1
|
Soh M, Er S, Low A, Jaafar Z, de Boucher R, Seedorf H. Spatial and temporal changes in gut microbiota composition of farmed Asian seabass ( Lates calcarifer) in different aquaculture settings. Microbiol Spectr 2025; 13:e0198924. [PMID: 40084873 PMCID: PMC12054105 DOI: 10.1128/spectrum.01989-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/09/2025] [Indexed: 03/16/2025] Open
Abstract
The microbiota composition of healthy farmed fishes remains poorly characterized for many species. This study explores the influence of the external environment and innate factors that may shape the gut microbiota of farmed Asian seabass, Lates calcarifer. The α-diversity based on Shannon, Simpson, and Chao1 indices was lower for fishes reared in sea cages and tanks than for fishes that experienced a transfer from sea cages to tanks. Longitudinal analyses of gut segments revealed no significant differences in alpha diversity between segments within the same containment type, except for the Chao1 index between the stomach and pyloric cecum of sea-caged fishes. β-diversity analysis using weighted UniFrac distance and Bray-Curtis dissimilarity demonstrated that fish reared in the same containment type shared similar microbial communities. PERMANOVA tests confirmed that containment type, farm, and batch significantly influenced these distances. Containment type accounted for 10.4% of the observed diversity, farm for 29.8%, and batch for 10.7%. Genera comprising potential pathogens such as Aeromonas, Flavobacterium, and Vibrio were differentially abundant along the guts of fish from different containment types and particularly increased in tanks. Microbiota changes were observed with host age and gut segment, with differentially abundant microbial genera identified along the gut and as the seabass grew. Comparing the hindgut microbiota of Asian seabass to other species of farmed fishes revealed host-specific clustering as indicated by PERMANOVA. Overall, these findings underscore the significance of containment conditions on the gut microbiota of Asian seabass, with broad implications for aquaculture practices. IMPORTANCE Understanding the microbiota composition of healthy farmed fishes is crucial for optimizing aquaculture practices. This study highlights the significant influence of containment conditions on the gut microbiota of farmed Asian seabass (Lates calcarifer). By demonstrating that gut microbiota diversity and community composition are shaped by containment type, farm location, and batch, the research provides valuable insights into how external environmental factors and innate host factors interact to influence fish health. The findings, particularly the differential abundance of potential pathogens in various containment types, underscore the need for tailored management strategies in aquaculture. This research not only advances our knowledge of fish microbiota but also has broad implications for improving the sustainability and productivity of aquaculture practices.
Collapse
Affiliation(s)
- Melissa Soh
- Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Shuan Er
- Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Adrian Low
- Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Zeehan Jaafar
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | | | - Henning Seedorf
- Temasek Life Sciences Laboratory, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
2
|
Li Z, Lv J, Chen J, Sun F, Sheng R, Qin Y, Rao L, Lu T, Sun L. Comparative study of gut content microbiota in freshwater fish with different feeding habits: A case study of an urban lake. JOURNAL OF FISH BIOLOGY 2025; 106:823-835. [PMID: 39567260 DOI: 10.1111/jfb.16002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024]
Abstract
The gut microbiota plays a crucial role in various physiological functions of the host and can be modulated by numerous factors, including feeding habit or trophic level. In this study, the impact of host feeding habits on the gut microbiota of freshwater fish was explored. Ten fish species, classified into four feeding habit categories (herbivorous, omnivorous, planktivorous, and carnivorous) were sampled from West Lake, a renowned urban scenic lake, and their gut content microbiota was analysed using 16S ribosomal RNA gene sequencing. A total of 2531 operational taxonomic units, belonging to 34 bacterial phyla, were identified, with 33.4% shared across all feeding habits. Firmicutes and Proteobacteria were the predominant phyla. However, at the family level, Peptostreptococcaceae and Clostridiaceae_1 were the most dominant. Microbiota composition diversity was highest in herbivorous fish, followed by omnivores, carnivores, and planktivores. Statistically significant differences in microbiota diversity were found between different feeding categories, except for the omnivores, which did not differ from the carnivores or planktivores. The most abundant predicted metabolic pathways across all feeding habits were similar, with amino acid metabolism, carbohydrate metabolism, metabolism of cofactors and vitamins, and metabolism of other amino acids being dominant. However, comparing the relative abundance of gene functions between different feeding habits revealed notable variations across most comparisons. Co-occurrence network analysis for each feeding habit revealed that all networks were dominated by the strong positive correlation among pairs of bacterial genera abundances, while the basic properties varied, implying differences in gut microbiota interactions based on the feeding habit. In conclusion, these results confirmed that the feeding habit could affect the structure and composition of the gut content microbiota but also changed their functions and interactions.
