1
|
Takagi W, Masuda A, Shimoyama K, Tokunaga K, Hyodo S, Sato‐Takabe Y. Low microbial abundance and community diversity in the egg capsule of the oviparous cloudy catshark (Scyliorhinus torazame) during oviposition. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70025. [PMID: 39438677 PMCID: PMC11496042 DOI: 10.1111/1758-2229.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Vertebrate embryos are protected from bacterial infection by various maternally derived factors, yet little is known about the defence mechanisms in elasmobranchs. This study aimed to characterize the intracapsular environment of freshly laid eggs of the oviparous catshark (Scyliorhinus torazame) by investigating the microbial abundance and microbiota to understand its potential contribution to embryonic defence. The egg capsule of oviparous elasmobranchs is tightly sealed until pre-hatching, after which seawater flows into the capsule, exposing the embryos to the surrounding seawater. We found that early embryos were highly vulnerable to environmental pathogens, suggesting that the embryos are somehow protected from infection before pre-hatching. Indeed, the intracapsular environment of freshly laid eggs exhibited significantly low bacterial density, maintained until pre-hatching. Furthermore, the microbiome inside eggs just after oviposition differed markedly from those of rearing seawater and adult oviducal gland epithelia; these eggs were predominantly populated by an unidentified genus of Sphingomonadaceae. Overall, this study provides compelling evidence that early embryos of oviparous cloudy catshark are incubated in a clean intracapsular environment that potentially plays a significant role in embryonic development in oviparous elasmobranchs.
Collapse
Affiliation(s)
- Wataru Takagi
- Laboratory of Physiology, Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaChibaJapan
| | - Ayami Masuda
- Laboratory of Physiology, Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaChibaJapan
| | - Koya Shimoyama
- Laboratory of Physiology, Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaChibaJapan
| | | | - Susumu Hyodo
- Laboratory of Physiology, Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaChibaJapan
| | - Yuki Sato‐Takabe
- Marine Microbiology, Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaChibaJapan
- Department of Food and NutritionJapan Women's UniversityBunkyo‐kuTokyoJapan
- School of EconomicsSenshu UniversityKawasakiKanagawaJapan
| |
Collapse
|
2
|
Doane MP, Reed MB, McKerral J, Farias Oliveira Lima L, Morris M, Goodman AZ, Johri S, Papudeshi B, Dillon T, Turnlund AC, Peterson M, Mora M, de la Parra Venegas R, Pillans R, Rohner CA, Pierce SJ, Legaspi CG, Araujo G, Ramirez-Macias D, Edwards RA, Dinsdale EA. Emergent community architecture despite distinct diversity in the global whale shark (Rhincodon typus) epidermal microbiome. Sci Rep 2023; 13:12747. [PMID: 37550406 PMCID: PMC10406844 DOI: 10.1038/s41598-023-39184-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 07/20/2023] [Indexed: 08/09/2023] Open
Abstract
Microbiomes confer beneficial physiological traits to their host, but microbial diversity is inherently variable, challenging the relationship between microbes and their contribution to host health. Here, we compare the diversity and architectural complexity of the epidermal microbiome from 74 individual whale sharks (Rhincodon typus) across five aggregations globally to determine if network properties may be more indicative of the microbiome-host relationship. On the premise that microbes are expected to exhibit biogeographic patterns globally and that distantly related microbial groups can perform similar functions, we hypothesized that microbiome co-occurrence patterns would occur independently of diversity trends and that keystone microbes would vary across locations. We found that whale shark aggregation was the most important factor in discriminating taxonomic diversity patterns. Further, microbiome network architecture was similar across all aggregations, with degree distributions matching Erdos-Renyi-type networks. The microbiome-derived networks, however, display modularity indicating a definitive microbiome structure on the epidermis of whale sharks. In addition, whale sharks hosted 35 high-quality metagenome assembled genomes (MAGs) of which 25 were present from all sample locations, termed the abundant 'core'. Two main MAG groups formed, defined here as Ecogroup 1 and 2, based on the number of genes present in metabolic pathways, suggesting there are at least two important metabolic niches within the whale shark microbiome. Therefore, while variability in microbiome diversity is high, network structure and core taxa are inherent characteristics of the epidermal microbiome in whale sharks. We suggest the host-microbiome and microbe-microbe interactions that drive the self-assembly of the microbiome help support a functionally redundant abundant core and that network characteristics should be considered when linking microbiomes with host health.
