1
|
Li X, Li S, Zhao F, Fu R, Cui L, Chen S, Yang D, Yuan H, Yan X. Impacts of neonicotinoid compounds on the structure and function of Apis mellifera OBP14: Insights from SPR, ITC, multispectroscopy, and molecular modeling. Colloids Surf B Biointerfaces 2025; 250:114551. [PMID: 39951948 DOI: 10.1016/j.colsurfb.2025.114551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/23/2025] [Accepted: 02/01/2025] [Indexed: 02/17/2025]
Abstract
Honeybees are vital for biodiversity and agricultural productivity, yet their populations are declining globally, partly due to exposure to neonicotinoid pesticides. Odorant-binding protein 14 (OBP14) plays an important role in honeybee chemosensation, but its involvement in neonicotinoid toxicity remains underexplored due to limitations in traditional fluorescence spectroscopy techniques. This gap hampers our understanding of neonicotinoid risks to honeybee health. Here, we explored the molecular interactions between OBP14 from Apis mellifera and three widely used neonicotinoids (imidacloprid, thiamethoxam, and clothianidin) using molecular modeling, surface plasmon resonance (SPR), isothermal titration calorimetry (ITC), and multispectroscopy. SPR and ITC characterized the binding affinity, specificity, and thermodynamic parameters of AmelOBP14 interacting with three neonicotinoid compounds, revealing that the binding process is spontaneous and primarily driven by hydrophobic and electrostatic interactions. Molecular modeling highlighted that phenylalanine residue Phe54, near the binding site, plays a critical role in these interactions. UV-vis absorption spectroscopy and synchronous fluorescence spectroscopy (SFS) support slight changes in the microenvironment around the aromatic amino acids of OBP14. Fourier Transform Infrared Spectroscopy (FTIR) and circular dichroism spectroscopy (CD) indicate a decrease in the α-helix content of OBP14, suggesting a change in its secondary structure, while three-dimensional (3D) fluorescence spectroscopy confirms the non-fluorescent nature of the OBP14 polypeptide backbone. The study results revealed its potential as a biomarker for pesticide risk assessment, providing important insights into the molecular mechanisms by which neonicotinoids may impair bee chemosensory function, and offering guidance for the design of safer pesticides to minimize harm to these important pollinators.
Collapse
Affiliation(s)
- Xiangshuai Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shiyu Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fangkui Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruohan Fu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Li Cui
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuning Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Daibin Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huizhu Yuan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xiaojing Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
2
|
Responses of the Pheromone-Binding Protein of the Silk Moth Bombyx mori on a Graphene Biosensor Match Binding Constants in Solution. SENSORS 2021; 21:s21020499. [PMID: 33445619 PMCID: PMC7827809 DOI: 10.3390/s21020499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 12/20/2022]
Abstract
An electronic biosensor for odors was assembled by immobilizing the silk moth Bombyx mori pheromone binding protein (BmorPBP1) on a reduced graphene oxide surface of a field-effect transistor. At physiological pH, the sensor detects the B. mori pheromones, bombykol and bombykal, with good affinity and specificity. Among the other odorants tested, only eugenol elicited a strong signal, while terpenoids and other odorants (linalool, geraniol, isoamyl acetate, and 2-isobutyl-3-methoxypyrazine) produced only very weak responses. Parallel binding assays were performed with the same protein and the same ligands, using the common fluorescence approach adopted for similar proteins. The results are in good agreement with the sensor’s responses: bombykol and bombykal, together with eugenol, proved to be strong ligands, while the other compounds showed only poor affinity. When tested at pH 4, the protein failed to bind bombykol both in solution and when immobilized on the sensor. This result further indicates that the BmorPBP1 retains its full activity when immobilized on a surface, including the conformational change observed in acidic conditions. The good agreement between fluorescence assays and sensor responses suggests that ligand-binding assays in solution can be used to screen mutants of a binding protein when selecting the best form to be immobilized on a biosensor.