Collapse
Affiliation(s)
- Zaitian Li
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Junsheng Lv
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Jun Chen
- Division of Hangzhou West Lake Aquatic Area Management, Hangzhou, China
| | - Fengzhu Sun
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Ruozhu Sheng
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yueyun Qin
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Lihua Rao
- Division of Hangzhou West Lake Aquatic Area Management, Hangzhou, China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Liwei Sun
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
3
|
Soria E, Russo C, Carlos-Shanley C, Drewery M, Boswell W, Savage M, Sanchez L, Chang C, Varga ZM, Kent ML, Sharpton TJ, Lu Y. Assessment of various standard fish diets on gut microbiome of platyfish Xiphophorus maculatus. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:271-277. [PMID: 37614078 PMCID: PMC10962282 DOI: 10.1002/jez.b.23218] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023]
Abstract
Diet is an external factor that affects the physiological baseline of research animals. It can shape gut microbiome, which can impact the host. As a result, dietary variation can challenge experimental reproducibility and data integration across studies when not appropriately considered. To control for diet-induced variation, reference diets have been developed for common biomedical models. However, such reference diets have not yet been developed for nontraditional model organisms, such as Xiphophorus species. In this study, we compared two diets designed for zebrafish, a commercial zebrafish diet (Gemma and GEM), and a proposed zebrafish reference diet developed by the Watts laboratory at the University of Alabama at Birmingham (WAT) to the Xiphophorus Genetic Stock Center custom diet (CON) to evaluate the influence of diet on the Xiphophorus gut microbiome. Xiphophorus maculatus were fed the three diets from 2 to 6 months of age. Feces were collected and the gut microbiome was assessed using 16S rRNA sequencing every month. We observed substantial diet-driven variation in the gut microbiome. Our results indicate that diets developed specifically for zebrafish can affect the gut microbiome composition and may not be optimal for Xiphophorus.
Collapse
Affiliation(s)
- Erika Soria
- Xiphophorus Genetic Stock Center, Texas State University, San Marcos, Texas, USA
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, USA
| | - Crystal Russo
- Department of Agricultural Sciences, Texas State University, San Marcos, Texas, USA
| | | | - Merritt Drewery
- Department of Agricultural Sciences, Texas State University, San Marcos, Texas, USA
| | - Will Boswell
- Xiphophorus Genetic Stock Center, Texas State University, San Marcos, Texas, USA
| | - Markita Savage
- Xiphophorus Genetic Stock Center, Texas State University, San Marcos, Texas, USA
| | - Lindsey Sanchez
- Xiphophorus Genetic Stock Center, Texas State University, San Marcos, Texas, USA
| | - Carolyn Chang
- Xiphophorus Genetic Stock Center, Texas State University, San Marcos, Texas, USA
| | - Zoltan M Varga
- Zebrafish International Resource Center, University of Oregon, Eugene, Oregon, USA
| | - Michael L Kent
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | - Thomas J Sharpton
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | - Yuan Lu
- Xiphophorus Genetic Stock Center, Texas State University, San Marcos, Texas, USA
| |
Collapse
|
4
|
Diwan A, Harke SN, Panche AN. Host-microbiome interaction in fish and shellfish: An overview. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 4:100091. [PMID: 37091066 PMCID: PMC10113762 DOI: 10.1016/j.fsirep.2023.100091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/28/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
The importance of the gut microbiome in the management of various physiological activities including healthy growth and performance of fish and shellfish is now widely considered and being studied in detail for potential applications in aquaculture farming and the future growth of the fish industry. The gut microbiome in all animals including fish is associated with a number of beneficial functions for the host, such as stimulating optimal gastrointestinal development, producing and supplying vitamins to the host, and improving the host's nutrient uptake by providing additional enzymatic activities. Besides nutrient uptake, the gut microbiome is involved in strengthening the immune system and maintaining mucosal tolerance, enhancing the host's resilience against infectious diseases, and the production of anticarcinogenic and anti-inflammatory compounds. Because of its significant role, the gut microbiome is very often considered an "extra organ," as it plays a key role in