1
|
Banchelli M, Tombelli S, de Angelis M, D'Andrea C, Trono C, Baldini F, Giannetti A, Matteini P. Molecular beacon decorated silver nanowires for quantitative miRNA detection by a SERS approach. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6165-6176. [PMID: 37961002 DOI: 10.1039/d3ay01661g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Advantages of biosensors based on surface enhanced Raman scattering (SERS) rely on improved sensitivity and specificity, and suited reproducibility in detecting a target molecule that is localized in close proximity to a SERS-active surface. Herein, a comprehensive study on the realization of a SERS biosensor designed for detecting miRNA-183, a miRNA biomarker that is specific for chronic obstructive pulmonary disease (COPD), is presented. The used strategy exploits a signal-off mechanism by means of a labelled molecular beacon (MB) as the oligonucleotide biorecognition element immobilized on a 2D SERS substrate, based on spot-on silver nanowires (AgNWs) and a multi-well low volume cell. The MB was properly designed by following a dedicated protocol to recognize the chosen miRNA. A limit of detection down to femtomolar concentration (3 × 10-16 M) was achieved and the specificity of the biosensor was proved. Furthermore, the possibility to regenerate the sensing system through a simple procedure is shown: with regeneration by using HCl 1 mM, two detection cycles were performed with a good recovery of the initial MB signal (83%) and a reproducible signal after hybridization.
Collapse
Affiliation(s)
- Martina Banchelli
- Istituto di Fisica Applicata Nello Carrara - CNR, Via Madonna del Piano 10, Sesto F.no (FI), Italy.
| | - Sara Tombelli
- Istituto di Fisica Applicata Nello Carrara - CNR, Via Madonna del Piano 10, Sesto F.no (FI), Italy.
| | - Marella de Angelis
- Istituto di Fisica Applicata Nello Carrara - CNR, Via Madonna del Piano 10, Sesto F.no (FI), Italy.
| | - Cristiano D'Andrea
- Istituto di Fisica Applicata Nello Carrara - CNR, Via Madonna del Piano 10, Sesto F.no (FI), Italy.
| | - Cosimo Trono
- Istituto di Fisica Applicata Nello Carrara - CNR, Via Madonna del Piano 10, Sesto F.no (FI), Italy.
| | - Francesco Baldini
- Istituto di Fisica Applicata Nello Carrara - CNR, Via Madonna del Piano 10, Sesto F.no (FI), Italy.
| | - Ambra Giannetti
- Istituto di Fisica Applicata Nello Carrara - CNR, Via Madonna del Piano 10, Sesto F.no (FI), Italy.
| | - Paolo Matteini
- Istituto di Fisica Applicata Nello Carrara - CNR, Via Madonna del Piano 10, Sesto F.no (FI), Italy.
| |
Collapse
|
2
|
Menachekanian S, Mora Perez C, Pennathur AK, Voegtle MJ, Blauth D, Prezhdo OV, Dawlaty JM. Phenol as a Tethering Group to Gold Surfaces: Stark Response and Comparison to Benzenethiol. J Phys Chem Lett 2023; 14:8353-8359. [PMID: 37702751 PMCID: PMC10518863 DOI: 10.1021/acs.jpclett.3c02058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/07/2023] [Indexed: 09/14/2023]
Abstract
Understanding the adsorption of organic molecules on metals is important in numerous areas of surface science, including electrocatalysis, electrosynthesis, and biosensing. While thiols are commonly used to tether organic molecules on metals, it is desirable to broaden the range of anchoring groups. In this study, we use a combined spectroelectrochemical and computational approach to demonstrate the adsorption of 4-cyanophenols (CPs) on polycrystalline gold. Using the nitrile stretching vibration as a marker, we confirm the adsorption of CP on the gold electrode and compare our results with those obtained for the thiol counterpart, 4-mercaptobenzonitirle (MBN). Our results reveal that CP adsorbs on the gold electrode via the OH linker, as evidenced by the similarity in the direction and magnitude of the nitrite Stark shifts for CP and MBN. This finding paves the way for exploring new approaches to modify electrode surfaces for controlled reactivity. Furthermore, it highlights adsorption on metals as an important step in the electroreactivity of phenols.
