1
|
Rabbani G, Afiq-Rosli L, Lee JN, Waheed Z, Wainwright BJ. Effects of life history strategy on the diversity and composition of the coral holobiont communities of Sabah, Malaysia. Sci Rep 2025; 15:4459. [PMID: 39915510 PMCID: PMC11802840 DOI: 10.1038/s41598-025-88231-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/28/2025] [Indexed: 02/09/2025] Open
Abstract
Coral-associated microbes have essential roles in promoting and regulating host function and health. As climate change advances and other environmental perturbations increasingly impact corals, it is becoming ever more important that we understand the composition of the microbial communities hosted. Without this baseline it is impossible to assess the magnitude and direction of any future changes in microbial community structure. Here, we characterised both the bacterial and Symbiodiniaceae communities in four coral species (Diploastrea heliopora, Porites lutea, Pachyseris speciosa, and Pocillopora acuta) collected from Sabah, Malaysia. Our findings reveal distinct microbial communities associated with different coral species tending to reflect the varied life history strategies of their hosts. Microbial communities could be differentiated by collection site, with shifts in Symbiodiniaceae communities towards more stress tolerant types seen in samples collected on the shallow Sunda Shelf. Additionally, we identified a core microbiome within species and a more discrete core between all species. We show bacterial and Symbiodiniaceae communities are structured by host species and appear to be influenced by host life history characteristics. Furthermore, we identified a core microbiome for each species finding that several amplicon sequence variants were shared between hosts, this suggests a key role in coral health regardless of species identity. Given the paucity of work performed in megadiverse regions such as the Coral Triangle, this research takes on increased importance in our efforts to understand how the coral holobiont functions and how it could be altered as climate change advances.
Collapse
Affiliation(s)
- Golam Rabbani
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Yale-NUS College, National University of Singapore, 16 College Avenue West, Singapore, 138527, Singapore
| | - Lutfi Afiq-Rosli
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Tropical Marine Science Institute, National University of Singapore, Singapore, Singapore
| | - Jen Nie Lee
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Zarinah Waheed
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Benjamin J Wainwright
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
- Yale-NUS College, National University of Singapore, 16 College Avenue West, Singapore, 138527, Singapore.
| |
Collapse
|
2
|
Bollati E, Hughes DJ, Suggett DJ, Raina JB, Kühl M. Microscale sampling of the coral gastrovascular cavity reveals a gut-like microbial community. Anim Microbiome 2024; 6:55. [PMID: 39380028 PMCID: PMC11460067 DOI: 10.1186/s42523-024-00341-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024] Open
Abstract
Animal guts contain numerous microbes, which are critical for nutrient assimilation and pathogen defence. While corals and other Cnidaria lack a true differentiated gut, they possess semi-enclosed gastrovascular cavities (GVCs), where vital processes such as digestion, reproduction and symbiotic exchanges take place. The microbiome harboured in GVCs is therefore likely key to holobiont fitness, but remains severely understudied due to challenges of working in these small compartments. Here, we developed minimally invasive methodologies to sample the GVC of coral polyps and characterise the microbial communities harboured within. We used glass capillaries, low dead volume microneedles, or nylon microswabs to sample the gastrovascular microbiome of individual polyps from six species of corals, then applied low-input DNA extraction to characterise the microbial communities from these microliter volume samples. Microsensor measurements of GVCs revealed anoxic or hypoxic micro-niches, which persist even under prolonged illumination with saturating irradiance. These niches harboured microbial communities enriched in putatively microaerophilic or facultatively anaerobic taxa, such as Epsilonproteobacteria. Some core taxa found in the GVC of Lobophyllia hemprichii from the Great Barrier Reef were also detected in conspecific colonies held in aquaria, indicating that these associations are unlikely to be transient. Our findings suggest that the coral GVC is chemically and microbiologically similar to the gut of higher Metazoa. Given the importance of gut microbiomes in mediating animal health, harnessing the coral "gut microbiome" may foster novel active interventions aimed at increasing the resilience of coral reefs to the climate crisis.