intestinal development and regulation of other physiological functions. Recent studies suggest that the gut microbiome is involved in energy homeostasis by regulating feeding, digestive and metabolic processes, as well as the immune response. Consequently, deciphering gut microbiome dynamics in cultured fish and shellfish species will play an indispensable role in promoting animal health and aquaculture productivity. It is mentioned that the microbiome community available in the gut tract, particularly in the intestine acts as an innovative source of natural product discovery. The microbial communities that are associated with several marine organisms are the source of natural products with a diverse array of biological activities and as of today, more than 1000 new compounds have been reported from such microbial species. Exploration of such new ingredients from microbial species would create more opportunities for the development of the bio-pharma/aquaculture industries. Considering the important role of the microbiome in the whole life span of fish and shellfish, it is necessary to understand the interaction process between the host and microbial community. However, information pertaining to host-microbiome interaction, particularly at the cellular level, gene expression, metabolic pathways, and immunomodulation mechanisms, the available literature is scanty. It has been reported that there are three ways of interaction involving the host-microbe-environment operates to maintain homeostasis in the fish and shellfish gut i.e. host intrinsic factors, the environment that shapes the gut microbiome composition, and the core microbial community present in the gut system itself has equal influence on the host biology. In the present review, efforts have been made to collect comprehensive information on various aspects of host-microbiome interaction, particularly on the immune system and health maintenance, management of diseases, nutrient uptake, digestion and absorption, gene expression, and metabolism in fish and shellfish.
Collapse
Affiliation(s)
- A.D. Diwan
- Institute of Biosciences and Technology, Mahatma Gandhi Mission (MGM) University, Aurangabad, 431003, Maharashtra, India
| | - Sanjay N Harke
- Institute of Biosciences and Technology, Mahatma Gandhi Mission (MGM) University, Aurangabad, 431003, Maharashtra, India
| | - Archana N Panche
- Novo Nordisk Centre for Biosustainability, Technical University of Denmark, B220 Kemitorvet, 2800 Kgs, Lyngby, Denmark
| |
Collapse
|
5
|
García-Márquez J, Álvarez-Torres D, Cerezo IM, Domínguez-Maqueda M, Figueroa FL, Alarcón FJ, Acién G, Martínez-Manzanares E, Abdala-Díaz RT, Béjar J, Arijo S. Combined Dietary Administration of Chlorella fusca and Ethanol-Inactivated Vibrio proteolyticus Modulates Intestinal Microbiota and Gene Expression in Chelon labrosus. Animals (Basel) 2023; 13:3325. [PMID: 37958080 PMCID: PMC10648860 DOI: 10.3390/ani13213325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
The use of functional feeds in aquaculture is currently increasing. This study aimed to assess the combined impact of dietary green microalgae Chlorella fusca and ethanol-inactivated Vibrio proteolyticus DCF12.2 (CVP diet) on thick-lipped grey mullet (Chelon labrosus) juvenile fish. The effects on intestinal microbiota and the transcription of genes related to metabolism, stress, and the immune system were investigated after 90 days of feeding. Additionally, the fish were challenged with Aeromonas hydrophila and polyinosinic-polycytidylic acid (poly I:C) to evaluate the immune response. Microbiota analysis revealed no significant differences in alpha and beta diversity between the anterior and posterior intestinal sections of fish fed the control (CT) and CVP diets. The dominant genera varied between the groups; Pseudomonas and Brevinema were most abundant in the CVP group, whereas Brevinema, Cetobacterium, and Pseudomonas were predominant in the CT group. However, microbial functionality remained unaltered. Gene expression analysis indicated notable changes in hif3α, mhcII, abcb1, mx, and tnfα genes in different fish organs on the CVP diet. In the head kidney, gene expression variations were observed following challenges with A. hydrophila or poly I:C, with higher peak values seen in fish injected with poly I:C. Moreover, c3 mRNA levels were significantly up-regulated in the CVP group 72 h post-A. hydrophila challenge. To conclude, incorporating C. fusca with V. proteolyticus in C. labrosus diet affected the microbial species composition in the intestine while preserving its functionality. In terms of gene expression, the combined diet effectively regulated the transcription of stress and immune-related genes, suggesting potential enhancement of fish resistance against stress and infections.