Collapse
Affiliation(s)
- Sevan Menachekanian
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Carlos Mora Perez
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Theoretical
Physics and Chemistry of Materials, Los
Alamos National Laboratory, Los
Alamos, New Mexico 87545, United States
- Center
for Nonlinear Studies, Los Alamos National
Laboratory, Los Alamos, New Mexico 87545, United States
| | - Anuj K. Pennathur
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Mattew J. Voegtle
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Drew Blauth
- Department
of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Oleg V. Prezhdo
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Jahan M. Dawlaty
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
3
|
Pellitero M, Jensen IM, Dominique NL, Ekowo LC, Camden JP, Jenkins DM, Arroyo-Currás N. Stability of N-Heterocyclic Carbene Monolayers under Continuous Voltammetric Interrogation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:35701-35709. [PMID: 37449918 PMCID: PMC10377464 DOI: 10.1021/acsami.3c06148] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
N-Heterocyclic carbenes (NHCs) are promising monolayer-forming ligands that can overcome limitations of thiol-based monolayers in terms of stability, surface functionality, and reactivity across a variety of transition-metal surfaces. Recent publications have reported the ability of NHCs to support biomolecular receptors on gold substrates for sensing applications and improved tolerance to prolonged biofluid exposure relative to thiols. However, important questions remain regarding the stability of these monolayers when subjected to voltage perturbations, which is needed for applications with electrochemical platforms. Here, we investigate the ability of two NHCs, 1,3-diisopropylbenzimidazole and 5-(ethoxycarbonyl)-1,3-diisopropylbenzimidazole, to form monolayers via self-assembly from methanolic solutions of their trifluoromethanesulfonate salts. We compare the electrochemical behavior of the resulting monolayers relative to that of benchmark mercaptohexanol monolayers in phosphate-buffered saline. Within the -0.15 to 0.25 V vs Ag|AgCl voltage window, NHC monolayers are stable on gold surfaces, wherein they electrochemically perform like thiol-based monolayers and undergo similar reorganization kinetics, displaying long-term stability under incubation in buffered media and under continuous voltammetric interrogation. At negative voltages, NHC monolayers cathodically desorb from the electrode surface at lower bias (-0.1 V) than thiol-based monolayers (-0.5 V). At voltages more positive than 0.25 V, NHC monolayers anodically desorb from electrode surfaces at similar voltages to thiol-based monolayers. These results highlight new limitations to NHC monolayer stability imposed by electrochemical interrogation of the underlying gold electrodes. Our results serve as a framework for future optimization of NHC monolayers on gold for electrochemical applications, as well as structure-functionality studies of NHCs on gold.
Collapse
Affiliation(s)
- Miguel
Aller Pellitero
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Isabel M. Jensen
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Nathaniel L. Dominique
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Lilian Chinenye Ekowo
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Jon P. Camden
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - David M. Jenkins
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Netzahualcóyotl Arroyo-Currás
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
4
|
Kim WH, Lee JU, Jeon MJ, Park KH, Sim SJ. Three-dimensional hierarchical plasmonic nano-architecture based label-free surface-enhanced Raman spectroscopy detection of urinary exosomal miRNA for clinical diagnosis of prostate cancer. Biosens Bioelectron 2022; 205:114116. [DOI: 10.1016/j.bios.2022.114116] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/29/2022] [Accepted: 02/17/2022] [Indexed: 12/20/2022]
|
5
|
Hassanain WA, Theiss FL, Izake EL. Label-free identification of Erythropoietin isoforms by surface enhanced Raman spectroscopy. Talanta 2022; 236:122879. [PMID: 34635259 DOI: 10.1016/j.talanta.2021.122879] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/05/2021] [Accepted: 09/10/2021] [Indexed: 01/21/2023]
Abstract
We present a sensitive label-free surface enhanced Raman spectroscopy (SERS) method for the discrimination between the recombinant and endogenous human Erythropoietin (EPO) isoforms. The proposed methodology comprises a lectin-functionalised extractor chip for the extraction of the recombinant human EPO (rhuEPO) and the endogenous EPO (enEPO) from blood plasma. The disulfide bond molecular structure of the purified isoforms was modified to chemisorb the biomolecules onto a SERS substrate in a unified orientation, thus maximizing the reproducibility and sensitivity of the SERS measurements. The acquired SERS spectra of the EPO isoforms showed diagnostic Raman bands that allowed for the discrimination between rhuEPO and enEPO. The method was also used for the SERS quantification of rhuEPO and enEPO down to 0.1 pM and 0.5 pM, respectively. The SERS determination of the protein isoforms was cross validated against ELISA. The new SERS method has strong potential for the rapid screening of rhuEPO doping in athletes and for the therapeutic drug monitoring of rhuEPO treatment in cancer patients.
Collapse
Affiliation(s)
- Waleed A Hassanain
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, 2 George Street, Brisbane, 4001, Australia
| | - Frederick L Theiss
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, 2 George Street, Brisbane, 4001, Australia
| | - Emad L Izake
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, 2 George Street, Brisbane, 4001, Australia.