Collapse
|
3
|
Abstract
Odorant binding proteins (OBPs) are small proteins, some of which bind odorants with high specificity. OBPs are relatively easy to produce and show a pronounced stability toward thermal and chemical denaturation. This high stability renders OBPs attractive candidates for the development of odorant detections systems. Unfortunately, binding of odorants is not easy to quantify due to lack of spectroscopic signals upon binding. Therefore, a possible approach to detect binding is to employ the shift in thermal or chemical stability upon ligand-protein interaction. Being a rather indirect approach, the experimental setup should be done with care. Here, the experimental results on stability of OBPs are summarized and issues which should be considered when performing stability experiments are discussed.
Collapse
Affiliation(s)
- Nadja Hellmann
- Department of Chemistry/Biochemistry, Johannes Gutenberg-University Mainz, Mainz, Germany.
| |
Collapse
|
4
|
Zhu J, Zaremska V, D'Onofrio C, Knoll W, Pelosi P. Site-directed mutagenesis of odorant-binding proteins. Methods Enzymol 2020; 642:301-324. [PMID: 32828258 DOI: 10.1016/bs.mie.2020.05.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Modifying the affinity of odorant-binding proteins (OBPs) to small ligands by replacement of specific residues in the binding pocket may lead to several technological applications. Thanks to their compact and stable structures, OBPs are currently regarded as the best candidates to be used in biosensing elements for odorants and volatiles detection. The wide and rich information on the structure of these proteins both in their apo-forms and in complexes with specific ligands provides guidelines to design reliable mutants to monitor specific targets. The same engineered proteins may also find applications in the slow release of pheromones and other chemicals in the environment, as well as in the fine purification of drugs, including the resolution of racemates. Apart from such useful applications, site-directed mutagenesis represents an interesting approach to dissect the specific interactions between small chemicals and amino acid residues in the binding pocket. These studies can lead to design of better ligands, such as pheromone analogues with desired physico-chemical characteristics. In this chapter we examine the different uses of mutagenesis applied to OBPs and report a couple of protocols that have been successful in our hands.
Collapse
Affiliation(s)
- Jiao Zhu
- AIT Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria; Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-Universität, Mainz, Germany
| | - Valeriia Zaremska
- AIT Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria; Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Chiara D'Onofrio
- AIT Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria; Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Wolfgang Knoll
- AIT Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria; CEST Competence Center for Electrochemical Surface Technology, Tulln, Austria
| | - Paolo Pelosi
- AIT Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria.
| |
Collapse
|
5
|
D'Onofrio C, Zaremska V, Zhu J, Knoll W, Pelosi P. Ligand-binding assays with OBPs and CSPs. Methods Enzymol 2020; 642:229-258. [PMID: 32828255 DOI: 10.1016/bs.mie.2020.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Assessing the ligand-binding properties of OBPs and CSPs is essential for understanding their physiological function. It also provides basic information when these proteins are used as biosensing elements for instrumental measurement of odors. Although different approaches have been applied in the past to evaluate the affinity of receptors and soluble binding proteins to their ligands, using a fluorescent reporter represents the method of choice for OBPs and CSPs. It offers the advantages of working at the equilibrium, being simple, fast and inexpensive, without requiring the use of radioactive tracers. However, as an indirect method, the fluorescence competitive binding approach presents drawbacks and sometimes requires an elaborate analysis to explain unexpected results. Here, after a brief survey of the different approaches to evaluate affinity constants, we focus on the fluorescence binding assay as applied to OBPs and CSPs, discussing situations that may require closer inspection of the results.