Collapse
Affiliation(s)
- Elena Bollati
- Marine Biology Section, Department of Biology, University of Copenhagen, Helsingør, 3000, Denmark.
| | - David J Hughes
- National Sea Simulator, Australian Institute of Marine Science, Townsville, QLD, 4810, Australia
| | - David J Suggett
- KAUST Coral Restoration Initiative (KCRI) and Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Jean-Baptiste Raina
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Michael Kühl
- Marine Biology Section, Department of Biology, University of Copenhagen, Helsingør, 3000, Denmark
| |
Collapse
|
3
|
Zhao J, Wang H, Zheng L, Wang Q, Song Y. Comparison of pristine and aged poly-L-lactic acid and polyethylene terephthalate as microbe carriers in surface water: Displaying apparent differences. Int J Biol Macromol 2024; 280:136014. [PMID: 39326610 DOI: 10.1016/j.ijbiomac.2024.136014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Microplastics (MPs) in water environment are potential carriers for many substances. In this study, pristine degradable poly-L-lactic acid (PLLA) and non-degradable polyethylene terephthalate (PET) MPs and their UV-aged counterparts were exposed to the Yuhangtang River (Y-River). The results showed that the surface morphology and structure of all MPs markedly changed after exposure. Oxygen-containing functional groups and hydrophilicity of aged MPs were higher compared with their pristine counterparts, and further increased after river exposure. The content of extracellular polymers (EPS) of biofilms on MPs increased with the exposure time, and was higher on aged MPs than on pristine ones. Similar results were obtained for most antibiotic resistance genes (ARGs) between pristine and aged MPs, and ARGs were positively related to pathogens. Dominant bacteria on all MPs were Proteobacteria (51.3 %-81.1 %), Chloroflexi (5.2 %-20.9 %) and Firmicutes (0.4 %-15.9 %), which markedly differed from the Y-River community. Aged MPs could enrich more microbes but relatively fewer bacterial species than pristine MPs, and higher enrichment and species diversity were observed on PLLA compared with PET. This study demonstrates that MPs are highly effective carriers for microbes, and the results provide valuable insights for evaluating the potential impact of bio-MPs on aquatic ecological environment.
Collapse
Affiliation(s)
- Jianqi Zhao
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Hua Wang
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Lei Zheng
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Qun Wang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Yali Song
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China.
| |
Collapse
|
4
|
Wainwright BJ, Leon J, Vilela E, Hickman KJE, Caldwell J, Aimone B, Bischoff P, Ohran M, Morelli MW, Arlyza IS, Marwayana ON, Zahn G. Wallace's line structures seagrass microbiota and is a potential barrier to the dispersal of marine bacteria. ENVIRONMENTAL MICROBIOME 2024; 19:23. [PMID: 38637894 PMCID: PMC11027274 DOI: 10.1186/s40793-024-00568-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/08/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND The processes that shape microbial biogeography are not well understood, and concepts that apply to macroorganisms, like dispersal barriers, may not affect microorganisms in the same predictable ways. To better understand how known macro-scale biogeographic processes can be applied at micro-scales, we examined seagrass associated microbiota on either side of Wallace's line to determine the influence of this cryptic dispersal boundary on the community structure of microorganisms. Communities were examined from twelve locations throughout Indonesia on either side of this theoretical line. RESULTS We found significant differences in microbial community structure on either side of this boundary (R2 = 0.09; P = 0.001), and identified seven microbial genera as differentially abundant on either side of the line, six of these were more abundant in the West, with the other more strongly associated with the East. Genera found to be differentially abundant had significantly smaller minimum cell dimensions (GLM: t923 = 59.50, P < 0.001) than the overall community. CONCLUSION Despite the assumed excellent dispersal ability of microbes, we were able to detect significant differences in community structure on either side of this cryptic biogeographic boundary. Samples from the two closest islands on opposite sides of the line, Bali and Komodo, were more different from each other than either was to its most distant island on the same side. We suggest that limited dispersal across this barrier coupled with habitat differences are primarily responsible for the patterns observed. The cryptic processes that drive macroorganism community divergence across this region may also play a role in the bigeographic patterns of microbiota.