| |
Collapse
|
6
|
Banasiak A, Colleran J. Determination of Integrity, Stability and Density of the DNA Layers Immobilised at Glassy Carbon and Gold Electrodes Using Ferrocyanide. ELECTROANAL 2020. [DOI: 10.1002/elan.202060077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anna Banasiak
- Applied Electrochemistry Group Technological University Dublin, FOCAS Institute Camden Row Dublin 8 D08 CKP1 Ireland
| | - John Colleran
- Applied Electrochemistry Group Technological University Dublin, FOCAS Institute Camden Row Dublin 8 D08 CKP1 Ireland
- School of Chemical and Pharmaceutical Sciences Technological University Dublin, City Campus – Kevin Street Dublin 8 D08 NF82 Ireland
| |
Collapse
|
7
|
Kim WH, Lee JU, Song S, Kim S, Choi YJ, Sim SJ. A label-free, ultra-highly sensitive and multiplexed SERS nanoplasmonic biosensor for miRNA detection using a head-flocked gold nanopillar. Analyst 2019; 144:1768-1776. [DOI: 10.1039/c8an01745j] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The combination of head-flocked gold nanopillars and sandwich DNA probes is an advanced label-free, ultra-high sensitive, multiplexed nanoplasmonic detection system of circulating miRNAs for cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Woo Hyun Kim
- Department of Chemical and Biological Engineering
- Korea University
- Seoul 02841
- South Korea
| | - Jong Uk Lee
- Department of Chemical and Biological Engineering
- Korea University
- Seoul 02841
- South Korea
| | - Sojin Song
- Department of Chemical and Biological Engineering
- Korea University
- Seoul 02841
- South Korea
| | - Soohyun Kim
- Department of Chemical and Biological Engineering
- Korea University
- Seoul 02841
- South Korea
| | - Young Jae Choi
- Department of Chemical and Biological Engineering
- Korea University
- Seoul 02841
- South Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering
- Korea University
- Seoul 02841
- South Korea
| |
Collapse
|
8
|
Hassanain WA, Izake EL, Ayoko GA. Spectroelectrochemical Nanosensor for the Determination of Cystatin C in Human Blood. Anal Chem 2018; 90:10843-10850. [DOI: 10.1021/acs.analchem.8b02121] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Waleed A. Hassanain
- Nanotechnology and Molecular Science Discipline, School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George Street, Brisbane 4000, Australia
| | - Emad L. Izake
- Nanotechnology and Molecular Science Discipline, School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George Street, Brisbane 4000, Australia
| | - Godwin A. Ayoko
- Nanotechnology and Molecular Science Discipline, School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George Street, Brisbane 4000, Australia
| |
Collapse
|
9
|
|
10
|
Greatly extended storage stability of electrochemical DNA biosensors using ternary thiolated self-assembled monolayers. Talanta 2012; 99:155-60. [DOI: 10.1016/j.talanta.2012.05.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 05/17/2012] [Accepted: 05/18/2012] [Indexed: 11/23/2022]
|
11
|
Campuzano S, Kuralay F, Wang J. Ternary Monolayer Interfaces for Ultrasensitive and Direct Bioelectronic Detection of Nucleic Acids in Complex Matrices. ELECTROANAL 2011. [DOI: 10.1002/elan.201100452] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
Kuralay F, Campuzano S, Haake DA, Wang J. Highly sensitive disposable nucleic acid biosensors for direct bioelectronic detection in raw biological samples. Talanta 2011; 85:1330-7. [PMID: 21807191 PMCID: PMC4386838 DOI: 10.1016/j.talanta.2011.06.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 06/08/2011] [Accepted: 06/08/2011] [Indexed: 11/23/2022]
Abstract
The development of rapid, low-cost and reliable diagnostic methods is crucial for the identification and treatment of many diseases. Screen-printed gold electrodes (Au/SPEs), coated with a ternary monolayer interface, involving hexanedithiol (HDT), a specific thiolated capture probe (SHCP), and 6-mercapto-1 hexanol (MCH) (SHCP/HDT/MCH) are shown here to offer direct and sensitive detection of nucleic acid hybridization events in untreated raw biological samples (serum, urine and crude bacterial lysate solutions). The composition of the ternary monolayer was modified and tailored to the surface of the Au/SPE. The resulting SHCP/HDT/MCH monolayer has demonstrated to be extremely useful for enhancing the performance of disposable nucleic acid sensors based on screen-printed electrodes. Compared to common SHCP/MCH binary interfaces, the new ternary self-assembled monolayer (SAM) resulted in a 10-fold improvement in the signal (S)-to-noise (N) ratio (S/N) for 1 nM target DNA. The SHCP/HDT/MCH-modified Au/SPEs allowed the direct quantification of the target DNA down to 25 pM (0.25 fmol) and 100 pM (1 fmol) in undiluted/untreated serum and urine samples, respectively, and of 16S rRNA Escherichia coli (E. coli) corresponding to 3000 CFU μL(-1) in raw cell lysate samples. The new SAM-coated screen-printed electrodes also displayed favorable non-fouling properties after a 24h exposure to raw human serum and urine samples, offering great promise as cost-effective nucleic acid sensors for a wide range of decentralized genetic tests.
Collapse
Affiliation(s)
- Filiz Kuralay
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Susana Campuzano
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - David A. Haake
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095, USA
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|