Collapse
Affiliation(s)
- Chiara D'Onofrio
- AIT Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria
| | - Valeriia Zaremska
- AIT Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria
| | - Jiao Zhu
- AIT Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria; Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-Universität, Mainz, Germany
| | - Wolfgang Knoll
- AIT Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria; CEST Competence Center for Electrochemical Surface Technology, Tulln, Austria
| | - Paolo Pelosi
- AIT Austrian Institute of Technology GmbH, Biosensor Technologies, Tulln, Austria.
| |
Collapse
|
6
|
Dimitratos SD, Hommel AS, Konrad KD, Simpson LM, Wu-Woods JJ, Woods DF. Biosensors to Monitor Water Quality Utilizing Insect Odorant-Binding Proteins as Detector Elements. BIOSENSORS 2019; 9:E62. [PMID: 31091776 PMCID: PMC6627439 DOI: 10.3390/bios9020062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/17/2022]
Abstract
In the developing world, the identification of clean, potable water continues to pose a pervasive challenge, and waterborne diseases due to fecal contamination of water supplies significantly threaten public health. The ability to efficiently monitor local water supplies is key to water safety, yet no low-cost, reliable method exists to detect contamination quickly. We developed an in vitro assay utilizing an odorant-binding protein (OBP), AgamOBP1, from the mosquito, Anopheles gambiae, to test for the presence of a characteristic metabolite, indole, from harmful coliform bacteria. We demonstrated that recombinantly expressed AgamOBP1 binds indole with high sensitivity. Our proof-of-concept assay is fluorescence-based and demonstrates the usefulness of insect OBPs as detector elements in novel biosensors that rapidly detect the presence of bacterial metabolic markers, and thus of coliform bacteria. We further demonstrated that rAgamOBP1 is suitable for use in portable, inexpensive "dipstick" biosensors that improve upon lateral flow technology since insect OBPs are robust, easily obtainable via recombinant expression, and resist detector "fouling." Moreover, due to their wide diversity and ligand selectivity, insect chemosensory proteins have other biosensor applications for various analytes. The techniques presented here therefore represent platform technologies applicable to various future devices.
Collapse
Affiliation(s)
- Spiros D Dimitratos
- Inscent, Inc., 17905 Sky Park CIR STE P, Irvine, CA 92614, USA.
- Department of Biology, Natural Sciences Division, Fullerton College, Fullerton, CA 92832, USA.
| | | | | | | | | | - Daniel F Woods
- Inscent, Inc., 17905 Sky Park CIR STE P, Irvine, CA 92614, USA.
| |
Collapse
|
7
|
Pelosi P, Zhu J, Knoll W. Odorant-Binding Proteins as Sensing Elements for Odour Monitoring. SENSORS 2018; 18:s18103248. [PMID: 30262737 PMCID: PMC6210013 DOI: 10.3390/s18103248] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/18/2018] [Accepted: 09/21/2018] [Indexed: 11/16/2022]
Abstract
Odour perception has been the object of fast growing research interest in the last three decades. Parallel to the study of the corresponding biological systems, attempts are being made to model the olfactory system with electronic devices. Such projects range from the fabrication of individual sensors, tuned to specific chemicals of interest, to the design of multipurpose smell detectors using arrays of sensors assembled in a sort of artificial nose. Recently, proteins have attracted increasing interest as sensing elements. In particular, soluble olfaction proteins, including odorant-binding proteins (OBPs) of vertebrates and insects, chemosensory proteins (CSPs) and Niemann-Pick type C2 (NPC2) proteins possess interesting characteristics for their use in sensing devices for odours. In fact, thanks to their compact structure, their soluble nature and small size, they are extremely stable to high temperature, refractory to proteolysis and resistant to organic solvents. Moreover, thanks to the availability of many structures solved both as apo-proteins and in complexes with some ligands, it is feasible to design mutants by replacing residues in the binding sites with the aim of synthesising proteins with better selectivity and improved physical properties, as demonstrated in a number of cases.
