1
|
Recent Advances in Molecular Mechanisms of the NKG2D Pathway in Hepatocellular Carcinoma. Biomolecules 2020; 10:biom10020301. [PMID: 32075046 PMCID: PMC7094213 DOI: 10.3390/biom10020301] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/16/2020] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma is a common malignant tumor with high mortality. Its malignant proliferation, invasion, and metastasis are closely related to the cellular immune function of the patients. NKG2D is a key activated and type II membrane protein molecule expressed on the surface of almost all NK cells. The human NKG2D gene is 270 kb long, located at 12p12.3-p13.1, and contains 10 exons and 9 introns. The three-dimensional structure of the NKG2D monomeric protein contains two alpha-helices, two beta-lamellae, and four disulfide bonds, and its' signal of activation is transmitted mainly by the adaptor protein (DAP). NKG2D ligands, including MICA, MICB, and ULBPs, can be widely expressed in hepatoma cells. After a combination of NKG2D and DAP10 in the form of homologous two polymers, the YxxM motif in the cytoplasm is phosphorylated and then signaling pathways are also gradually activated, such as PI3K, PLCγ2, JNK-cJunN, and others. Activated NK cells can enhance the sensitivity to hepatoma cells and specifically dissolve by releasing a variety of cytokines (TNF-α and IFN-γ), perforin, and high expression of FasL, CD16, and TRAIL. NK cells may specifically bind to the over-expressed MICA, MICB, and ULBPs of hepatocellular carcinoma cells through the surface activating receptor NKG2D, which can help to accurately identify hepatoma, play a critical role in anti-hepatoma via the pathway of cytotoxic effects, and obviously delay the poor progress of hepatocellular carcinoma.
Collapse
|
2
|
Biassoni R, Malnati MS. Human Natural Killer Receptors, Co-Receptors, and Their Ligands. ACTA ACUST UNITED AC 2019; 121:e47. [PMID: 30040219 DOI: 10.1002/cpim.47] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the last 20 years, the study of human natural killer (NK) cells has moved from the first molecular characterizations of very few receptor molecules to the identification of a plethora of receptors displaying surprisingly divergent functions. We have contributed to the description of inhibitory receptors and their signaling pathways, important in fine regulation in many cell types, but unknown until their discovery in the NK cells. Inhibitory function is central to regulating NK-mediated cytolysis, with different molecular structures evolving during speciation to assure its persistence. More recently, it has become possible to characterize the NK triggering receptors mediating natural cytotoxicity, unveiling the existence of a network of cellular interactions between effectors of both natural and adaptive immunity. This unit reviews the contemporary history of molecular studies of receptors and ligands involved in NK cell function, characterizing the ligands of the triggering receptor and the mechanisms for finely regulating their expression in pathogen-infected or tumor cells. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Roberto Biassoni
- IRCCS Istituto Giannina Gaslini, Laboratory of Molecular Medicine, Genova, Italy
| | - Mauro S Malnati
- IRCCS Ospedale San Raffaele, Unit of Human Virology, Division of Immunology, Transplantation and Infectious Diseases, Milan, Italy
| |
Collapse
|
3
|
Abstract
The increasing number of Killer Immunoglobulin-like Receptor (KIR) sequences available for non-human primate species and cattle has prompted development of a centralized database, guidelines for a standardized nomenclature, and minimum requirements for database submission. The guidelines and nomenclature are based on those used for human KIR and incorporate modifications made for inclusion of non-human species in the companion IPD-NHKIR database. Included in this first release are the rhesus macaque (Macaca mulatta), chimpanzee (Pan troglodytes), orangutan (Pongo abelii and Pongo pygmaeus), and cattle (Bos taurus).