Collapse
Affiliation(s)
- Jorge García-Márquez
- Departamento de Microbiología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, 29071 Málaga, Spain
| | - Daniel Álvarez-Torres
- Centro Experimental Grice Hutchinson, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, 29071 Málaga, Spain
| | - Isabel M. Cerezo
- Departamento de Microbiología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, 29071 Málaga, Spain
- Unidad de Bioinformática–SCBI, Parque Tecnológico, Universidad de Málaga, 29590 Málaga, Spain
| | - Marta Domínguez-Maqueda
- Departamento de Microbiología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, 29071 Málaga, Spain
| | - Félix L. Figueroa
- Centro Experimental Grice Hutchinson, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, 29071 Málaga, Spain
| | - Francisco Javier Alarcón
- Departamento de Biología y Geología, Universidad de Almería, Ceimar-Universidad de Almería, 04120 Almería, Spain
| | - Gabriel Acién
- Departamento de Ingeniería Química, Universidad de Almería, Ceimar-Universidad de Almería, 04120 Almería, Spain
| | - Eduardo Martínez-Manzanares
- Departamento de Microbiología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, 29071 Málaga, Spain
| | - Roberto T. Abdala-Díaz
- Departamento de Ecología y Geología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, 29071 Málaga, Spain
| | - Julia Béjar
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, 29071 Málaga, Spain
| | - Salvador Arijo
- Departamento de Microbiología, Facultad de Ciencias, Instituto Andaluz de Biotecnología y Desarrollo Azul (IBYDA), Universidad de Málaga, Ceimar-Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
6
|
Lorgen-Ritchie M, Uren Webster T, McMurtrie J, Bass D, Tyler CR, Rowley A, Martin SAM. Microbiomes in the context of developing sustainable intensified aquaculture. Front Microbiol 2023; 14:1200997. [PMID: 37426003 PMCID: PMC10327644 DOI: 10.3389/fmicb.2023.1200997] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
With an ever-growing human population, the need for sustainable production of nutritional food sources has never been greater. Aquaculture is a key industry engaged in active development to increase production in line with this need while remaining sustainable in terms of environmental impact and promoting good welfare and health in farmed species. Microbiomes fundamentally underpin animal health, being a key part of their digestive, metabolic and defense systems, in the latter case protecting against opportunistic pathogens in the environment. The potential to manipulate the microbiome to the advantage of enhancing health, welfare and production is an intriguing prospect that has gained considerable traction in recent years. In this review we first set out what is known about the role of the microbiome in aquaculture production systems across the phylogenetic spectrum of cultured animals, from invertebrates to finfish. With a view to reducing environmental footprint and tightening biological and physical control, investment in "closed" aquaculture systems is on the rise, but little is known about how the microbial systems of these closed systems affect the health of cultured organisms. Through comparisons of the microbiomes and their dynamics across phylogenetically distinct animals and different aquaculture systems, we focus on microbial communities in terms of their functionality in order to identify what features within these microbiomes need to be harnessed for optimizing healthy intensified production in support of a sustainable future for aquaculture.
