1
|
Bekris F, Papadopoulou E, Vasileiadis S, Karapetsas N, Theocharis S, Alexandridis TK, Koundouras S, Karpouzas DG. Vintage and terroir are the strongest determinants of grapevine carposphere microbiome in the viticultural zone of Drama, Greece. FEMS Microbiol Ecol 2025; 101:fiaf008. [PMID: 39832807 PMCID: PMC11797032 DOI: 10.1093/femsec/fiaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/14/2024] [Accepted: 01/17/2025] [Indexed: 01/22/2025] Open
Abstract
The role of microbial terroir for enhancing the geographical origin of wines is well appreciated. Still, we lack a good understanding of the assembly mechanisms driving carposphere grapevine microbiota. We investigated the role of cultivar, vintage, terroir units (TUs), and vineyard geographic location on the composition of the carpospheric microbiota of three important cultivars in the viticultural zone of Drama, Greece using amplicon sequencing. Our strategy to define TUs based on georeferencing analysis allowed us to disentangle the effects of TU and vineyards geographic location, considered as a lumped factor in most studies to date. We hypothesized that (i) these factors contribute differently on the assembly of the carposphere microbiome and that (ii) fungal and bacterial communities follow different assembly mechanisms. Vintage and TU were the stronger determinants of the carposphere fungal and bacterial communities, although the latter showed weaker response. The stronger effect of TU over vineyard geography and cultivar reinforces the role of microbial terroir in viticulture. We identified fungi (Cladosporium, Aureobasidium, Alternaria) and bacteria (Pseudomonas, Methylobacterium, Sphingomonadaceae) as main members of the core microbiome. These microorganisms were associated with specific cultivars and TUs, a feature that could be pursued towards a new microbiome-modulated paradigm of viticulture.
Collapse
Affiliation(s)
- Fotios Bekris
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, 41500 (Viopolis) Larissa, Greece
| | - Elena Papadopoulou
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, 41500 (Viopolis) Larissa, Greece
| | - Sotirios Vasileiadis
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, 41500 (Viopolis) Larissa, Greece
| | - Nikolaos Karapetsas
- Department of Hydraulics, Soil Science and Agricultural Engineering, School of Agriculture, Laboratory of Remote Sensing, Spectroscopy and Geographic Information Systems, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Serafeim Theocharis
- Department of Horticulture, School of Agriculture, Laboratory of Viticulture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Thomas K Alexandridis
- Department of Hydraulics, Soil Science and Agricultural Engineering, School of Agriculture, Laboratory of Remote Sensing, Spectroscopy and Geographic Information Systems, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Stefanos Koundouras
- Department of Horticulture, School of Agriculture, Laboratory of Viticulture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Dimitrios G Karpouzas
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, 41500 (Viopolis) Larissa, Greece
| |
Collapse
|
2
|
Pineda-Mendoza RM, Gutiérrez-Ávila JL, Salazar KF, Rivera-Orduña FN, Davis TS, Zúñiga G. Comparative metabarcoding and biodiversity of gut-associated fungal assemblages of Dendroctonus species (Curculionidae: Scolytinae). Front Microbiol 2024; 15:1360488. [PMID: 38525076 PMCID: PMC10959539 DOI: 10.3389/fmicb.2024.1360488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/15/2024] [Indexed: 03/26/2024] Open
Abstract
The genus Dendroctonus is a Holarctic taxon composed of 21 nominal species; some of these species are well known in the world as disturbance agents of forest ecosystems. Under the bark of the host tree, these insects are involved in complex and dynamic associations with phoretic ectosymbiotic and endosymbiotic communities. Unlike filamentous fungi and bacteria, the ecological role of yeasts in the bark beetle holobiont is poorly understood, though yeasts were the first group to be recorded as microbial symbionts of these beetles. Our aim was characterize and compare the gut fungal assemblages associated to 14 species of Dendroctonus using the internal transcribed spacer 2 (ITS2) region. A total of 615,542 sequences were recovered yielding 248 fungal amplicon sequence variants (ASVs). The fungal diversity was represented by 4 phyla, 16 classes, 34 orders, 54 families, and 71 genera with different relative abundances among Dendroctonus species. The α-diversity consisted of 32 genera of yeasts and 39 genera of filamentous fungi. An analysis of β-diversity indicated differences in the composition of the gut fungal assemblages among bark beetle species, with differences in species and phylogenetic diversity. A common core mycobiome was recognized at the genus level, integrated mainly by Candida present in all bark beetles, Nakazawaea, Cladosporium, Ogataea, and Yamadazyma. The bipartite networks confirmed that these fungal genera showed a strong association between beetle species and dominant fungi, which are key to maintaining the structure and stability of the fungal community. The functional variation in the trophic structure was identified among libraries and species, with pathotroph-saprotroph-symbiotroph represented at the highest frequency, followed by saprotroph-symbiotroph, and saprotroph only. The overall network suggested that yeast and fungal ASVs in the gut of these beetles showed positive and negative associations among them. This study outlines a mycobiome associated with Dendroctonus nutrition and provides a starting point for future in vitro and omics approaches addressing potential ecological functions and interactions among fungal assemblages and beetle hosts.
