1
|
Greenway R, De-Kayne R, Brown AP, Camarillo H, Delich C, McGowan KL, Nelson J, Arias-Rodriguez L, Kelley JL, Tobler M. Integrative analyses of convergent adaptation in sympatric extremophile fishes. Curr Biol 2024; 34:4968-4982.e7. [PMID: 39395416 DOI: 10.1016/j.cub.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/18/2024] [Accepted: 09/11/2024] [Indexed: 10/14/2024]
Abstract
The evolution of independent lineages along replicated environmental transitions frequently results in convergent adaptation, yet the degree to which convergence is present across multiple levels of biological organization is often unclear. Additionally, inherent biases associated with shared ancestry and variation in selective regimes across geographic replicates often pose challenges for confidently identifying patterns of convergence. We investigated a system in which three species of poeciliid fishes sympatrically occur in a toxic spring rich in hydrogen sulfide (H2S) and an adjacent nonsulfidic stream to examine patterns of adaptive evolution across levels of biological organization. We found convergence in morphological and physiological traits and genome-wide patterns of gene expression among all three species. In addition, there were shared signatures of selection on genes encoding H2S toxicity targets in the mitochondrial genomes of each species. However, analyses of nuclear genomes revealed neither evidence for substantial genomic islands of divergence around genes involved in H2S toxicity and detoxification nor substantial congruence of strongly differentiated regions across population pairs. These non-convergent, heterogeneous patterns of genomic divergence may indicate that sulfide tolerance is highly polygenic, with shared allele frequency shifts present at many loci with small effects along the genome. Alternatively, H2S tolerance may involve substantial genetic redundancy, with non-convergent, lineage-specific variation at multiple loci along the genome underpinning similar changes in phenotypes and gene expression. Overall, we demonstrate variability in the extent of convergence across organizational levels and highlight the challenges of linking patterns of convergence across scales.
Collapse
Affiliation(s)
- Ryan Greenway
- Kansas State University, Division of Biology, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Rishi De-Kayne
- University of California Santa Cruz, Department of Ecology and Evolutionary Biology, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Anthony P Brown
- Washington State University, School of Biological Sciences, 301 Abelson Hall, Pullman, WA 644236, USA
| | - Henry Camarillo
- Kansas State University, Division of Biology, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Cassandra Delich
- Kansas State University, Division of Biology, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Kerry L McGowan
- Washington State University, School of Biological Sciences, 301 Abelson Hall, Pullman, WA 644236, USA
| | - Joel Nelson
- Washington State University, School of Biological Sciences, 301 Abelson Hall, Pullman, WA 644236, USA
| | - Lenin Arias-Rodriguez
- Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias Biológicas, Carretera Villahermosa-Cárdenas Km. 0.5 S/N, Entronque a Bosques de Saloya, 86150 Villahermosa, Tabasco, Mexico
| | - Joanna L Kelley
- University of California Santa Cruz, Department of Ecology and Evolutionary Biology, 1156 High Street, Santa Cruz, CA 95064, USA.
| | - Michael Tobler
- University of Missouri, St. Louis, Department of Biology, 1 University Boulevard, St. Louis, MO 63121, USA; University of Missouri, St. Louis, Whitney R. Harris World Ecology Center, 1 University Boulevard, St. Louis, MO 63121, USA; Saint Louis Zoo, WildCare Institute, 1 Government Drive, St. Louis, MO 63110, USA.
| |
Collapse
|
2
|
Jurado V, D'Angeli I, Martin-Pozas T, Cappelletti M, Ghezzi D, Gonzalez-Pimentel JL, Cuezva S, Miller AZ, Fernandez-Cortes A, De Waele J, Sanchez-Moral S, Saiz-Jimenez C. Dominance of Arcobacter in the white filaments from the thermal sulfidic spring of Fetida Cave (Apulia, southern Italy). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149465. [PMID: 34391144 DOI: 10.1016/j.scitotenv.2021.149465] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/10/2021] [Accepted: 07/31/2021] [Indexed: 05/10/2023]
Abstract
The thermal spring of Fetida Cave, a still active sulfuric acid cave opening at sea level and located in Santa Cesarea Terme, southeastern Salento (Apulia region, Southern Italy) hosts abundant floating white filaments. The white filaments were mainly composed of sulfur crystals surrounded by microbial mass of the phyla Epsilonbacteraeota, Proteobacteria, Bacteroidetes, and Patescibacteria. The most abundant genus in the white filaments collected from the waters in the innermost part of the cave dominated by sulfidic exhalations was Arcobacter. This abundance can be related to the higher concentration of sulfide dissolved in water, and low oxygen and pH values. Conversely, lower Arcobacter abundances were obtained in the filaments collected in the entrance and middle part of the cave, where sulfidic water mixes with seawater, as the cave is subjected to tides and the mixing of fresh (continental) with marine water. The geochemical analysis of water and atmospheric gases confirmed these environmental constraints. In fact, the highest concentrations of H2S in the air and water were recorded closest to the spring upwelling in the innermost part of the cave, and the lowest ones near the cave entrance. The metabolic versatility of Arcobacter might provide a competitive advantage in the colonization of water bodies characterized by high sulfide, low oxygen, and dynamic fluid movement.