Collapse
Affiliation(s)
| | - Tamsyn Uren Webster
- Centre for Sustainable Aquatic Research, Swansea University, Swansea, United Kingdom
| | - Jamie McMurtrie
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - David Bass
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, United Kingdom
| | - Charles R. Tyler
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Andrew Rowley
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| | - Samuel A. M. Martin
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
7
|
Korry BJ, Belenky P. Trophic level and proteobacteria abundance drive antibiotic resistance levels in fish from coastal New England. Anim Microbiome 2023; 5:16. [PMID: 36879316 PMCID: PMC9990352 DOI: 10.1186/s42523-023-00236-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 02/19/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND The natural marine environment represents a vast reservoir of antimicrobial resistant bacteria. The wildlife that inhabits this environment plays an important role as the host to these bacteria and in the dissemination of resistance. The relationship between host diet, phylogeny, and trophic level and the microbiome/resistome in marine fish is not fully understood. To further explore this relationship, we utilize shotgun metagenomic sequencing to define the gastrointestinal tract microbiomes of seven different marine vertebrates collected in coastal New England waters. RESULTS We identify inter and intraspecies differences in the gut microbiota of these wild marine fish populations. Furthermore, we find an association between antibiotic resistance genes and host dietary guild, which suggests that higher trophic level organisms have a greater abundance of resistance genes. Additionally, we demonstrate that antibiotic resistance gene burden is positively correlated with Proteobacteria abundance in the microbiome. Lastly, we identify dietary signatures within the gut of these fish and find evidence of possible dietary selection for bacteria with specific carbohydrate utilization potential. CONCLUSIONS This work establishes a link between host lifestyle/dietary guild, and microbiome composition and the abundance of antibiotic resistance genes within the gastrointestinal tract of marine organisms. We expand the current understanding of marine organism-associated microbial communities and their role as reservoirs of antimicrobial resistance genes.
Collapse
Affiliation(s)
- Benjamin J Korry
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02906, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02906, USA.
| |
Collapse
|
8
|
Zhao R, Symonds JE, Walker SP, Steiner K, Carter CG, Bowman JP, Nowak BF. Relationship between gut microbiota and Chinook salmon ( Oncorhynchus tshawytscha) health and growth performance in freshwater recirculating aquaculture systems. Front Microbiol 2023; 14:1065823. [PMID: 36825086 PMCID: PMC9941681 DOI: 10.3389/fmicb.2023.1065823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/06/2023] [Indexed: 02/10/2023] Open
Abstract
Gut microbiota play important roles in fish health and growth performance and the microbiome in fish has been shown to be a biomarker for stress. In this study, we surveyed the change of Chinook salmon (Oncorhynchus tshawytscha) gut and water microbiota in freshwater recirculating aquaculture systems (RAS) for 7 months and evaluated how gut microbial communities were influenced by fish health and growth performance. The gut microbial diversity significantly increased in parallel with the growth of the fish. The dominant gut microbiota shifted from a predominance of Firmicutes to Proteobacteria, while Proteobacteria constantly dominated the water microbiota. Photobacterium sp. was persistently the major gut microbial community member during the whole experiment and was identified as the core gut microbiota for freshwater farmed Chinook salmon. No significant variation in gut microbial diversity and composition was observed among fish with different growth performance. At the end of the trial, 36 out of 78 fish had fluid in their swim bladders. These fish had gut microbiomes containing elevated proportions of Enterococcus, Stenotrophomonas, Aeromonas, and Raoultella. Our study supports the growing body of knowledge about the beneficial microbiota associated with modern salmon aquaculture systems and provides additional information on possible links between dysbiosis and gut microbiota for Chinook salmon.
Collapse
Affiliation(s)
- Ruixiang Zhao
- Institute for Marine and Antarctic Studies, University of Tasmania, Newnham, TAS, Australia
| | - Jane E. Symonds
- Cawthron Institute, Nelson, New Zealand
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | | | | | - Chris G. Carter
- Institute for Marine and Antarctic Studies, University of Tasmania, Newnham, TAS, Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - John P. Bowman
- Centre for Food Safety and Innovation, Tasmanian Institute of Agriculture, Hobart, TAS, Australia
| | - Barbara F. Nowak
- Institute for Marine and Antarctic Studies, University of Tasmania, Newnham, TAS, Australia
| |
Collapse
|
9
|
Kormas K, Nikouli E, Kousteni V, Damalas D. Midgut Bacterial Microbiota of 12 Fish Species from a Marine Protected Area in the Aegean Sea (Greece). MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02154-x. [PMID: 36529834 DOI: 10.1007/s00248-022-02154-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Fish microbiome science is progressing fast, but it is biased toward farmed or laboratory fish species against natural fish populations, which remain considerably underinvestigated. We analyzed the midgut bacterial microbiota of 45 specimens of 12 fish species collected from the Gyaros Island marine protected area (Aegean Sea, Greece). The species belong to seven taxonomic families and are either herbivores or omnivores. Mucosa midgut bacterial diversity was assessed by amplicon metabarcoding of the 16S rRNA V3-V4 gene region. A total of 854 operational taxonomic units (OTUs) were identified. In each fish species, between 2 and 18 OTUs dominated with cumulative relative abundance ≥ 70%. Most of the dominating bacterial taxa have been reported to occur both in wild and farmed fish populations. The midgut bacterial communities were different among the 12 fish species, except for Pagrus pagrus and Pagellus erythrinus, which belong to the Sparidae family. No differentiation of the midgut bacterial microbiota was found based on feeding habits, i.e., omnivorous vs. carnivorous. Comparing wild and farmed P. pagrus midgut bacterial microbiota revealed considerable variation between them. Our results expand the gut microbiota of wild fish and support the host species effect as the more likely factor shaping intestinal bacterial microbiota.