Collapse
Affiliation(s)
- Rosa María Pineda-Mendoza
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Jorge Luis Gutiérrez-Ávila
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Kevin F. Salazar
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Flor N. Rivera-Orduña
- Laboratorio de Ecología Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Thomas S. Davis
- Department of Forest and Rangeland Stewardship, Warner College of Natural Resources, Colorado State University, Fort Collins, CO, United States
| | - Gerardo Zúñiga
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
3
|
Kakagianni M, Tsiknia M, Feka M, Vasileiadis S, Leontidou K, Kavroulakis N, Karamanoli K, Karpouzas DG, Ehaliotis C, Papadopoulou KK. Above- and below-ground microbiome in the annual developmental cycle of two olive tree varieties. FEMS MICROBES 2023; 4:xtad001. [PMID: 37333440 PMCID: PMC10117799 DOI: 10.1093/femsmc/xtad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 12/18/2022] [Accepted: 01/05/2023] [Indexed: 10/22/2023] Open
Abstract
The olive tree is a hallmark crop in the Mediterranean region. Its cultivation is characterized by an enormous variability in existing genotypes and geographical areas. As regards the associated microbial communities of the olive tree, despite progress, we still lack comprehensive knowledge in the description of these key determinants of plant health and productivity. Here, we determined the prokaryotic, fungal and arbuscular mycorrhizal fungal (AMF) microbiome in below- (rhizospheric soil, roots) and above-ground (phyllosphere and carposphere) plant compartments of two olive varieties 'Koroneiki' and 'Chondrolia Chalkidikis' grown in Southern and Northern Greece respectively, in five developmental stages along a full fruit-bearing season. Distinct microbial communities were supported in above- and below-ground plant parts; while the former tended to be similar between the two varieties/locations, the latter were location specific. In both varieties/locations, a seasonally stable root microbiome was observed over time; in contrast the plant microbiome in the other compartments were prone to changes over time, which may be related to seasonal environmental change and/or to plant developmental stage. We noted that olive roots exhibited an AMF-specific filtering effect (not observed for bacteria and general fungi) onto the rhizosphere AMF communities of the two olive varieties/locations/, leading to the assemblage of homogenous intraradical AMF communities. Finally, shared microbiome members between the two olive varieties/locations include bacterial and fungal taxa with putative functional attributes that may contribute to olive tree tolerance to abiotic and biotic stress.