Collapse
|
4
|
Parasar P, Wilhelm A, Rutigliano HM, Thomas AJ, Teng L, Shi B, Davis WC, Suarez CE, New DD, White KL, Davies CJ. Expression of bovine non-classical major histocompatibility complex class I proteins in mouse P815 and human K562 cells. Res Vet Sci 2016; 107:161-170. [PMID: 27473990 DOI: 10.1016/j.rvsc.2016.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/20/2016] [Accepted: 06/06/2016] [Indexed: 11/16/2022]
Abstract
Major histocompatibility complex class I (MHC-I) proteins can be expressed as cell surface or secreted proteins. To investigate whether bovine non-classical MHC-I proteins are expressed as cell surface or secreted proteins, and to assess the reactivity pattern of monoclonal antibodies with non-classical MHC-I isoforms, we expressed the MHC proteins in murine P815 and human K562 (MHC-I deficient) cells. Following antibiotic selection, stably transfected cell lines were stained with H1A or W6/32 antibodies to detect expression of the MHC-I proteins by flow cytometry. Two non-classical proteins (BoLA-NC1*00501 and BoLA-NC3*00101) were expressed on the cell surface in both cell lines. Surprisingly, the BoLA-NC4*00201 protein was expressed on the cell membrane of human K562 but not mouse P815 cells. Two non-classical proteins (BoLA-NC1*00401, which lacks a transmembrane domain, and BoLA-NC2*00102) did not exhibit cell surface expression. Nevertheless, Western blot analyses demonstrated expression of the MHC-I heavy chain in all transfected cell lines. Ammonium-sulfate precipitation of proteins from culture supernatants showed that BoLA-NC1*00401 was secreted and that all surface expressed proteins where shed from the cell membrane by the transfected cells. Interestingly, the surface expressed MHC-I proteins were present in culture supernatants at a much higher concentration than BoLA-NC1*00401. This comprehensive study shows that bovine non-classical MHC-I proteins BoLA-NC1*00501, BoLA-NC3*00101, and BoLA-NC4*00201 are expressed as surface isoforms with the latter reaching the cell membrane only in K562 cells. Furthermore, it demonstrated that BoLA-NC1*00401 is a secreted isoform and that significant quantities of membrane associated MHC-I proteins can be shed from the cell membrane.
Collapse
Affiliation(s)
- Parveen Parasar
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, UT, USA; Center for Integrated BioSystems, 4700 Old Main Hill, Utah State University, Logan, UT, USA
| | - Amanda Wilhelm
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, UT, USA; Center for Integrated BioSystems, 4700 Old Main Hill, Utah State University, Logan, UT, USA
| | - Heloisa M Rutigliano
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, UT, USA; School of Veterinary Medicine, 4815 Old Main Hill, Utah State University, Logan, UT, USA
| | - Aaron J Thomas
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, UT, USA; Center for Integrated BioSystems, 4700 Old Main Hill, Utah State University, Logan, UT, USA
| | - Lihong Teng
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, UT, USA; Center for Integrated BioSystems, 4700 Old Main Hill, Utah State University, Logan, UT, USA
| | - Bi Shi
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, UT, USA; Center for Integrated BioSystems, 4700 Old Main Hill, Utah State University, Logan, UT, USA
| | - William C Davis
- Department of Veterinary Microbiology and Pathology, P.O. Box 647040, Washington State University, Pullman, WA, USA
| | - Carlos E Suarez
- USDA-ARS Animal Disease Research Unit, P.O. Box 646630, Washington State University, Pullman, WA, USA
| | - Daniel D New
- Department of Veterinary Microbiology and Pathology, P.O. Box 647040, Washington State University, Pullman, WA, USA
| | - Kenneth L White
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, UT, USA; School of Veterinary Medicine, 4815 Old Main Hill, Utah State University, Logan, UT, USA; Center for Integrated BioSystems, 4700 Old Main Hill, Utah State University, Logan, UT, USA
| | - Christopher J Davies
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, UT, USA; School of Veterinary Medicine, 4815 Old Main Hill, Utah State University, Logan, UT, USA; Center for Integrated BioSystems, 4700 Old Main Hill, Utah State University, Logan, UT, USA.
| |
Collapse
|
5
|
Abstract
Bovine viral diarrhea virus (BVDV) has long been associated with a wide variety of clinical syndromes and immune dysregulation, many which result in secondary bacterial infections. Current understanding of immune cell interactions that result in activation and tolerance are explored in light of BVDV infection including: depletion of lymphocytes, effects on neutrophils, natural killer cells, and the role of receptors and cytokines. In addition, we review some new information on the effect of BVDV on immune development in the fetal liver, the role of resident macrophages, and greater implications for persistent infection.