Collapse
Affiliation(s)
- Paolo Pelosi
- Austrian Institute of Technology GmbH, Biosensor Technologies, Konrad-Lorenzstraße, 24, 3430 Tulln, Austria.
| | - Jiao Zhu
- Austrian Institute of Technology GmbH, Biosensor Technologies, Konrad-Lorenzstraße, 24, 3430 Tulln, Austria.
| | - Wolfgang Knoll
- Austrian Institute of Technology GmbH, Biosensor Technologies, Konrad-Lorenzstraße, 24, 3430 Tulln, Austria.
| |
Collapse
|
8
|
Ma L, Cui X, Cai W, Shao X. Understanding the function of water during the gelation of globular proteins by temperature-dependent near infrared spectroscopy. Phys Chem Chem Phys 2018; 20:20132-20140. [PMID: 30027956 DOI: 10.1039/c8cp01431k] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water plays an indispensable role in the gelation of proteins, but its function still remains unclear. In this work, the variation of water species with the structural changes of globular proteins was investigated using temperature-dependent near infrared (NIR) spectroscopy. Ovalbumin (OVA) was used as a model protein, which forms a gel-like structure as the temperature increases through three phases, i.e., phase I (native), phase II (molten globule state), and phase III (gel state). The structural change and the content variation of different water species in the three phases of gelation were analyzed by two-dimensional correlation NIR spectroscopy and Gaussian fitting. A decrease in the water species with two hydrogen bonds (S2) was found and the change follows the same phases as OVA. In the first two phases, the change occurs after those of other water species but in the third phase, the change is faster than that of free water species. The result indicates that in the native and molten globule states, S2 is located in the hydration shell of OVA to maintain the stability of the protein structure, and then in the gel state, high temperature weakens the hydrogen bonding of S2 and leads to the destruction of the hydration shell, making OVA clusters form a gel structure.
Collapse
Affiliation(s)
- Li Ma
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | | | | | | |
Collapse
|
9
|
Abstract
Since the first attempts to mimic the human nose with artificial devices, a variety of sensors have been developed, ranging from simple inorganic and organic gas detectors to biosensing elements incorporating proteins of the biological olfactory system. In order to design a device able to mimic the human nose, two major issues still need to be addressed regarding the complexity of olfactory coding and the extreme sensitivity of the biological system. So far, only 50 of the approximately 300–400 functioning olfactory receptors have been de-orphanized, still a long way from breaking the human olfactory code. On the other hand, the exceptional sensitivity of the human nose is based on amplification mechanisms difficult to reproduce with electronic circuits, and perhaps novel approaches are required to address this issue. Here, we review the recent literature on chemical sensing both in biological systems and artificial devices, and try to establish the state-of-the-art towards the design of an electronic nose.
Collapse
|
10
|
Yang RN, Li DZ, Yu G, Yi SC, Zhang Y, Kong DX, Wang MQ. Structural Transformation Detection Contributes to Screening of Behaviorally Active Compounds: Dynamic Binding Process Analysis of DhelOBP21 from Dastarcus helophoroides. J Chem Ecol 2017; 43:1033-1045. [PMID: 29063475 DOI: 10.1007/s10886-017-0897-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/19/2017] [Accepted: 10/11/2017] [Indexed: 11/30/2022]
Abstract
In light of reverse chemical ecology, the fluorescence competitive binding assays of functional odorant binding proteins (OBPs) is a recent advanced approach for screening behaviorally active compounds of insects. Previous research on Dastareus helophoroides identified a minus-C OBP, DhelOBP21, which preferably binds to several ligands. In this study, only (+)-β-pinene proved attractive to unmated adult beetles. To obtain a more in-depth explanation of the lack of behavioral activity of other ligands we selected compounds with high (camphor) and low (β-caryophyllene) binding affinities. The structural transformation of OBPs was investigated using well-established approaches for studying binding processes, such as fluorescent quenching assays, circular dichroism, and molecular dynamics. The dynamic binding process revealed that the flexibility of DhelOBP21 seems conducive to binding specific ligands, as opposed to broad substrate binding. The compound (+)-β-pinene and DhelOBP21 formed a stable complex through a secondary structural transformation of DhelOBP21, in which its amino-terminus transformed from random coil to an α-helix to cover the binding pocket. On the other hand, camphor could not efficiently induce a stable structural transformation, and its high binding affinities were due to strong hydrogen-bonding, compromising the structure of the protein. The other compound, β-caryophyllene, only collided with DhelOBP21 and could not be positioned in the binding pocket. Studying structural transformation of these proteins through examining the dynamic binding process rather than using approaches that just measure binding affinities such as fluorescence competitive binding assays can provide a more efficient and reliable approach for screening behaviorally active compounds.