Collapse
Affiliation(s)
- Benjamin J Wainwright
- Yale-NUS College, National University of Singapore, 16 College Avenue West, Singapore, 138527, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| | - Josh Leon
- Biology Department, Utah Valley University, 800 W University Parkway, Orem, UT, 84058, USA
| | - Ernie Vilela
- Biology Department, Utah Valley University, 800 W University Parkway, Orem, UT, 84058, USA
| | - K J E Hickman
- Biology Department, Utah Valley University, 800 W University Parkway, Orem, UT, 84058, USA
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Jensen Caldwell
- Biology Department, Utah Valley University, 800 W University Parkway, Orem, UT, 84058, USA
| | - Behlee Aimone
- Biology Department, Utah Valley University, 800 W University Parkway, Orem, UT, 84058, USA
| | - Porter Bischoff
- Biology Department, Utah Valley University, 800 W University Parkway, Orem, UT, 84058, USA
| | - Marissa Ohran
- Biology Department, Utah Valley University, 800 W University Parkway, Orem, UT, 84058, USA
| | - Magnolia W Morelli
- Biology Department, Utah Valley University, 800 W University Parkway, Orem, UT, 84058, USA
| | - Irma S Arlyza
- Research Center for Oceanography, National Research and Innovation Agency (BRIN), Jl. Pasir Putih I, Ancol Timur, Jakarta, 14430, Indonesia
| | - Onny N Marwayana
- Research Center for Ecology and Ethnobiology, National Research and Innovation Agency (BRIN), Jl. Raya Jakarta-Bogor KM 46, Cibinong, Bogor, 16911, Indonesia
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles (UCLA), 610 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
| | - Geoffrey Zahn
- Biology Department, Utah Valley University, 800 W University Parkway, Orem, UT, 84058, USA
| |
Collapse
|
5
|
Pei PT, Liu L, Jing XL, Liu XL, Sun LY, Gao C, Cui XH, Wang J, Ma ZL, Song SY, Sun ZH, Wang CY. Meta-analysis reveals variations in microbial communities from diverse stony coral taxa at different geographical distances. Front Microbiol 2023; 14:1087750. [PMID: 37520377 PMCID: PMC10374221 DOI: 10.3389/fmicb.2023.1087750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
Coral-associated microbial communities play a vital role in underpinning the health and resilience of reef ecosystems. Previous studies have demonstrated that the microbial communities of corals are affected by multiple factors, mainly focusing on host species and geolocation. However, up-to-date, insight into how the coral microbiota is structured by vast geographic distance with rich taxa is deficient. In the present study, the coral microbiota in six stony coral species collected from the coastal area of three countries, including United States of America (USA), Australia and Fiji, was used for analysis. It was found that the geographic influence on the coral microbiota was stronger than the coral host influence, even though both were significant. Interestingly, the contribution of the deterministic process to bacterial community composition increased as geographical distance grew. A total of 65 differentially abundant features of functions in coral microbial communities were identified to be associated with three geolocations. While in the same coastal area of USA, the similar relationship of coral microbiota was consistent with the phylogenetic relationship of coral hosts. In contrast to the phylum Proteobacteria, which was most abundant in other coral species in USA, Cyanobacteria was the most abundant phylum in Orbicella faveolata. The above findings may help to better understand the multiple natural driving forces shaping the coral microbial community to contribute to defining the healthy baseline of the coral microbiome.
