1
|
Domingues VDSP, Seldin L, Jurelevicius D. Understanding the implicit effects of 16S rRNA gene databases on microbial bioindicator studies. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 283:107351. [PMID: 40222149 DOI: 10.1016/j.aquatox.2025.107351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/15/2025]
Abstract
Analysis of the presence and the abundance of microorganisms related to diseases can be used to monitor marine environmental health. Our study evaluated the interference of taxonomic databases (SILVA, Greengenes v13.8, Greengenes2, and RDP) to monitor the distribution of bacterial genera potentially related to diseases in marine organisms (BGPRDs) from low- (Dois Rios Beach-DR), medium- (Abraão Beach-AB) and high (Guanabara Bay-GB) impacted marine environments. The frequency, richness, diversity, and composition of BGPRDs present in DR, AB and GB were significantly influenced by the different databases (p < 0.05). Consequently, the analyses revealed that the use of different databases resulted in controversial results regarding the distribution of BGPRDs in the DR, AB and GB. While Greengenes v13.8 and RDP showed that GB had the highest frequency of BGPRDs (p < 0.05), analysis based on Greengenes2 and SILVA revealed a greater frequency of BGPRDs in AB (p < 0.05). Additionally, there was no congruence of BGPRDs detected by each taxonomic database in DR, AB and GB. In highly-impacted GB, Arcobacter was the main BGPRD obtained with the Greengenes2 and RDP databases, whereas Synechococcus and Alteromonas represented the main BGPRD according to the Greengenes v13.8 and SILVA databases, respectively. Our results showed we cannot determine the exact composition and abundance of BGPRDs in low-, medium- and highly-impacted marine environments. These findings emphasize the critical influence of database choice on microbial community characterization and its implications for effective environmental monitoring and management strategies. Interestingly, alpha diversity indices of BGPRDs obtained from DR, AB and GB were consistent among the different databases and showed greater congruence than did the frequency, richness, distribution and abundance of BGPRDs. The use of diversity indices of BGPRDs can be an alternative to overcome the limitations caused by the bias of taxonomic annotations for biomonitoring marine environments.
Collapse
Affiliation(s)
| | - Lucy Seldin
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Diogo Jurelevicius
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
2
|
Iurk VB, Ingles M, Correa GS, Silva CR, Staichak G, Pileggi SAV, Christo SW, Domit C, Pileggi M. The potential influence of microplastics on the microbiome and disease susceptibility in sea turtles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174298. [PMID: 38944299 DOI: 10.1016/j.scitotenv.2024.174298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Microplastics (MPs) are particles with sizes of ≤5 mm formed when plastic materials break down. These contaminants are often found in marine environments, making it easy for sea turtles to ingest them and for their microbiome to be exposed. MPs can disrupt microbiome balance, leading to dysbiosis and making organisms more susceptible to diseases. Owing to the significance of these processes, it is crucial to dedicate research to studying the metabolic and genetic analysis of the gut microbiome in sea turtles. The objective of this study was to describe the effects of exposure to MPs on the gut microbiome of sea turtles, based on current knowledge. This review also aimed to explore the potential link between MP exposure and disease susceptibility in these animals. We show that the metabolites produced by the gut microbiome, such as short-chain fatty acids (SCFAs), polyamines, and polysaccharide A, can regulate the expression of host genes. Regulation occurs through various mechanisms, including histone acetylation, DNA methylation, and the modulation of cytokine gene expression. These processes are essential for preserving the integrity of the gut mucosa and enhancing the functionality of immune cells. Exposure to MPs disrupts the gut microbiome and alters gene expression, leading to immune system disturbances in sea turtles. This vulnerability makes turtles more susceptible to opportunistic microorganisms such as chelonid alphaherpesvirus 5 (ChAHV5), which is linked to the development of fibropapillomatosis (FP). Additionally, targeted dietary interventions or the use of live microorganisms such as probiotics can help restore microbial biodiversity and recover lost metabolic pathways. The goal of these interventions is to restore the functionality of the immune system in sea turtles undergoing rehabilitation at specialized centers. The gut microbiome plays a crucial role in sea turtle health, sparking discussions and investigations that can potentially lead to promising treatments for these animals.