Collapse
|
6
|
Abstract
Natural killer (NK) cells are immune cells that play a crucial role against viral infections and tumors. To be tolerant against healthy tissue and simultaneously attack infected cells, the activity of NK cells is tightly regulated by a sophisticated array of germline-encoded activating and inhibiting receptors. The best characterized mechanism of NK cell activation is “missing self” detection, i.e., the recognition of virally infected or transformed cells that reduce their MHC expression to evade cytotoxic T cells. To monitor the expression of MHC-I on target cells, NK cells have monomorphic inhibitory receptors which interact with conserved MHC molecules. However, there are other NK cell receptors (NKRs) encoded by gene families showing a remarkable genetic diversity. Thus, NKR haplotypes contain several genes encoding for receptors with activating and inhibiting signaling, and that vary in gene content and allelic polymorphism. But if missing-self detection can be achieved by a monomorphic NKR system why have these polygenic and polymorphic receptors evolved? Here, we review the expansion of NKR receptor families in different mammal species, and we discuss several hypotheses that possibly underlie the diversification of the NK cell receptor complex, including the evolution of viral decoys, peptide sensitivity, and selective MHC-downregulation.
Collapse
|
7
|
Allan AJ, Sanderson ND, Gubbins S, Ellis SA, Hammond JA. Cattle NK Cell Heterogeneity and the Influence of MHC Class I. THE JOURNAL OF IMMUNOLOGY 2015. [PMID: 26216890 PMCID: PMC4543905 DOI: 10.4049/jimmunol.1500227] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Primate and rodent NK cells form highly heterogeneous lymphocyte populations owing to the differential expression of germline-encoded receptors. Many of these receptors are polymorphic and recognize equally polymorphic determinants of MHC class I. This diversity can lead to individuals carrying NK cells with different specificities. Cattle have an unusually diverse repertoire of NK cell receptor genes predicted to encode receptors that recognize MHC class I. To begin to examine whether this genetic diversity leads to a diverse NK cell population, we isolated peripheral NK cells from cattle with different MHC homozygous genotypes. Cytokine stimulation differentially influenced the transcription of five receptors at the cell population level. Using dilution cultures, we found that a further seven receptors were differentially transcribed, including five predicted to recognize MHC class I. Moreover, there was a statistically significant reduction in killer cell lectin-like receptor mRNA expression between cultures with different CD2 phenotypes and from animals with different MHC class I haplotypes. This finding confirms that cattle NK cells are a heterogeneous population and reveals that the receptors creating this diversity are influenced by the MHC. The importance of this heterogeneity will become clear as we learn more about the role of NK cells in cattle disease resistance and vaccination.