Collapse
Affiliation(s)
- Peng-Tao Pei
- Key Laboratory of Marine Drugs, The Ministry of Education of China, Institute of Evolution and Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- School of Pharmacy, Fujian Health College, Fuzhou, China
- Single-Cell Center, Chinese Academy of Science Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Lu Liu
- School of Pharmacy, Fujian Health College, Fuzhou, China
- Single-Cell Center, Chinese Academy of Science Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Li Jing
- High Performance Computing and System Simulation Platform, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Xiao-Lu Liu
- Single-Cell Center, Chinese Academy of Science Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lu-Yang Sun
- Single-Cell Center, Chinese Academy of Science Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chen Gao
- Single-Cell Center, Chinese Academy of Science Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Xiao-Han Cui
- Single-Cell Center, Chinese Academy of Science Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- Single-Cell Center, Chinese Academy of Science Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Department of Mathematics, Ocean University of China, Qingdao, China
| | - Zhong-Lian Ma
- Key Laboratory of Marine Drugs, The Ministry of Education of China, Institute of Evolution and Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Shu-Yue Song
- Key Laboratory of Marine Drugs, The Ministry of Education of China, Institute of Evolution and Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Zhi-Hua Sun
- Department of Mathematics, Ocean University of China, Qingdao, China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, Institute of Evolution and Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
6
|
Xu M, Cheng K, Xiao B, Tong M, Cai Z, Jong MC, Chen G, Zhou J. Bacterial Communities Vary from Different Scleractinian Coral Species and between Bleached and Non-Bleached Corals. Microbiol Spectr 2023; 11:e0491022. [PMID: 37191552 PMCID: PMC10269541 DOI: 10.1128/spectrum.04910-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Bleaching is one of the most relevant factors implicated in the integrity of coral reef ecosystems, with the increasing frequency and intensity of damaging events representing a serious threat to reef biodiversity. Here, we analyzed changes in coral-associated bacteria from three types of non-bleached and bleached scleractinian corals (Acropora digitifera, Galaxea fascicularis, and Porites pukoensis) in Hainan Luhuitou peninsula coastal areas. The community structure of symbiotic bacteria differed significantly among the three apparently healthy corals. The bleached corals had higher bacterial alpha diversity and some specific bacteria genera, including Ruegeria, Methyloceanibacter, Filomicrobium, Halioglobus, Rubripirellula, Rhodopirellula, Silicimonas, Blastopirellula, Sva0996 marine group, Woeseia, and unclassified_c_Gammaproteobacteria, were consistently increased in bleached groups. Network analysis revealed significantly different degrees of modularity between bleached and non-bleached groups at the bacterial genus level, and a higher proportion of links was dominated by positive co-occurrences. Functional prediction analysis illustrated that coral-associated bacteria remained relatively consistent in the bleached and non-bleached groups. Structure equation modeling revealed that the bacterial community diversity and function were directly influenced by host and environment factors. These findings suggested that coral-associated bacterial responses to bleaching occur in a host-dependent manner, informing novel strategies for restoring coral and aiding adaption to bleaching stress. IMPORTANCE Accumulating evidence indicates that coral-associated bacteria play an important role in the health of holobionts. However, the variability of the symbiotic bacterial community structure among coral species with different coral health statuses remains largely unknown. Here, we investigated three apparent non-bleached (healthy) and bleached coral species (sampled in situ), involving related symbiotic bacterial profiles, including composition, alpha diversity, network relationship, and potential function. Structural equation modeling analysis was used to analyze the relationship between coral status and abiotic and biotic factors. The bacterial community structure of different groups was shown to exhibit host-specific traits. Both host and environmental impacts had primary effects on coral-associated microbial communities. Future studies are needed to identify the mechanisms that mediate divergent microbial consortia.