Collapse
Affiliation(s)
| | - Michael B Reed
- North Carolina Agricultural and Technical State University, Greensboro, NC, USA
| | | | | | - Megan Morris
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | | | - Shaili Johri
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA
| | | | | | - Abigail C Turnlund
- Australian Centre for Ecogenomics, University of Queensland, St Lucia, QLD, Australia
| | | | - Maria Mora
- San Diego State University, San Diego, CA, USA
| | | | | | | | | | | | - Gonzalo Araujo
- Department of Biological and Environmental Sciences, Qatar University, Doha, Qatar
- Marine Research and Conservation Foundation, Lydeard St Lawrence, Somerset, UK
| | - Deni Ramirez-Macias
- Tiburon Ballena Mexico de Conciencia Mexico, La Paz, Baja California Sur, Mexico
| | | | | |
Collapse
|
3
|
Bregman G, Lalzar M, Livne L, Bigal E, Zemah-Shamir Z, Morick D, Tchernov D, Scheinin A, Meron D. Preliminary study of shark microbiota at a unique mix-species shark aggregation site, in the Eastern Mediterranean Sea. Front Microbiol 2023; 14:1027804. [PMID: 36910211 PMCID: PMC9996248 DOI: 10.3389/fmicb.2023.1027804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/16/2023] [Indexed: 02/25/2023] Open
Abstract
Sharks, as apex predators, play an essential ecological role in shaping the marine food web and maintaining healthy and balanced marine ecosystems. Sharks are sensitive to environmental changes and anthropogenic pressure and demonstrate a clear and rapid response. This designates them a "keystone" or "sentinel" group that may describe the structure and function of the ecosystem. As a meta-organism, sharks offer selective niches (organs) for microorganisms that can provide benefits for their hosts. However, changes in the microbiota (due to physiological or environmental changes) can turn the symbiosis into a dysbiosis and may affect the physiology, immunity and ecology of the host. Although the importance of sharks within the ecosystem is well known, relatively few studies have focused on the microbiome aspect, especially with long-term sampling. Our study was conducted at a site of coastal development in Israel where a mixed-species shark aggregation (November-May) is observed. The aggregation includes two shark species, the dusky (Carcharhinus obscurus) and sandbar (Carcharhinus plumbeus) which segregate by sex (females and males, respectively). In order to characterize the bacterial profile and examine the physiological and ecological aspects, microbiome samples were collected from different organs (gills, skin, and cloaca) from both shark species over 3 years (sampling seasons: 2019, 2020, and 2021). The bacterial composition was significantly different between the shark individuals and the surrounding seawater and between the shark species. Additionally, differences were apparent between all the organs and the seawater, and between the skin and gills. The most dominant groups for both shark species were Flavobacteriaceae, Moraxellaceae, and Rhodobacteraceae. However, specific microbial biomarkers were also identified for each shark. An unexpected difference in the microbiome profile and diversity between the 2019-2020 and 2021 sampling seasons, revealed an increase in the potential pathogen Streptococcus. The fluctuations in the relative abundance of Streptococcus between the months of the third sampling season were also reflected in the seawater. Our study provides initial information on shark microbiome in the Eastern Mediterranean Sea. In addition, we demonstrated that these methods were also able to describe environmental episodes and the microbiome is a robust measure for long-term ecological research.