Collapse
Affiliation(s)
- Konstantinos Kormas
- Department of Ichthyology and Aquatic Environment, University of Thessaly, 384 46, Volos, Greece.
| | - Eleni Nikouli
- Department of Ichthyology and Aquatic Environment, University of Thessaly, 384 46, Volos, Greece
| | - Vasiliki Kousteni
- Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, 710 03, Heraklion, Greece
- Fisheries Research Institute, Hellenic Agricultural Organization - Demeter, 640 07, Nea Peramos, Greece
| | - Dimitrios Damalas
- Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, 710 03, Heraklion, Greece
| |
Collapse
|
10
|
Quero GM, Piredda R, Basili M, Maricchiolo G, Mirto S, Manini E, Seyfarth AM, Candela M, Luna GM. Host-associated and Environmental Microbiomes in an Open-Sea Mediterranean Gilthead Sea Bream Fish Farm. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02120-7. [PMID: 36205738 DOI: 10.1007/s00248-022-02120-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Gilthead seabream is among the most important farmed fish species in the Mediterranean Sea. Several approaches are currently applied to assure a lower impact of diseases and higher productivity, including the exploration of the fish microbiome and its manipulation as a sustainable alternative to improve aquaculture practices. Here, using 16S rRNA gene high-throughput sequencing, we explored the microbiome of farmed seabream to assess similarities and differences among microbial assemblages associated to different tissues and compare them with those in the surrounding environment. Seabream had distinct associated microbiomes according to the tissue and compared to the marine environment. The gut hosted the most diverse microbiome; different sets of dominant ASVs characterized the environmental and fish samples. The similarity between fish and environmental microbiomes was higher in seawater than sediment (up to 7.8 times), and the highest similarity (3.9%) was observed between gill and seawater, suggesting that gills are more closely interacting with the environment. We finally analyzed the potential connections occurring among microbiomes. These connections were relatively low among the host's tissues and, in particular, between the gut and the others fish-related microbiomes; other tissues, including skin and gills, were found to be the most connected microbiomes. Our results suggest that, in mariculture, seabream microbiomes reflect only partially those in their surrounding environment and that the host is the primary driver shaping the seabream microbiome. These data provide a step forward to understand the role of the microbiome in farmed fish and farming environments, useful to enhance disease control, fish health, and environmental sustainability.
Collapse
Affiliation(s)
- Grazia Marina Quero
- Institute for Marine Biological Resources and Biotechnologies, National Research Council (CNR-IRBIM), Ancona, Italy.