Collapse
Affiliation(s)
- Meiting Xu
- School of Environment, Harbin Institute of Technology, Harbin, People’s Republic of China
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong Province, People’s Republic of China
| | - Keke Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, People’s Republic of China
| | - Baohua Xiao
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, People’s Republic of China
| | - Mengmeng Tong
- Ocean College, Zhejiang University, Zhoushan, People’s Republic of China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, People’s Republic of China
| | - Mui-Choo Jong
- Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, People’s Republic of China
| | - Guofu Chen
- School of Environment, Harbin Institute of Technology, Harbin, People’s Republic of China
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong Province, People’s Republic of China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, People’s Republic of China
| |
Collapse
|
7
|
Wainwright BJ, Millar T, Bowen L, Semon L, Hickman KJE, Lee JN, Yeo ZY, Zahn G. The core mangrove microbiome reveals shared taxa potentially involved in nutrient cycling and promoting host survival. ENVIRONMENTAL MICROBIOME 2023; 18:47. [PMID: 37264467 DOI: 10.1186/s40793-023-00499-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 05/01/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Microbes have fundamental roles underpinning the functioning of our planet, they are involved in global carbon and nutrient cycling, and support the existence of multicellular life. The mangrove ecosystem is nutrient limited and if not for microbial cycling of nutrients, life in this harsh environment would likely not exist. The mangroves of Southeast Asia are the oldest and most biodiverse on the planet, and serve vital roles helping to prevent shoreline erosion, act as nursery grounds for many marine species and sequester carbon. Despite these recognised benefits and the importance of microbes in these ecosystems, studies examining the mangrove microbiome in Southeast Asia are scarce.cxs RESULTS: Here we examine the microbiome of Avicenia alba and Sonneratia alba and identify a core microbiome of 81 taxa. A further eight taxa (Pleurocapsa, Tunicatimonas, Halomonas, Marinomonas, Rubrivirga, Altererythrobacte, Lewinella, and Erythrobacter) were found to be significantly enriched in mangrove tree compartments suggesting key roles in this microbiome. The majority of those identified are involved in nutrient cycling or have roles in the production of compounds that promote host survival. CONCLUSION The identification of a core microbiome furthers our understanding of mangrove microbial biodiversity, particularly in Southeast Asia where studies such as this are rare. The identification of significantly different microbial communities between sampling sites suggests environmental filtering is occurring, with hosts selecting for a microbial consortia most suitable for survival in their immediate environment. As climate change advances, many of these microbial communities are predicted to change, however, without knowing what is currently there, it is impossible to determine the magnitude of any deviations. This work provides an important baseline against which change in microbial community can be measured.
Collapse
Affiliation(s)
- Benjamin J Wainwright
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore.
- Yale-NUS College, National University of Singapore, 16 College Avenue West, Singapore, 138527, Singapore.
| | - Trevor Millar
- Biology Department, Utah Valley University, 800 W University Parkway, Orem, UT, 84058, USA
| | - Lacee Bowen
- Biology Department, Utah Valley University, 800 W University Parkway, Orem, UT, 84058, USA
| | - Lauren Semon
- Biology Department, Utah Valley University, 800 W University Parkway, Orem, UT, 84058, USA
| | - K J E Hickman
- Biology Department, Utah Valley University, 800 W University Parkway, Orem, UT, 84058, USA
| | - Jen Nie Lee
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Malaysia
| | - Zhi Yi Yeo
- Yale-NUS College, National University of Singapore, 16 College Avenue West, Singapore, 138527, Singapore
| | - Geoffrey Zahn
- Biology Department, Utah Valley University, 800 W University Parkway, Orem, UT, 84058, USA
| |
Collapse
|
8
|
Bacterial and Fungal Co-Occurrence in the Nudibranch, Pteraeolidia semperi. LIFE (BASEL, SWITZERLAND) 2022; 12:life12121988. [PMID: 36556353 PMCID: PMC9786341 DOI: 10.3390/life12121988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Despite the increasing recognition and importance surrounding bacterial and fungal interactions, and their critical contributions to ecosystem functioning and host fitness, studies examining their co-occurrence remain in their infancy. Similarly, studies have yet to characterise the bacterial and fungal communities associated with nudibranchs or their core microbial members. Doing this can advance our understanding of how the microbiome helps a host adapt and persist in its environment. In this study, we characterised the bacterial and fungal communities associated with 46 Pteraeolidia semperi nudibranch individuals collected from four offshore islands in Singapore. We found no distinct spatial structuring of microbial community, richness, or diversity across sampling locations. The bacterial genera Mycoplasma and Endozoicomonas were found across all samples and islands. The fungal genus Leucoagaricus was found with the highest occurrence, but was not found everywhere, and this is the first record of its reported presence in marine environments. The co-occurrence network suggests that bacterial and fungal interactions are limited, but we identified the bacterial family Colwelliaceae as a potential keystone taxon with its disproportionately high number of edges. Furthermore, Colwelliaceae clusters together with other bacterial families such as Pseudoalteromonadaceae and Alteromonadaceae, all of which have possible roles in the digestion of food.
Collapse
|