Collapse
Affiliation(s)
- Vitória Bonfim Iurk
- Laboratório de Ecologia e Conservação, Centro de Estudos do Mar, Universidade Federal do Paraná, PR 832555-000, Brazil; Laboratório de Microbiologia Ambiental, Departamento de Biologia Estrutural, Molecular e Genética, Setor de Ciências Biológicas e da Saúde, Universidade Estadual de Ponta Grossa, PR 84030-000, Brazil
| | - Mariana Ingles
- Laboratório de Ecologia e Conservação, Centro de Estudos do Mar, Universidade Federal do Paraná, PR 832555-000, Brazil
| | - Giovana Sequinel Correa
- Laboratório de Virologia Aplicada, Centro de Ciências Biológicas, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, SC 88040-900, Brazil
| | - Caroline Rosa Silva
- Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, PR 87020-900, Brazil
| | - Gabriel Staichak
- Instituto de Biociências da Universidade Federal de Mato Grosso, Universidade Federal do Mato Grosso, MT 79070-900, Brazil
| | - Sônia Alvim Veiga Pileggi
- Laboratório de Microbiologia Ambiental, Departamento de Biologia Estrutural, Molecular e Genética, Setor de Ciências Biológicas e da Saúde, Universidade Estadual de Ponta Grossa, PR 84030-000, Brazil.
| | - Susete Wambier Christo
- Laboratório de Zoologia, Departamento de Biologia Geral, Setor de Ciências Biológicas e da Saúde, Universidade Estadual de Ponta Grossa, PR 84030-000, Brazil
| | - Camila Domit
- Laboratório de Ecologia e Conservação, Centro de Estudos do Mar, Universidade Federal do Paraná, PR 832555-000, Brazil.
| | - Marcos Pileggi
- Laboratório de Microbiologia Ambiental, Departamento de Biologia Estrutural, Molecular e Genética, Setor de Ciências Biológicas e da Saúde, Universidade Estadual de Ponta Grossa, PR 84030-000, Brazil.
| |
Collapse
|
3
|
Filek K, Vuković BB, Žižek M, Kanjer L, Trotta A, Di Bello A, Corrente M, Bosak S. Loggerhead Sea Turtles as Hosts of Diverse Bacterial and Fungal Communities. MICROBIAL ECOLOGY 2024; 87:79. [PMID: 38814337 PMCID: PMC11139726 DOI: 10.1007/s00248-024-02388-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/02/2024] [Indexed: 05/31/2024]
Abstract
Research on microbial communities associated with wild animals provides a valuable reservoir of knowledge that could be used for enhancing their rehabilitation and conservation. The loggerhead sea turtle (Caretta caretta) is a globally distributed species with its Mediterranean population categorized as least concern according to the IUCN Red List of Threatened Species as a result of robust conservation efforts. In our study, we aimed to further understand their biology in relation to their associated microorganisms. We investigated epi- and endozoic bacterial and endozoic fungal communities of cloaca, oral mucosa, carapace biofilm. Samples obtained from 18 juvenile, subadult, and adult turtles as well as 8 respective enclosures, over a 3-year period, were analysed by amplicon sequencing of 16S rRNA gene and ITS2 region of nuclear ribosomal gene. Our results reveal a trend of decreasing diversity of distal gut bacterial communities with the age of turtles. Notably, Tenacibaculum species show higher relative abundance in juveniles than in adults. Differential abundances of taxa identified as Tenacibaculum, Moraxellaceae, Cardiobacteriaceae, and Campylobacter were observed in both cloacal and oral samples in addition to having distinct microbial compositions with Halioglobus taxa present only in oral samples. Fungal communities in loggerheads' cloaca were diverse and varied significantly among individuals, differing from those of tank water. Our findings expand the known microbial diversity repertoire of loggerhead turtles, highlighting interesting taxa specific to individual body sites. This study provides a comprehensive view of the loggerhead sea turtle bacterial microbiota and marks the first report of distal gut fungal communities that contributes to establishing a baseline understanding of loggerhead sea turtle holobiont.
Collapse
Affiliation(s)
- Klara Filek
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000, Zagreb, Croatia
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Borna Branimir Vuković
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000, Zagreb, Croatia
- Ruđer Bošković Institute, Bijenička 54, HR-10000, Zagreb, Croatia
| | - Marta Žižek
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000, Zagreb, Croatia
- Ruđer Bošković Institute, Bijenička 54, HR-10000, Zagreb, Croatia
| | - Lucija Kanjer
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000, Zagreb, Croatia
| | - Adriana Trotta
- Campus Universitario, University of Bari "Aldo Moro", Via Orabona 4, 70125, Bari, BA, Italy
| | - Antonio Di Bello
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Str. Prov. Per Casamassima Km 3, 70010, Valenzano, BA, Italy
| | - Marialaura Corrente
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Str. Prov. Per Casamassima Km 3, 70010, Valenzano, BA, Italy
| | - Sunčica Bosak
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000, Zagreb, Croatia.