Collapse
Affiliation(s)
- Alasdair J Allan
- The Pirbright Institute, Pirbright, Woking, Surrey GU24 0NF, United Kingdom
| | | | - Simon Gubbins
- The Pirbright Institute, Pirbright, Woking, Surrey GU24 0NF, United Kingdom
| | - Shirley A Ellis
- The Pirbright Institute, Pirbright, Woking, Surrey GU24 0NF, United Kingdom
| | - John A Hammond
- The Pirbright Institute, Pirbright, Woking, Surrey GU24 0NF, United Kingdom
| |
Collapse
|
8
|
Baldwin CL, Telfer JC. The bovine model for elucidating the role of γδ T cells in controlling infectious diseases of importance to cattle and humans. Mol Immunol 2014; 66:35-47. [PMID: 25547715 DOI: 10.1016/j.molimm.2014.10.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/22/2014] [Accepted: 10/24/2014] [Indexed: 01/29/2023]
Abstract
There are several instances of co-investigation and related discoveries and achievements in bovine and human immunology; perhaps most interesting is the development of the BCG vaccine, the tuberculin skin test and the more recent interferon-gamma test that were developed first in cattle to prevent and diagnosis bovine tuberculosis and then applied to humans. There are also a number of immune-physiological traits that ruminant share with humans including the development of their immune systems in utero which increases the utility of cattle as a model for human immunology. These are reviewed here with a particular focus on the use of cattle to unravel γδ T cell biology. Based on the sheer number of γδ T cells in this γδ T cell high species, it is reasonable to expect γδ T cells to play an important role in protective immune responses. For that reason alone cattle may provide good models for elucidating at least some of the roles γδ T cells play in protective immunity in all species. This includes fundamental research on γδ T cells as well as the responses of ruminant γδ T cells to a variety of infectious disease situations including to protozoan and bacterial pathogens. The role that pattern recognition receptors (PRR) play in the activation of γδ T cells may be unique relative to αβ T cells. Here we focus on that of the γδ T cell specific family of molecules known as WC1 or T19 in ruminants, which are part of the CD163 scavenger receptor cysteine rich (SRCR) family that includes SCART1 and SCART2 expressed on murine γδ T cells. We review the evidence for WC1 being a PRR as well as an activating co-receptor and the role that γδ T cells bearing these receptors play in immunity to leptospirosis and tuberculosis. This includes the generation of memory responses to vaccines, thereby continuing the tradition of co-discovery between cattle and humans.
Collapse
Affiliation(s)
- Cynthia L Baldwin
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst 01003, United States.
| | - Janice C Telfer
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst 01003, United States.
| |
Collapse
|
9
|
Sanderson ND, Norman PJ, Guethlein LA, Ellis SA, Williams C, Breen M, Park SDE, Magee DA, Babrzadeh F, Warry A, Watson M, Bradley DG, MacHugh DE, Parham P, Hammond JA. Definition of the cattle killer cell Ig-like receptor gene family: comparison with aurochs and human counterparts. THE JOURNAL OF IMMUNOLOGY 2014; 193:6016-30. [PMID: 25398326 PMCID: PMC4258407 DOI: 10.4049/jimmunol.1401980] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Under selection pressure from pathogens, variable NK cell receptors that recognize polymorphic MHC class I evolved convergently in different species of placental mammal. Unexpectedly, diversified killer cell Ig-like receptors (KIRs) are shared by simian primates, including humans, and cattle, but not by other species. Whereas much is known of human KIR genetics and genomics, knowledge of cattle KIR is limited to nine cDNA sequences. To facilitate comparison of the cattle and human KIR gene families, we determined the genomic location, structure, and sequence of two cattle KIR haplotypes and defined KIR sequences of aurochs, the extinct wild ancestor of domestic cattle. Larger than its human counterpart, the cattle KIR locus evolved through successive duplications of a block containing ancestral KIR3DL and KIR3DX genes that existed before placental mammals. Comparison of two cattle KIR haplotypes and aurochs KIR show the KIR are polymorphic and the gene organization and content appear conserved. Of 18 genes, 8 are functional and 10 were inactivated by point mutation. Selective inactivation of KIR3DL and activating receptor genes leaves a functional cohort of one inhibitory KIR3DL, one activating KIR3DX, and six inhibitory KIR3DX. Functional KIR diversity evolved from KIR3DX in cattle and from KIR3DL in simian primates. Although independently evolved, cattle and human KIR gene families share important function-related properties, indicating that cattle KIR are NK cell receptors for cattle MHC class I. Combinations of KIR and MHC class I are the major genetic factors associated with human disease and merit investigation in cattle.