Collapse
Affiliation(s)
- Rui-Nan Yang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Dong-Zhen Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Guangqiang Yu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Shan-Cheng Yi
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yinan Zhang
- Department of Horticulture, Beijing Vocational College of Agriculture, Beijing, 102442, People's Republic of China
| | - De-Xin Kong
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Man-Qun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
11
|
Ahmed T, Zhang T, Wang Z, He K, Bai S. Molecular cloning, expression profile, odorant affinity, and stability of two odorant-binding proteins in Macrocentrus cingulum Brischke (Hymenoptera: Braconidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2017; 94:e21374. [PMID: 28134484 DOI: 10.1002/arch.21374] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The polyembryonic endoparasitoid wasp Macrocentrus cingulum Brischke (Hymenoptera: Braconidae) is deployed successfully as a biocontrol agent for corn pest insects from the Lepidopteran genus Ostrinia in Europe and throughout Asia, including Japan, Korea, and China. The odorants are recognized, bound, and solubilized by odorant-binding protein (OBP) in the initial biochemical recognition steps in olfaction that transport them across the sensillum lymph to initiate behavioral response. In the present study, we examine the odorant-binding effects on thermal stability of McinOBP2, McinOBP3, and their mutant form that lacks the third disulfide bonds. Real-time PCR experiments indicate that these two are expressed mainly in adult antennae, with expression levels differing by sex. Odorant-binding affinities of aldehydes, terpenoids, and aliphatic alcohols were measured with circular dichroism spectroscopy based on changes in the thermal stability of the proteins upon their affinities to odorants. The obtained results reveal higher affinity of trans-caryophelle, farnesene, and cis-3-Hexen-1-ol exhibits to both wild and mutant McinOBP2 and McinOBP3. Although conformational flexibility of the mutants and shape of binding cavity make differences in odorant affinity between the wild-type and mutant, it suggested that lacking the third disulfide bond in mutant proteins may have chance to incorrect folded structures that reduced the affinity to these odorants. In addition, CD spectra clearly indicate proteins enriched with α-helical content.
Collapse
Affiliation(s)
- Tofael Ahmed
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Bangladesh Sugar Crop Research Institute, Ishurdi, Pabna, Bangladesh
| | - Tiantao Zhang
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenying Wang
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kanglai He
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuxiong Bai
- State Key Laboratory for the Biology of the Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
12
|
|
13
|
Pechlaner M, Oostenbrink C. Multiple Binding Poses in the Hydrophobic Cavity of Bee Odorant Binding Protein AmelOBP14. J Chem Inf Model 2015; 55:2633-43. [PMID: 26633245 PMCID: PMC4695918 DOI: 10.1021/acs.jcim.5b00673] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
In the first step of olfaction, odorants
are bound and solubilized
by small globular odorant binding proteins (OBPs) which shuttle them
to the membrane of a sensory neuron. Low ligand affinity and selectivity
at this step enable the recognition of a wide range of chemicals.
Honey bee Apis mellifera’s OBP14 (AmelOBP14)
binds different plant odorants in a largely hydrophobic cavity. In
long molecular dynamics simulations in the presence and absence of
ligand eugenol, we observe a highly dynamic C-terminal region which
forms one side of the ligand-binding cavity, and the ligand drifts
away from its crystallized orientation. Hamiltonian replica exchange
simulations, allowing exchanges of conformations sampled by the real
ligand with those sampled by a noninteracting dummy molecule and several
intermediates, suggest an alternative, quite different ligand pose
which is adopted immediately and which is stable in long simulations.
Thermodynamic integration yields binding free energies which are in
reasonable agreement with experimental data.