Collapse
Affiliation(s)
- Valme Jurado
- Instituto de Recursos Naturales y Agrobiologia, IRNAS-CSIC, 41012 Sevilla, Spain
| | - Ilenia D'Angeli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| | | | - Martina Cappelletti
- Department of Pharmacy and Biotechnology (FaBit), University of Bologna, 40126 Bologna, Italy
| | - Daniele Ghezzi
- Department of Pharmacy and Biotechnology (FaBit), University of Bologna, 40126 Bologna, Italy; Laboratory of NanoBiotechnology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | | | - Soledad Cuezva
- Departamento de Geologia, Geografia y Medio Ambiente, Universidad de Alcala de Henares, 28801 Alcala de Henares, Spain
| | - Ana Zelia Miller
- Instituto de Recursos Naturales y Agrobiologia, IRNAS-CSIC, 41012 Sevilla, Spain
| | | | - Jo De Waele
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| | | | - Cesareo Saiz-Jimenez
- Instituto de Recursos Naturales y Agrobiologia, IRNAS-CSIC, 41012 Sevilla, Spain.
| |
Collapse
|
3
|
Lukas J, Auer F, Goldhammer T, Krause J, Romanczuk P, Klamser P, Arias-Rodriguez L, Bierbach D. Diurnal Changes in Hypoxia Shape Predator-Prey Interaction in a Bird-Fish System. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.619193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Animals often face changing environments, and behavioral flexibility allows them to rapidly and adaptively respond to abiotic factors that vary more or less regularly. However, abiotic factors that affect prey species do not necessarily affect their predators. Still, the prey’s response might affect the predator indirectly, yet evidence from the wild for such a classical bottom-up effect of abiotic factors shaping several trophic levels remains sparse. In many aquatic environments, daily changes in oxygen concentrations occur frequently. When oxygen levels drop to hypoxic levels, many fishes respond with aquatic surface respiration (ASR), during which they obtain oxygen by skimming the upper, oxygenated surface layer. By increasing time at the surface, fish become more vulnerable to fish-eating birds. We explored these cascading effects in a sulfidic spring system that harbors the endemic sulphur molly (Poecilia sulphuraria) as prey species and several fish-eating bird species. Sulfide-rich springs pose harsh conditions as hydrogen sulfide (H2S) is lethal to most metazoans and reduces dissolved oxygen (DO). Field sampling during three daytimes indicated that water temperatures rose from morning to (after)noon, resulting in the already low DO levels to decrease further, while H2S levels showed no diurnal changes. The drop in DO levels was associated with a decrease in time spent diving in sulphur mollies, which corresponded with an increase in ASR. Interestingly, the laboratory-estimated threshold at which the majority of sulphur mollies initiate ASR (ASR50: <1.7 mg/L DO) was independent of temperature and this value was exceeded daily when hypoxic stress became more severe toward noon. As fish performed ASR, large aggregations built up at the water surface over the course of the day. As a possible consequence of fish spending more time at the surface, we found high activity levels of fish-eating birds at noon and in the afternoon. Our study reveals that daily fluctuations in water’s oxygen levels have the potential to alter predator-prey interactions profoundly and thus highlights the joined actions of abiotic and biotic factors shaping the evolution of a prey species.
Collapse
|
4
|
Meziti A, Nikouli E, Hatt JK, Konstantinidis KT, Kormas KA. Time series metagenomic sampling of the Thermopyles, Greece, geothermal springs reveals stable microbial communities dominated by novel sulfur-oxidizing chemoautotrophs. Environ Microbiol 2021; 23:3710-3726. [PMID: 33350070 DOI: 10.1111/1462-2920.15373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/19/2020] [Indexed: 11/29/2022]
Abstract
Geothermal springs are essentially unaffected by environmental conditions aboveground as they are continuously supplied with subsurface water with little variability in chemistry. Therefore, changes in their microbial community composition and function, especially over a long period, are expected to be limited but this assumption has not yet been rigorously tested. Toward closing this knowledge gap, we applied whole metagenome sequencing to 17 water samples collected between 2010 and 2016 from the Thermopyles sulfur-rich geothermal springs in central Greece. As revealed by 16S rRNA gene fragments recovered in the metagenomes, Epsilonproteobacteria-related operational taxonomic units (OTUs) dominated most samples and grouping of samples based on OTU abundances exhibited no apparent seasonal pattern. Similarities between samples regarding functional gene content were high, with all samples sharing >70% similarity in functional pathways. These community-wide patterns were further confirmed by analysis of metagenome-assembled genomes (MAGs), which showed that novel species and genera of the chemoautotrophic Campylobacterales order dominated the springs. These MAGs carried different pathways for thiosulfate or sulfide oxidation coupled to carbon fixation pathways. Overall, our study showed that even in the long term, functions of microbial communities in a moderately hot terrestrial spring remain stable, presumably driving the corresponding stability in community structure.