Collapse
Affiliation(s)
- Myrsini Kakagianni
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa 41500, Greece
- Department of Food Science and Nutrition, School of Agricultural Sciences, University of Thessaly, Temponera str, 43100 Karditsa, Greece
| | - Myrto Tsiknia
- Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, Athens 11855, Greece
| | - Maria Feka
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa 41500, Greece
| | - Sotirios Vasileiadis
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa 41500, Greece
| | - Kleopatra Leontidou
- Laboratory of Agricultural Chemistry, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Nektarios Kavroulakis
- Institute for Olive Tree, Subtropical Plants and Viticulture, Hellenic Agricultural Organization “ELGO-Dimitra”, Agrokipio-Souda, 73164 Chania, Greece
| | - Katerina Karamanoli
- Laboratory of Agricultural Chemistry, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Dimitrios G Karpouzas
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa 41500, Greece
| | - Constantinos Ehaliotis
- Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, Athens 11855, Greece
| | - Kalliope K Papadopoulou
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa 41500, Greece
| |
Collapse
|
4
|
Bhatt K, Suyal DC, Kumar S, Singh K, Goswami P. New insights into engineered plant-microbe interactions for pesticide removal. CHEMOSPHERE 2022; 309:136635. [PMID: 36183882 DOI: 10.1016/j.chemosphere.2022.136635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/21/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Over the past decades, rapid industrialization along with the overutilization of organic pollutants/pesticides has altered the environmental circumstances. Moreover, various anthropogenic, xenobiotics and natural activities also affected plants, soil, and human health, in both direct and indirect ways. To counter this, several conventional methods are currently practiced, but are uneconomical, noxious, and is yet inefficient for large-scale application. Plant-microbe interactions are mediated naturally in an ecosystem and are practiced in several areas. Plant growth promoting rhizobacteria (PGPR) possess certain attributes affecting plant and soil consequently performing decontamination activity via a direct and indirect mechanism. PGPR also harbors indispensable genes stimulating the mineralization of several organic and inorganic compounds. This makes microbes potential candidates for contributing to sustainably remediating the harmful pesticide contaminants. There is a limited piece of information about the plant-microbe interaction pertaining predict and understand the overall interaction concerning a sustainable environment. Therefore, this review focuses on the plant-microbe interaction in the rhizosphere and inside the plant's tissues, along with the utilization augmenting the crop productivity, reduction in plant stress along with decontamination of pesticides/organic pollutants in soil for sustainable environmental management.
Collapse
Affiliation(s)
- Kalpana Bhatt
- Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA.
| | - Deep Chandra Suyal
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India.
| | - Saurabh Kumar
- ICAR-Research Complex for Eastern Region, Patna, 800014, Bihar, India
| | - Kuldeep Singh
- Department of Microbiology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, India
| | - Priya Goswami
- Department of Biotechnology, Mangalayatan University, Uttar Pradesh, India
| |
Collapse
|
5
|
Papadopoulou ES, Bachtsevani E, Papazlatani CV, Rousidou C, Brouziotis A, Lampronikou E, Tsiknia M, Vasileiadis S, Ipsilantis I, Menkissoglu-Spiroudi U, Ehaliotis C, Philippot L, Nicol GW, Karpouzas DG. The Effects of Quinone Imine, a New Potent Nitrification Inhibitor, Dicyandiamide, and Nitrapyrin on Target and Off-Target Soil Microbiota. Microbiol Spectr 2022; 10:e0240321. [PMID: 35856708 PMCID: PMC9431271 DOI: 10.1128/spectrum.02403-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/24/2022] [Indexed: 11/26/2022] Open
Abstract
Dicyandiamide (DCD) and nitrapyrin (NP) are nitrification inhibitors (NIs) used in agriculture for over 40 years. Recently, ethoxyquin (EQ) was proposed as a novel potential NI, acting through its derivative quinone imine (QI). Still, the specific activity of these NIs on the different groups of ammonia-oxidizing microorganisms (AOM), and mostly their effects on other soil microbiota remain unknown. We determined the impact of QI, and comparatively of DCD and NP, applied at two doses (regular versus high), on the function, diversity, and dynamics of target (AOM), functionally associated (nitrite-oxidizing bacteria-NOB), and off-target prokaryotic and fungal communities in two soils mainly differing in pH (5.4 versus 7.9). QI was equally effective to DCD but more effective than NP in inhibiting nitrification in the acidic soil, while in the alkaline soil QI was less efficient than DCD and