Collapse
Affiliation(s)
- Maria Pechlaner
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences , Muthgasse 18, 1190 Vienna, Austria
| | - Chris Oostenbrink
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences , Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
14
|
Larisika M, Kotlowski C, Steininger C, Mastrogiacomo R, Pelosi P, Schütz S, Peteu SF, Kleber C, Reiner-Rozman C, Nowak C, Knoll W. Electronic Olfactory Sensor Based on A. mellifera Odorant-Binding Protein 14 on a Reduced Graphene Oxide Field-Effect Transistor. Angew Chem Int Ed Engl 2015; 54:13245-8. [PMID: 26364873 PMCID: PMC4768645 DOI: 10.1002/anie.201505712] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Indexed: 11/11/2022]
Abstract
An olfactory biosensor based on a reduced graphene oxide (rGO) field-effect transistor (FET), functionalized by the odorant-binding protein 14 (OBP14) from the honey bee (Apis mellifera) has been designed for the in situ and real-time monitoring of a broad spectrum of odorants in aqueous solutions known to be attractants for bees. The electrical measurements of the binding of all tested odorants are shown to follow the Langmuir model for ligand-receptor interactions. The results demonstrate that OBP14 is able to bind odorants even after immobilization on rGO and can discriminate between ligands binding within a range of dissociation constants from K(d)=4 μM to K(d)=3.3 mM. The strongest ligands, such as homovanillic acid, eugenol, and methyl vanillate all contain a hydroxy group which is apparently important for the strong interaction with the protein.
Collapse
Affiliation(s)
- Melanie Larisika
- BioSensor Technologies, Austrian Institute of Technology, Vienna (Austria)
- Centre for Biomimetic Sensor Science, Nanyang Technological University, Singapore 637371 (Singapore)
| | - Caroline Kotlowski
- BioSensor Technologies, Austrian Institute of Technology, Vienna (Austria)
- Center for Electrochemical Surface Technology, Wiener Neustadt (Austria)
| | | | - Rosa Mastrogiacomo
- Department of Biology of Agriculture, Food and Environment, University of Pisa (Italy)
| | - Paolo Pelosi
- Department of Biology of Agriculture, Food and Environment, University of Pisa (Italy)
| | - Stefan Schütz
- Buesgen-Institute, Dept. of Forest Zoology and Forest Conservation, Goettingen (Germany)
| | - Serban F Peteu
- Michigan State University, Chemical Engineering & Materials Science (USA)
| | - Christoph Kleber
- Center for Electrochemical Surface Technology, Wiener Neustadt (Austria)
| | - Ciril Reiner-Rozman
- BioSensor Technologies, Austrian Institute of Technology, Vienna (Austria)
- Center for Electrochemical Surface Technology, Wiener Neustadt (Austria)
| | - Christoph Nowak
- BioSensor Technologies, Austrian Institute of Technology, Vienna (Austria)
- Centre for Biomimetic Sensor Science, Nanyang Technological University, Singapore 637371 (Singapore)
- Center for Electrochemical Surface Technology, Wiener Neustadt (Austria)
| | - Wolfgang Knoll
- BioSensor Technologies, Austrian Institute of Technology, Vienna (Austria).
- Centre for Biomimetic Sensor Science, Nanyang Technological University, Singapore 637371 (Singapore).
- Center for Electrochemical Surface Technology, Wiener Neustadt (Austria).