Collapse
Affiliation(s)
- A Meziti
- Department of Ichthyology and Aquatic Environment, University of Thessaly, Volos, 38446, Greece.,School of Civil and Environmental Engineering, Georgia Institute of Technology, Ford Environmental Science and Technology Building, 311 Ferst Drive, Atlanta, GA, 30332, USA
| | - E Nikouli
- Department of Ichthyology and Aquatic Environment, University of Thessaly, Volos, 38446, Greece.,School of Civil and Environmental Engineering, Georgia Institute of Technology, Ford Environmental Science and Technology Building, 311 Ferst Drive, Atlanta, GA, 30332, USA
| | - J K Hatt
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Ford Environmental Science and Technology Building, 311 Ferst Drive, Atlanta, GA, 30332, USA
| | - K T Konstantinidis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Ford Environmental Science and Technology Building, 311 Ferst Drive, Atlanta, GA, 30332, USA.,School of Biological Sciences, Georgia Institute of Technology, Ford Environmental Sciences and Technology Building, 311 Ferst Drive, Atlanta, GA, 30332, USA
| | - K A Kormas
- Department of Ichthyology and Aquatic Environment, University of Thessaly, Volos, 38446, Greece
| |
Collapse
|
5
|
Yan S, Wang D, Teng M, Meng Z, Yan J, Li R, Jia M, Tian S, Zhou Z, Zhu W. Perinatal exposure to 2-Ethylhexyl Diphenyl Phosphate (EHDPHP) affected the metabolic homeostasis of male mouse offspring: Unexpected findings help to explain dose- and diet- specific phenomena. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:122034. [PMID: 31951990 DOI: 10.1016/j.jhazmat.2020.122034] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/26/2019] [Accepted: 01/05/2020] [Indexed: 06/10/2023]
Abstract
The environmental health risks of a new type of organophosphate flame retardant, 2-ethylhexyl diphenyl phosphate (EHDPHP), which is present in large quantities in various Nordic foods, have attracted the attention of scientists recently. In this study, the metabolic homeostasis of low-fat diet (LFD) and high-fat diet (HFD) fed male mice offspring was assessed after perinatal exposure to two doses (30 μg/kg bw/day and 300 μg/kg bw/day) of EHDPHP. Perinatal exposure to EHDPHP resulted in weight changes in male mice offspring, altered glucose tolerance and induced liver damage, and surprisingly these changes were dose- and diet- specific. Then the 1H NMR-based metabolomics, 16S rRNA sequencing, and qRT-PCR techniques were used to explore the mechanisms of these specific changes. The results indicate that the increase in short-chain fatty acids and the increase in Clostridium in the high-dose group may be responsible for the dose-specificity, while the attenuation of the purine metabolic pathway and the decrease in glutamine levels in the HFD group are accountable for the diet-specificity. In addition, down-regulation of PPARG (peroxisome proliferator-activated receptor gamma) gene expression levels might have caused the decrease in body weight in the H + HFD (high dose exposure with HFD feeding) group. Over all, these results elucidated the effects of dosage and diet on the toxicology of EHDPHP.
Collapse
Affiliation(s)
- Sen Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Dezhen Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Miaomiao Teng
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Zhiyuan Meng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Jin Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Ruisheng Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Ming Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Sinuo Tian
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Wentao Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
6
|
The Mycoplasma pneumoniae HapE alters the cytokine profile and growth of human bronchial epithelial cells. Biosci Rep 2019; 39:BSR20182201. [PMID: 30573530 PMCID: PMC6340952 DOI: 10.1042/bsr20182201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
Mycoplasma pneumoniae is one of the most common pathogenic causes of community-acquired pneumonia. Hydrogen sulfide, alanine, and pyruvate producing enzyme (HapE) is a recently discovered M. pneumoniae virulence factor that can produce H2S to promote erythrocyte lysis. However, other cytotoxic effects of HapE have not been explored. The present study examined the effects of this enzyme on normal human bronchial epithelial (NHBE) cells, in an attempt to identify additional mechanisms of M. pneumoniae pathogenesis. Recombinant HapE was purified for use in downstream assays. MTT and colony formation assays were conducted to determine the effects of HapE on cell viability and growth, while flow cytometry was used to examine changes in cell proliferation and cell cycle function. ELISA was performed to examine changes in the cytokine profile of HapE-treated cells. HapE treatment arrested NHBE cells in S phase and inhibited cell proliferation in a concentration-dependent manner. The anti-inflammatory factors interleukin (IL)-4 and IL-6 were significantly enhanced following HapE treatment. Increased secretion of pro-inflammatory factors was not observed. The effects of HapE on the respiratory epithelium may have an impact on the efficiency of host immune surveillance and pathogen elimination, and contribute to the pathogenesis of M. pneumoniae.
Collapse
|