehei
- Department of Earth and Environmental Sciences, Macquarie University, Sydney 2109, Australia.
| | - Grant C Hose
- Department of Biological Sciences, Macquarie University, Sydney 2109, Australia
| | - Anthony A Chariton
- Department of Biological Sciences, Macquarie University, Sydney 2109, Australia
| | - Damian B Gore
- Department of Earth and Environmental Sciences, Macquarie University, Sydney 2109, Australia
| |
Collapse
|
14
|
Vick SHW, Greenfield P, Willows RD, Tetu SG, Midgley DJ, Paulsen IT. Subsurface Stappia: Success Through Defence, Specialisation and Putative Pressure-Dependent Carbon Fixation. MICROBIAL ECOLOGY 2020; 80:34-46. [PMID: 31828390 DOI: 10.1007/s00248-019-01471-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Diverse microbial communities living in subsurface coal seams are responsible for important geochemical processes including the movement of carbon between the geosphere, biosphere and atmosphere. Microbial conversion of the organic matter in coal to methane involves a complex assemblage of bacteria and archaea working in syntrophic relationships. Despite the importance and value of this microbial process, very few of the microbial taxa have defined metabolic or ecological roles in these environments. Additionally, the genomic features mediating life in this chemically reduced, energy poor, deep subsurface environment are not well characterised. Here we describe the isolation and genomic and catabolic characterisation of three alphaproteobacterial Stappia indica species from three coal basins across Australia. S. indica genomes from coal seams were compared with those from closely related S. indica isolated from diverse surface waters, revealing a coal seam-specific suite of genes associated with life in the subsurface. These genes are linked to processes including viral defence, secondary metabolite production, polyamine metabolism, polypeptide uptake membrane transporters and putative energy neutral pressure-dependent CO2 fixation. This indicates that subsurface Stappia have diverse metabolisms for biomass recycling and pressure-dependent CO2 fixation and require a suite of defensive and competitive strategies relative to their surface-dwelling relatives.
Collapse
Affiliation(s)
- Silas H W Vick
- Department of Molecular Sciences, Macquarie University, North Ryde, Sydney, Australia.
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australia.
| | - Paul Greenfield
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australia
| | - Robert D Willows
- Department of Molecular Sciences, Macquarie University, North Ryde, Sydney, Australia
| | - Sasha G Tetu
- Department of Molecular Sciences, Macquarie University, North Ryde, Sydney, Australia
| | - David J Midgley
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australia
| | - Ian T Paulsen
- Department of Molecular Sciences, Macquarie University, North Ryde, Sydney, Australia
| |
Collapse
|
15
|
Zeng T, Mo G, Hu Q, Wang G, Liao W, Xie S. Microbial characteristic and bacterial community assessment of sediment sludge upon uranium exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114176. [PMID: 32088436 DOI: 10.1016/j.envpol.2020.114176] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/29/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
The microbial characteristics and bacterial communities of sediment sludge upon different concentrations of exposure to uranium were investigated by high solution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and high-throughput sequencing. After exposure to initial uranium concentrations of 10-50 μM for 24 h in synthetic wastewater, the removal efficiencies of uranium reached 80.7%-96.5%. The spherical and short rod bacteria were dominant in the sludge exposed to uranium. HRTEM-EDS and XPS analyses indicated that reduction and adsorption were the main mechanisms for uranium removal. Short-term exposure to low concentrations of uranium resulted in a decrease in bacterial richness but an increase in diversity. A dramatic change in the composition and abundances of the bacterial community were present in the sediment sludge exposed to uranium. The highest removal efficiency was identified in the sediment sludge exposed to 30 μM uranium, and the dominant bacteria included Acinetobacter (44.9%), Klebsiella (20.0%), Proteiniclasticum (6.7%), Enterobacteriaceae (6.6%), Desulfovibrio (4.4%), Porphyromonadaceae (4.1%), Comamonas (2.4%) and Sedimentibacter (2.3%). By comparison to the inoculum sediment sludge, exposure to uranium caused a substantial difference in the majority of bacterial abundance.
Collapse
Affiliation(s)
- Taotao Zeng
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China.
| | - Guanhai Mo
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China
| | - Qing Hu
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China
| | - Guohua Wang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China
| | - Wei Liao
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China
| | - Shuibo Xie
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China; Key Discipline Laboratory for National Defence for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, China
| |
Collapse
|
16
|
Khare D, Kumar R, Acharya C. Genomic and functional insights into the adaptation and survival of Chryseobacterium sp. strain PMSZPI in uranium enriched environment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 191:110217. [PMID: 32001422 DOI: 10.1016/j.ecoenv.2020.110217] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/11/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Metal enriched areas represent important and dynamic microbiological ecosystems. In this study, the draft genome of a uranium (U) tolerant bacterium, Chryseobacterium sp. strain PMSZPI, isolated from the subsurface soil of Domiasiat uranium ore deposit in Northeast India, was analyzed. The strain revealed a genome size of 3.8 Mb comprising of 3346 predicted protein-coding genes. The analysis indicated high abundance of genes associated with metal resistance and efflux, transporters, phosphatases, antibiotic resistance, polysaccharide synthesis, motility, protein secretion systems, oxidoreductases and DNA repair. Comparative genomics with other closely related Chryseobacterium strains led to the identification of unique inventory of genes which were of adaptive significance in PMSZPI. Consistent with the genome analysis, PMSZPI showed superior tolerance to uranium and other heavy metals. The metal exposed cells exhibited transcriptional induction of metal translocating PIB ATPases suggestive of their involvement in metal resistance. Efficient U binding (~90% of 100 μM U) and U bioprecipitation (~93-94% of 1 mM U at pH 5, 7 and 9) could be attributed as uranium tolerance strategies in PMSZPI. The strain demonstrated resistance to a large number of antibiotics which was in agreement with in silico prediction. Reduced gliding motility in the presence of cadmium and uranium, enhanced biofilm formation on uranium exposure and tolerance to 1.5 kGy of 60Co gamma radiation were perceived as adaptive responses in PMSZPI. Overall, the positive correlation observed between uranium/metal tolerance abilities predicted using genome analysis and the functional characterization reinforced the multifaceted adaptation strategies employed by PMSZPI for its survival in the soil of uranium ore deposit comprising of high concentrations of uranium and other heavy metals.