| | - Roberta Piredda
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano (Bari), Italy
| | - Marco Basili
- Institute for Marine Biological Resources and Biotechnologies, National Research Council (CNR-IRBIM), Ancona, Italy
- Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Giulia Maricchiolo
- Institute of Marine Biological Resources and Biotechnologies, National Research Council (CNR-IRBIM), Messina, Italy
| | - Simone Mirto
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Palermo, Italy
| | - Elena Manini
- Institute for Marine Biological Resources and Biotechnologies, National Research Council (CNR-IRBIM), Ancona, Italy
| | - Anne Mette Seyfarth
- Department of Global Surveillance, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Marco Candela
- Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Gian Marco Luna
- Institute for Marine Biological Resources and Biotechnologies, National Research Council (CNR-IRBIM), Ancona, Italy
| |
Collapse
|
11
|
Spilsbury F, Foysal MJ, Tay A, Gagnon MM. Gut Microbiome as a Potential Biomarker in Fish: Dietary Exposure to Petroleum Hydrocarbons and Metals, Metabolic Functions and Cytokine Expression in Juvenile Lates calcarifer. Front Microbiol 2022; 13:827371. [PMID: 35942316 PMCID: PMC9356228 DOI: 10.3389/fmicb.2022.827371] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/13/2022] [Indexed: 11/23/2022] Open
Abstract
The gut microbiome of fish contains core taxa whose relative abundances are modulated in response to diet, environmental factors, and exposure to toxicogenic chemicals, influencing the health of the host fish. Recent advances in genomics and metabolomics have suggested the potential of microbiome analysis as a biomarker for exposure to toxicogenic compounds. In this 35-day laboratory study, 16S RNA sequencing and multivariate analysis were used to explore changes in the gut microbiome of juvenile Lates calcarifer exposed to dietary sub-lethal doses of three metals: vanadium (20 mg/kg), nickel (480 mg/kg), and iron (470 mg/kg), and to two oils: bunker C heavy fuel oil (HFO) (1% w/w) and Montara, a typical Australian medium crude oil (ACO) (1% w/w). Diversity of the gut microbiome was significantly reduced compared to negative controls in fish exposed to metals, but not petroleum hydrocarbons. The core taxa in the microbiome of negative control fish comprised phyla Proteobacteria (62%), Firmicutes (7%), Planctomycetes (3%), Actinobacteria (2%), Bacteroidetes (1%), and others (25%). Differences in the relative abundances of bacterial phyla of metal-exposed fish were pronounced, with the microbiome of Ni-, V-, and Fe-exposed fish dominated by Proteobacteria (81%), Firmicutes (68%), and Bacteroidetes (48%), respectively. The genus Photobacterium was enriched proportionally to the concentration of polycyclic aromatic hydrocarbons (PAHs) in oil-exposed fish. The probiotic lactic acid bacterium Lactobacillus was significantly reduced in the microbiota of fish exposed to metals. Transcription of cytokines IL-1, IL-10, and TNF-a was significantly upregulated in fish exposed to metals but unchanged in oil-exposed fish compared to negative controls. However, IL-7 was significantly downregulated in fish exposed to V, Ni, Fe, and HFOs. Fish gut microbiome exhibits distinctive changes in response to specific toxicants and shows potential for use as biomarkers of exposure to V, Ni, Fe, and to PAHs present in crude oil.
Collapse
Affiliation(s)
- Francis Spilsbury
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Md Javed Foysal
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Alfred Tay
- Helicobacter Research Laboratory, The Marshall Centre, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | | |
Collapse
|
12
|
Fish intended for human consumption: from DNA barcoding to a next-generation sequencing (NGS)-based approach. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Effects of Dietary Fishmeal Replacement by Poultry By-Product Meal and Hydrolyzed Feather Meal on Liver and Intestinal Histomorphology and on Intestinal Microbiota of Gilthead Seabream (Sparus aurata). APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11198806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The effects on liver and intestinal histomorphology and on intestinal microbiota in gilthead seabream (Sparus aurata) fed diets that contained poultry by-product meal (PBM) and hydrolyzed feather meal (HFM) as fishmeal replacements were studied. Fish fed on a series of isonitrogenous and isoenergetic diets, where fishmeal protein of the control diet (FM diet) was replaced by either PBM or by HFM at 25%, 50% and 100% without amino acid supplementation (PBM25, PBM50, PBM100, HFM25, HFM50 and HFM100 diets) or supplemented with lysine and methionine (PBM25+, PBM50+, HFM25+ and HFM50+ diets). The use of PBM and HFM at 25% fishmeal replacement generated a similar hepatic histomorphology to FM-fed fish, indicating that both land animal proteins are highly digestible at low FM replacement levels. However, 50% and 100% FM replacement levels by either PBM or HFM resulted in pronounced hepatic alterations in fish with the latter causing more severe degradation of the liver. Dietary amino acid supplementation delivered an improved tissue histology signifying their importance at high FM replacement levels. Intestinal microbiota was dominated by Proteobacteria (58.8%) and Actinobacteria (32.4%) in all dietary groups, but no specific pattern was observed among them at any taxonomic level. This finding was probably driven by the high inter-individual variability observed.