| |
Collapse
|
15
|
Larisika M, Kotlowski C, Steininger C, Mastrogiacomo R, Pelosi P, Schütz S, Peteu SF, Kleber C, Reiner‐Rozman C, Nowak C, Knoll W. Electronic Olfactory Sensor Based on
A. mellifera
Odorant‐Binding Protein 14 on a Reduced Graphene Oxide Field‐Effect Transistor. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505712] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Melanie Larisika
- BioSensor Technologies, Austrian Institute of Technology, Vienna (Austria)
- Centre for Biomimetic Sensor Science, Nanyang Technological University, Singapore 637371 (Singapore)
| | - Caroline Kotlowski
- BioSensor Technologies, Austrian Institute of Technology, Vienna (Austria)
- Center for Electrochemical Surface Technology, Wiener Neustadt (Austria)
| | | | - Rosa Mastrogiacomo
- Department of Biology of Agriculture, Food and Environment, University of Pisa (Italy)
| | - Paolo Pelosi
- Department of Biology of Agriculture, Food and Environment, University of Pisa (Italy)
| | - Stefan Schütz
- Buesgen‐Institute, Dept. of Forest Zoology and Forest Conservation, Goettingen (Germany)
| | - Serban F. Peteu
- Michigan State University, Chemical Engineering & Materials Science (USA)
| | - Christoph Kleber
- Center for Electrochemical Surface Technology, Wiener Neustadt (Austria)
| | - Ciril Reiner‐Rozman
- BioSensor Technologies, Austrian Institute of Technology, Vienna (Austria)
- Center for Electrochemical Surface Technology, Wiener Neustadt (Austria)
| | - Christoph Nowak
- BioSensor Technologies, Austrian Institute of Technology, Vienna (Austria)
- Centre for Biomimetic Sensor Science, Nanyang Technological University, Singapore 637371 (Singapore)
- Center for Electrochemical Surface Technology, Wiener Neustadt (Austria)
| | - Wolfgang Knoll
- BioSensor Technologies, Austrian Institute of Technology, Vienna (Austria)
- Centre for Biomimetic Sensor Science, Nanyang Technological University, Singapore 637371 (Singapore)
- Center for Electrochemical Surface Technology, Wiener Neustadt (Austria)
| |
Collapse
|
16
|
Schwaighofer A, Pechlaner M, Oostenbrink C, Kotlowski C, Araman C, Mastrogiacomo R, Pelosi P, Knoll W, Nowak C, Larisika M. Insights into structural features determining odorant affinities to honey bee odorant binding protein 14. Biochem Biophys Res Commun 2014; 446:1042-6. [PMID: 24661875 DOI: 10.1016/j.bbrc.2014.03.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 03/14/2014] [Indexed: 11/28/2022]
Abstract
Molecular interactions between odorants and odorant binding proteins (OBPs) are of major importance for understanding the principles of selectivity of OBPs towards the wide range of semiochemicals. It is largely unknown on a structural basis, how an OBP binds and discriminates between odorant molecules. Here we examine this aspect in greater detail by comparing the C-minus OBP14 of the honey bee (Apis mellifera L.) to a mutant form of the protein that comprises the third disulfide bond lacking in C-minus OBPs. Affinities of structurally analogous odorants featuring an aromatic phenol group with different side chains were assessed based on changes of the thermal stability of the protein upon odorant binding monitored by circular dichroism spectroscopy. Our results indicate a tendency that odorants show higher affinity to the wild-type OBP suggesting that the introduced rigidity in the mutant protein has a negative effect on odorant binding. Furthermore, we show that OBP14 stability is very sensitive to the position and type of functional groups in the odorant.
Collapse
Affiliation(s)
- Andreas Schwaighofer
- Austrian Institute of Technology GmbH, AIT, Donau-City Str. 1, 1220 Vienna, Austria
| | - Maria Pechlaner
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Chris Oostenbrink
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Caroline Kotlowski
- Center of Electrochemical Surface Technology, CEST, Viktor-Kaplan-Straße 2, 2700 Wiener Neustadt, Austria
| | - Can Araman
- Institut für Biologische Chemie, Universität Wien, Währinger Straße 38, 1090 Wien, Austria
| | - Rosa Mastrogiacomo
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Paolo Pelosi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Wolfgang Knoll
- Austrian Institute of Technology GmbH, AIT, Donau-City Str. 1, 1220 Vienna, Austria
| | - Christoph Nowak
- Austrian Institute of Technology GmbH, AIT, Donau-City Str. 1, 1220 Vienna, Austria; Center of Electrochemical Surface Technology, CEST, Viktor-Kaplan-Straße 2, 2700 Wiener Neustadt, Austria.
| | - Melanie Larisika
- Austrian Institute of Technology GmbH, AIT, Donau-City Str. 1, 1220 Vienna, Austria.
| |
Collapse
|