Collapse
Affiliation(s)
- Goni Bregman
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Maya Lalzar
- Bioinformatics Services Unit, University of Haifa, Haifa, Israel
| | - Leigh Livne
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Eyal Bigal
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Ziv Zemah-Shamir
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Danny Morick
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Dan Tchernov
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Aviad Scheinin
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Dalit Meron
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
4
|
Kerr EN, Papudeshi B, Haggerty M, Wild N, Goodman AZ, Lima LFO, Hesse RD, Skye A, Mallawaarachchi V, Johri S, Parker S, Dinsdale EA. Stingray epidermal microbiomes are species-specific with local adaptations. Front Microbiol 2023; 14:1031711. [PMID: 36937279 PMCID: PMC10017458 DOI: 10.3389/fmicb.2023.1031711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/07/2023] [Indexed: 03/06/2023] Open
Abstract
Marine host-associated microbiomes are affected by a combination of species-specific (e.g., host ancestry, genotype) and habitat-specific features (e.g., environmental physiochemistry and microbial biogeography). The stingray epidermis provides a gradient of characteristics from high dermal denticles coverage with low mucus to reduce dermal denticles and high levels of mucus. Here we investigate the effects of host phylogeny and habitat by comparing the epidermal microbiomes of Myliobatis californica (bat rays) with a mucus rich epidermis, and Urobatis halleri (round rays) with a mucus reduced epidermis from two locations, Los Angeles and San Diego, California (a 150 km distance). We found that host microbiomes are species-specific and distinct from the water column, however composition of M. californica microbiomes showed more variability between individuals compared to U. halleri. The variability in the microbiome of M. californica caused the microbial taxa to be similar across locations, while U. halleri microbiomes were distinct across locations. Despite taxonomic differences, Shannon diversity is the same across the two locations in U. halleri microbiomes suggesting the taxonomic composition are locally adapted, but diversity is maintained by the host. Myliobatis californica and U. halleri microbiomes maintain functional similarity across Los Angeles and San Diego and each ray showed several unique functional genes. Myliobatis californica has a greater relative abundance of RNA Polymerase III-like genes in the microbiome than U. halleri, suggesting specific adaptations to a heavy mucus environment. Construction of Metagenome Assembled Genomes (MAGs) identified novel microbial species within Rhodobacteraceae, Moraxellaceae, Caulobacteraceae, Alcanivoracaceae and Gammaproteobacteria. All MAGs had a high abundance of active RNA processing genes, heavy metal, and antibiotic resistant genes, suggesting the stingray mucus supports high microbial growth rates, which may drive high levels of competition within the microbiomes increasing the antimicrobial properties of the microbes.
Collapse
Affiliation(s)
- Emma N. Kerr
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
- *Correspondence: Emma N. Kerr,
| | - Bhavya Papudeshi
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Miranda Haggerty
- California Department of Fish and Wildlife, San Diego, CA, United States
| | - Natasha Wild
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Asha Z. Goodman
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Lais F. O. Lima
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Ryan D. Hesse
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Amber Skye
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Vijini Mallawaarachchi
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Shaili Johri
- Hopkins Maine Station, Stanford University, Stanford, CA, United States
| | - Sophia Parker
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Elizabeth A. Dinsdale
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
- Elizabeth A. Dinsdale,
| |
Collapse
|
5
|
Goodman AZ, Papudeshi B, Doane MP, Mora M, Kerr E, Torres M, Nero Moffatt J, Lima L, Nosal AP, Dinsdale E. Epidermal Microbiomes of Leopard Sharks ( Triakis semifasciata) Are Consistent across Captive and Wild Environments. Microorganisms 2022; 10:microorganisms10102081. [PMID: 36296361 PMCID: PMC9610875 DOI: 10.3390/microorganisms10102081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 01/24/2023] Open
Abstract
Characterizations of shark-microbe systems in wild environments have outlined patterns of species-specific microbiomes; however, whether captivity affects these trends has yet to be determined. We used high-throughput shotgun sequencing to assess the epidermal microbiome belonging to leopard sharks (Triakis semifasciata) in captive (Birch Aquarium, La Jolla California born and held permanently in captivity), semi-captive (held in captivity for <1 year in duration and scheduled for release; Scripps Institute of Oceanography, San Diego, CA, USA) and wild environments (Moss Landing and La Jolla, CA, USA). Here, we report captive environments do not drive epidermal microbiome compositions of T. semifasciata to significantly diverge from wild counterparts as life-long captive sharks maintain a species-specific epidermal microbiome resembling those associated with semi-captive and wild populations. Major taxonomic composition shifts observed were inverse changes of top taxonomic contributors across captive duration, specifically an increase of Pseudoalteromonadaceae and consequent decrease of Pseudomonadaceae relative abundance as T. semifasciata increased duration in captive conditions. Moreover, we show captivity did not lead to significant losses in microbial α-diversity of shark epidermal communities. Finally, we present a novel association between T. semifasciata and the Muricauda genus as Metagenomes associated genomes revealed a consistent relationship across captive, semi-captive, and wild populations. Since changes in microbial communities is often associated with poor health outcomes, our report illustrates that epidermally associated microbes belonging to T. semifasciata are not suffering detrimental impacts from long or short-term captivity. Therefore, conservation programs which house sharks in aquariums are providing a healthy environment for the organisms on display. Our findings also expand on current understanding of shark epidermal microbiomes, explore the effects of ecologically different scenarios on benthic shark microbe associations, and highlight novel associations that are consistent across captive gradients.