Collapse
|
14
|
Stathopoulou P, Berillis P, Vlahos N, Nikouli E, Kormas KA, Levizou E, Katsoulas N, Mente E. Freshwater-adapted sea bass Dicentrarchus labrax feeding frequency impact in a lettuce Lactuca sativa aquaponics system. PeerJ 2021; 9:e11522. [PMID: 34141483 PMCID: PMC8180194 DOI: 10.7717/peerj.11522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
The aim of this study is to investigate the effect of three daily fish feeding frequencies, two, four and eight times per day (FF2, FF4, and FF8, respectively) on growth performance of sea bass (Dicentrarchus labrax)and lettuce plants (Lactuca sativa) reared in aquaponics. 171 juvenile sea bass with an average body weight of 6.80 ± 0.095 g were used, together with 24 lettuce plants with an average initial height of 11.78 ± 0.074 cm over a 45-day trial period. FF2 fish group showed a significantly lower final weight, weight gain and specific growth rate than the FF4 and FF8 groups. Voluntary feed intake was similar for all the three feeding frequencies treatmens (p > 0.05). No plant mortality was observed during the 45-day study period. All three aquaponic systems resulted in a similar leaf fresh weight and fresh and dry aerial biomass. The results of the present study showed that the FF4 or FF8 feeding frequency contributes to the more efficient utilization of nutrients for better growth of sea bass adapted to fresh water while successfully supporting plant growth to a marketable biomass.
Collapse
Affiliation(s)
- Paraskevi Stathopoulou
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - Panagiotis Berillis
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - Nikolaos Vlahos
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece.,Department of Animal Production, Fisheries and Aquaculture, School of Agricultural Sciences, University of Patras, Mesolonghi, Greece
| | - Eleni Nikouli
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - Konstantinos A Kormas
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - Efi Levizou
- Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - Nikolaos Katsoulas
- Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - Eleni Mente
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| |
Collapse
|
15
|
Panteli N, Mastoraki M, Lazarina M, Chatzifotis S, Mente E, Kormas KA, Antonopoulou E. Configuration of Gut Microbiota Structure and Potential Functionality in Two Teleosts under the Influence of Dietary Insect Meals. Microorganisms 2021; 9:microorganisms9040699. [PMID: 33800578 PMCID: PMC8067204 DOI: 10.3390/microorganisms9040699] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/03/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
Insect meals are considered promising, eco-friendly, alternative ingredients for aquafeed. Considering the dietary influence on establishment of functioning gut microbiota, the effect of the insect meal diets on the microbial ecology should be addressed. The present study assessed diet- and species-specific shifts in gut resident bacterial communities of juvenile reared Dicentrarchus labrax and Sparus aurata in response to three experimental diets with insect meals from three insects (Hermetia illucens, Tenebrio molitor, Musca domestica), using high-throughput Illumina sequencing of the V3–V4 region of the 16S rRNA gene. The dominant phyla were Firmicutes, Proteobacteria and Actinobacteria in all dietary treatments. Anaerococcus sp., Cutibacterium sp. and Pseudomonas sp. in D. labrax, and Staphylococcus sp., Hafnia sp. and Aeromonas sp. in S. aurata were the most enriched shared species, following insect-meal inclusion. Network analysis of the dietary treatments highlighted diet-induced changes in the microbial community assemblies and revealed unique and shared microbe-to-microbe interactions. PICRUSt-predicted Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were significantly differentiated, including genes associated with metabolic pathways. The present findings strengthen the importance of diet in microbiota configuration and underline that different insects as fish feed ingredients elicit species-specific differential responses of structural and functional dynamics in gut microbial communities.
Collapse
Affiliation(s)
- Nikolas Panteli
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.P.); (M.M.)
| | - Maria Mastoraki
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.P.); (M.M.)
| | - Maria Lazarina
- Department of Ecology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Stavros Chatzifotis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Gournes Pediados, 71003 Heraklion, Greece;
| | - Eleni Mente
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece; (E.M.); (K.A.K.)
| | - Konstantinos Ar. Kormas
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece; (E.M.); (K.A.K.)
| | - Efthimia Antonopoulou
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.P.); (M.M.)
- Correspondence: ; Tel.: +30-231-099-8563
| |
Collapse
|