| |
Collapse
|
4
|
McMaken CM, Burkholder DA, Milligan RJ, Lopez JV. Potential impacts of environmental bacteria on the microbiota of loggerhead (Caretta caretta) and green (Chelonia mydas) sea turtle eggs and their hatching success. Microbiologyopen 2023; 12:e1363. [PMID: 37379420 PMCID: PMC10240195 DOI: 10.1002/mbo3.1363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 06/30/2023] Open
Abstract
Sea turtle hatching success can be affected by many variables, including pathogenic microbes, but it is unclear which microbes are most impactful and how they are transmitted into the eggs. This study characterized and compared the bacterial communities from the (i) cloaca of nesting sea turtles (ii) sand within and surrounding the nests; and (iii) hatched and unhatched eggshells from loggerhead (Caretta caretta) and green (Chelonia mydas) turtles. High throughput sequencing of bacterial 16S ribosomal RNA gene V4 region amplicons was performed on samples collected from 27 total nests in Fort Lauderdale and Hillsboro beaches in southeast Florida, United States. Significant differences were identified between hatched and unhatched egg microbiota with the differences caused predominately by Pseudomonas spp., found in higher abundances in unhatched eggs (19.29% relative abundance) than hatched eggs (1.10% relative abundance). Microbiota similarities indicate that the nest sand environment, particularly nest distance from dunes, played a larger role than the nesting mother's cloaca in influencing hatched and unhatched egg microbiota. Pathogenic bacteria potentially derive from mixed-mode transmission or additional sources not included in this study as suggested by the high proportion (24%-48%) of unhatched egg microbiota derived from unknown sources. Nonetheless, the results suggest Pseudomonas as a candidate pathogen or opportunistic colonizer associated with sea turtle egg-hatching failure.
Collapse
Affiliation(s)
- Colleen M. McMaken
- Halmos College of Arts and SciencesNova Southeastern UniversityFloridaFort LauderdaleUSA
| | - Derek A. Burkholder
- Halmos College of Arts and SciencesNova Southeastern UniversityFloridaFort LauderdaleUSA
| | - Rosanna J. Milligan
- Halmos College of Arts and SciencesNova Southeastern UniversityFloridaFort LauderdaleUSA
| | - Jose V. Lopez
- Halmos College of Arts and SciencesNova Southeastern UniversityFloridaFort LauderdaleUSA
| |
Collapse
|
5
|
Presentato A, La Greca E, Consentino L, Alduina R, Liotta LF, Gruttadauria M. Antifouling Systems Based on a Polyhedral Oligomeric Silsesquioxane-Based Hexyl Imidazolium Salt Adsorbed on Copper Nanoparticles Supported on Titania. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13071291. [PMID: 37049384 PMCID: PMC10096683 DOI: 10.3390/nano13071291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 06/12/2023]
Abstract
The reaction of octakis(3-chloropropyl)octasilsesquioxane with four equivalents of 1-hexylimidazole or 1-decylimidazole gave two products labelled as HQ-POSS (hexyl-imidazolium quaternized POSS) and DQ-POSS (decyl-imidazolium quaternized POSS) as regioisomer mixtures. An investigation of the biological activity of these two compounds revealed the higher antimicrobial performances of HQ-POSS against Gram-positive and Gram-negative microorganisms, proving its broad-spectrum activity. Due to its very viscous nature, HQ-POSS was adsorbed in variable amounts on the surface of biologically active oxides to gain advantages regarding the expendability of such formulations from an applicative perspective. Titania and 5 wt% Cu on titania were used as supports. The materials 10HQ-POSS/Ti and 15HQ-POSS/5CuTi strongly inhibited the ability of Pseudomonas PS27 cells-a bacterial strain described for its ability to handle very toxic organic solvents and perfluorinated compounds-to grow as planktonic cells. Moreover, the best formulations (i.e., 10HQ-POSS/Ti and 15HQ-POSS/5CuTi) could prevent Pseudomonas PS27 biofilm formation at a certain concentration (250 μg mL-1) which greatly impaired bacterial planktonic growth. Specifically, 15HQ-POSS/5CuTi completely impaired cell adhesion, thus successfully prejudicing biofilm formation and proving its suitability as a potential antifouling agent. Considering that most studies deal with quaternary ammonium salts (QASs) with long alkyl chains (>10 carbon atoms), the results reported here on hexylimidazolium-based POSS further deepen the knowledge of QAS formulations which can be used as antifouling compounds.
Collapse
Affiliation(s)
- Alessandro Presentato
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Viale Delle Scienze, Edificio 17, I-90128 Palermo, Italy; (A.P.); (L.C.); (R.A.)
| | - Eleonora La Greca
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)-CNR, Via Ugo La Malfa 153, I-90146 Palermo, Italy;
| | - Luca Consentino
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Viale Delle Scienze, Edificio 17, I-90128 Palermo, Italy; (A.P.); (L.C.); (R.A.)
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)-CNR, Via Ugo La Malfa 153, I-90146 Palermo, Italy;
| | - Rosa Alduina
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Viale Delle Scienze, Edificio 17, I-90128 Palermo, Italy; (A.P.); (L.C.); (R.A.)
| | - Leonarda Francesca Liotta
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)-CNR, Via Ugo La Malfa 153, I-90146 Palermo, Italy;
| | - Michelangelo Gruttadauria
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Viale Delle Scienze, Edificio 17, I-90128 Palermo, Italy; (A.P.); (L.C.); (R.A.)
| |
Collapse
|