Collapse
Affiliation(s)
- Devanshi Khare
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Rakshak Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | - Celin Acharya
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
17
|
O'Brien AL, Dafforn KA, Chariton AA, Johnston EL, Mayer-Pinto M. After decades of stressor research in urban estuarine ecosystems the focus is still on single stressors: A systematic literature review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 684:753-764. [PMID: 30803690 DOI: 10.1016/j.scitotenv.2019.02.131] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 05/23/2023]
Abstract
Natural systems are threatened by a variety of anthropogenic stressors and so understanding the interactive threats posed by multiple stressors is essential. In this study we focused on urban stressors that are ubiquitous to urban estuarine systems worldwide: elevated nutrients, toxic chemical contaminants, built infrastructure and non-indigenous species (NIS). We investigated structural (abundance, diversity and species richness) and functional endpoints (productivity, primary production (chlorophyll-a) and metabolism) commonly used to determine responses to these selected stressors. Through a systematic review of global literature, we found 579 studies of our selected stressors; 93% measured responses to a single stressor, with few assessing the effects of multiple stressors (7%). Structural endpoints were commonly used to measure the effects of stressors (49% of the total 579 studies). Whereas, functional endpoints were rarely assessed alone (10%) but rather in combination with structural endpoints (41%). Elevated nutrients followed by NIS were the most studied single stressors (43% and 16% of the 541 single stressor studies), while elevated nutrients and toxic contaminants were overwhelmingly the most common stressor combination (79% of the 38 multiple stressor studies); with NIS and built infrastructure representing major gaps in multi-stressor research. In the meta-analysis, structural endpoints tended to decrease, while functional endpoints increased and/or decreased in response to different types of organisms or groups. We predicted an antagonistic effect of elevated nutrients and toxic contaminants based on the opposing enriching versus toxic effects of this stressor combination. Of note, biodiversity was the only endpoint that revealed such an antagonistic response. Our results highlight the continuing paucity of multiple stressor studies and provide evidence for opposing patterns in the responses to single and interacting stressors depending on the measured endpoint. The latter is of significant consequence to understanding relevant impacts of stressors in coastal monitoring and management.
Collapse
Affiliation(s)
- A L O'Brien
- School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - K A Dafforn
- Department of Environmental Sciences, Macquarie University, NSW 2109, Australia; Sydney Institute of Marine Sciences, Mosman, NSW 2088, Australia
| | - A A Chariton
- Department of Biological Sciences, Macquarie University, NSW 2109, Australia
| | - E L Johnston
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - M Mayer-Pinto
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia; Sydney Institute of Marine Sciences, Mosman, NSW 2088, Australia
| |
Collapse
|
18
|
Pérez-Valera E, Kyselková M, Ahmed E, Sladecek FXJ, Goberna M, Elhottová D. Native soil microorganisms hinder the soil enrichment with antibiotic resistance genes following manure applications. Sci Rep 2019; 9:6760. [PMID: 31043618 PMCID: PMC6494816 DOI: 10.1038/s41598-019-42734-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 04/05/2019] [Indexed: 12/21/2022] Open
Abstract
Bacterial genes responsible for resistance to antibiotic agents (ARG) are spread from livestock to soil through application of manure, threatening environmental and human health. We investigated the mechanisms of ARG dissemination and persistence to disentangle i) the influence of nutrients and microorganisms on the soil tetracycline (TET) resistome, and ii) the role of indigenous soil microbiota in preventing ARG spread. We analysed short-term (7 days) and persistent (84 days) effects of manure on the resistome of three antibiotic-free pasture soils. Four microcosm treatments were evaluated: control, mineral nutrient fertilization, and deposition of a layer of fresh manure onto soil or γ-irradiated soil. We quantified five TET-resistance genes, isolated 135 TET-resistant bacteria and sequenced both culturable TET-resistant and whole bacterial communities. Manure amendments, but not nutrient addition, increased the abundance of TET-r genes such as tet(Y). Such changes persisted with time, in contrast with the TET-resistant bacterial composition, which partially recovered after manure amendments. Manured γ-irradiated soils showed significantly lower nutrient content and higher TET-r gene abundance than non-irradiated soils, suggesting that native soil bacteria are essential for the fertilization effect of manure on soil as well as control the dissemination of potentially risky TET-r genes.
Collapse
Affiliation(s)
- Eduardo Pérez-Valera
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology, Na Sádkách 7, 370 05, České Budějovice, Czech Republic.
| | - Martina Kyselková
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Engy Ahmed
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Frantisek Xaver Jiri Sladecek
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Marta Goberna
- Department of Environment, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA). Carretera de la Coruña, Km 7.5, E-28040, Madrid, Spain
| | - Dana Elhottová
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| |
Collapse
|