NP. This was attributed to the higher activity of QI toward AOA prevailing in the acidic soil. All NIs induced significant effects on the composition of the AOB community in both soils, unlike AOA, which were less responsive. Beyond on-target effects, we noted an inhibitory effect of all NIs on the abundance of NOB in the alkaline soil, with Nitrobacter being more sensitive than Nitrospira. QI, unlike the other NIs, induced significant changes in the composition of the bacterial and fungal communities in both soils. Our findings have serious implications for the efficiency and future use of NIs on agriculture and provide unprecedented evidence for the potential off-target effects of NIs on soil microbiota. IMPORTANCE NIs could improve N use efficiency and decelerate N cycling. Still, we know little about their activity on the distinct AOM groups and about their effects on off-target soil microorganisms. Here, we studied the behavior of a new potent NI, QI, compared to established NIs. We show that (i) the variable efficacy of NIs across soils with different pH reflects differences in the inherent specific activity of the NIs to AOA and AOB; (ii) beyond AOM, NIs exhibit negative effects on other nitrifiers, like NOB; (iii) QI was the sole NI that significantly affected prokaryotic and fungal diversity. Our findings (i) highlight the need for novel NI strategies that consider the variable sensitivity of AOM groups to the different NIs (ii) identify QI as a potent AOA inhibitor, and (iii) stress the need for monitoring NIs' impact on off-target soil microorganisms to ensure sustainable N fertilizers use and soil ecosystem functioning.
Collapse
Affiliation(s)
- Evangelia S. Papadopoulou
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
- Laboratory of Environmental Microbiology, Department of Environmental Sciences, University of Thessaly, Larissa, Greece
| | - Eleftheria Bachtsevani
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Christina V. Papazlatani
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Constantina Rousidou
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Antonios Brouziotis
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Eleni Lampronikou
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Myrto Tsiknia
- Laboratory of Soils and Agricultural Chemistry, Agricultural University of Athens, Athens, Greece
| | - Sotirios Vasileiadis
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Ioannis Ipsilantis
- Laboratory of Soil Sciences, School of Agriculture, Forestry and Environment, Faculty of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Urania Menkissoglu-Spiroudi
- Pesticide Science Laboratory, School of Agriculture, Forestry and Environment, Faculty of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Constantinos Ehaliotis
- Laboratory of Soils and Agricultural Chemistry, Agricultural University of Athens, Athens, Greece
| | - Laurent Philippot
- Université Bourgogne Franche-Comté, INRAE, AgroSup Dijon, Agroécologie, Dijon, France
| | - Graeme W. Nicol
- Environmental Microbial Genomics Group, Laboratoire Ampère, École Centrale de Lyon, CNRS UMR 5005, Université de Lyon, Lyon, France
| | - Dimitrios G. Karpouzas
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| |
Collapse
|
6
|
Leaf-Associated Epiphytic Fungi of Gingko biloba, Pinus bungeana and Sabina chinensis Exhibit Delicate Seasonal Variations. J Fungi (Basel) 2022; 8:jof8060631. [PMID: 35736114 PMCID: PMC9225447 DOI: 10.3390/jof8060631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023] Open
Abstract
Plant-leaf surface on Earth harbors complex microbial communities that influence plant productivity and health. To gain a detailed understanding of the assembly and key drivers of leaf microbial communities, especially for leaf-associated fungi, we investigated leaf-associated fungal communities in two seasons for three plant species at two sites by high-throughput sequencing. The results reveal a strong impact of growing season and plant species on fungal community composition, exhibiting clear temporal patterns in abundance and diversity. For the deciduous tree Gingko biloba, the number of enriched genera in May was much higher than that in October. The number of enriched genera in the two evergreen trees Pinus bungeana and Sabina chinensis was slightly higher in October than in May. Among the genus-level biomarkers, the abundances of Alternaria, Cladosporium and Filobasidium were significantly higher in October than in May in the three tree species. Additionally, network correlations between the leaf-associated fungi of G. biloba were more complex in May than those in October, containing extra negative associations, which was more obvious than the network correlation changes of leaf-associated fungi of the two evergreen plant species. Overall, the fungal diversity and community composition varied significantly between different growing seasons and host plant species.
Collapse
|