Collapse
Affiliation(s)
- Asha Z. Goodman
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
- Correspondence: (A.Z.G.); (E.D.)
| | - Bhavya Papudeshi
- College of Science and Engineering, Flinders University, Bedford Park, SA 3929, Australia
| | - Michael P. Doane
- College of Science and Engineering, Flinders University, Bedford Park, SA 3929, Australia
| | - Maria Mora
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Emma Kerr
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Melissa Torres
- Scripps Institution of Oceanography, Universtity of California, San Diego, CA 92093, USA
| | - Jennifer Nero Moffatt
- Scripps Institution of Oceanography, Universtity of California, San Diego, CA 92093, USA
| | - Lais Lima
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Andrew P. Nosal
- Department of Biology, Point Loma Nazarene University, San Diego, CA 92106, USA
| | - Elizabeth Dinsdale
- College of Science and Engineering, Flinders University, Bedford Park, SA 3929, Australia
- Correspondence: (A.Z.G.); (E.D.)
| |
Collapse
|
6
|
Hesse RD, Roach M, Kerr EN, Papudeshi B, Lima LFO, Goodman AZ, Hoopes L, Scott M, Meyer L, Huveneers C, Dinsdale EA. Phage Diving: An Exploration of the Carcharhinid Shark Epidermal Virome. Viruses 2022; 14:1969. [PMID: 36146775 PMCID: PMC9500685 DOI: 10.3390/v14091969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022] Open
Abstract
The epidermal microbiome is a critical element of marine organismal immunity, but the epidermal virome of marine organisms remains largely unexplored. The epidermis of sharks represents a unique viromic ecosystem. Sharks secrete a thin layer of mucus which harbors a diverse microbiome, while their hydrodynamic dermal denticles simultaneously repel environmental microbes. Here, we sampled the virome from the epidermis of three shark species in the family Carcharhinidae: the genetically and morphologically similar Carcharhinus obscurus (n = 6) and Carcharhinus galapagensis (n = 10) and the outgroup Galeocerdo cuvier (n = 15). Virome taxonomy was characterized using shotgun metagenomics and compared with a suite of multivariate analyses. All three sharks retain species-specific but highly similar epidermal viromes dominated by uncharacterized bacteriophages which vary slightly in proportional abundance within and among shark species. Intraspecific variation was lower among C. galapagensis than among C. obscurus and G. cuvier. Using both the annotated and unannotated reads, we were able to determine that the Carcharhinus galapagensis viromes were more similar to that of G. cuvier than they were to that of C. obscurus, suggesting that behavioral niche may be a more prominent driver of virome than host phylogeny.
Collapse
Affiliation(s)
- Ryan D. Hesse
- Flinders Accelerator for Microbiome Exploration, Flinders University, Surt Rd, Bedford Park, SA 5042, Australia
| | - Michael Roach
- Flinders Accelerator for Microbiome Exploration, Flinders University, Surt Rd, Bedford Park, SA 5042, Australia
| | - Emma N. Kerr
- Flinders Accelerator for Microbiome Exploration, Flinders University, Surt Rd, Bedford Park, SA 5042, Australia
| | - Bhavya Papudeshi
- Flinders Accelerator for Microbiome Exploration, Flinders University, Surt Rd, Bedford Park, SA 5042, Australia
| | - Laís F. O. Lima
- Department of Biological Sciences, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182, USA
| | - Asha Z. Goodman
- Department of Biological Sciences, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182, USA
| | - Lisa Hoopes
- Georgia Aquarium, 225 Baker St NW, Atlanta, GA 30313, USA
| | - Mark Scott
- Norfolk Island National Park, Mount Pitt Rd, Norfolk Island, QLD 2899, Australia
| | - Lauren Meyer
- Flinders Accelerator for Microbiome Exploration, Flinders University, Surt Rd, Bedford Park, SA 5042, Australia
| | - Charlie Huveneers
- Flinders Accelerator for Microbiome Exploration, Flinders University, Surt Rd, Bedford Park, SA 5042, Australia
| | - Elizabeth A. Dinsdale
- Flinders Accelerator for Microbiome Exploration, Flinders University, Surt Rd, Bedford Park, SA 5042, Australia
| |
Collapse
|