Collapse
Affiliation(s)
| | - Paul J Norman
- Department of Structural Biology, Stanford University, Stanford, CA 94035; Department of Microbiology and Immunology, Stanford University, Stanford, CA 94035
| | - Lisbeth A Guethlein
- Department of Structural Biology, Stanford University, Stanford, CA 94035; Department of Microbiology and Immunology, Stanford University, Stanford, CA 94035
| | - Shirley A Ellis
- The Pirbright Institute, Pirbright, Woking, Surrey GU24 0NF, United Kingdom
| | - Christina Williams
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27695
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27695; Center for Comparative Medicine and Translational Research, Raleigh, NC 27539; Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599
| | - Steven D E Park
- Animal Genomics Laboratory, School of Agriculture and Food Science, College of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - David A Magee
- Animal Genomics Laboratory, School of Agriculture and Food Science, College of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | | | - Andrew Warry
- Bioscience Information Technology Services, Biotechnology and Biological Sciences Research Council, Swindon SN2 1UH, United Kingdom
| | - Mick Watson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, United Kingdom
| | - Daniel G Bradley
- Smurfit Institute of Genetics, Trinity College, Dublin 2, Ireland; and
| | - David E MacHugh
- Animal Genomics Laboratory, School of Agriculture and Food Science, College of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Peter Parham
- Department of Structural Biology, Stanford University, Stanford, CA 94035; Department of Microbiology and Immunology, Stanford University, Stanford, CA 94035
| | - John A Hammond
- The Pirbright Institute, Pirbright, Woking, Surrey GU24 0NF, United Kingdom;
| |
Collapse
|
10
|
Infection with foot-and-mouth disease virus (FMDV) induces a natural killer (NK) cell response in cattle that is lacking following vaccination. Comp Immunol Microbiol Infect Dis 2014; 37:249-57. [PMID: 25150134 DOI: 10.1016/j.cimid.2014.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/25/2014] [Accepted: 07/28/2014] [Indexed: 01/23/2023]
Abstract
Natural killer (NK) cells play a role in innate antiviral immunity by directly lysing virus-infected cells and producing antiviral cytokines such as interferon gamma (IFN-γ). We developed a system for characterizing the bovine NK response to foot-and-mouth disease virus (FMDV), which causes a disease of cloven-hoofed animals and remains a threat to livestock industries throughout the world. IL-2 stimulation of PBMC resulted in poor killing of human K562 cells, which are often used as NK target cells, while lysis of the bovine BL3.1 cell line was readily detected. Depletion of NKp46-expressing cells revealed that 80% of the killing induced by IL-2 could be attributed to NKp46(+) cells. In order to characterize the response of NK cells against FMDV in vivo, we infected groups of cattle with three different strains of the virus (A24 Cruzeiro, O1 Manisa, O Hong Kong) and evaluated the cytolytic ability of NK cells through the course of infection. We consistently observed a transient increase in cytolysis, although there was variation in magnitude and kinetics. This increase in cytolysis remained when CD3(+) cells were removed from the preparation of lymphocytes, indicating that cytolysis was independent of MHC-T cell receptor interaction or γδ T cell activation. In contrast, animals monitored following vaccination against FMDV did not exhibit any increase in NK killing. These data suggest that NK cells play a role in the host immune response of cattle against FMDV, and contrast with the suppression of NK activity previously observed in swine infected with FMDV.
Collapse
|
11
|
Bimodal evolution of the killer cell Ig-like receptor (KIR) family in New World primates. Immunogenetics 2013; 65:725-36. [PMID: 23846852 DOI: 10.1007/s00251-013-0719-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/26/2013] [Indexed: 10/26/2022]
Abstract
The immunoglobulin-like receptor (KIR) gene family in New World primates (Platyrrhini) has been characterized only in the owl monkey (Aotus sp.). To gain a better understanding of the KIR system in Platyrrhini, we analyzed a KIR haplotype in Ateles geoffroyi, and sequenced KIR complementary DNAs (cDNAs) from other three Atelidae species, Ateles hybridus, Ateles belzebuth, and Lagothrix lagotricha. Atelidae expressed a variable set of activating and inhibitory KIRs that diversified independently from their Catarrhini counterparts. They had a unique mechanism to generate activating receptors from inhibitory ones, involving a single nucleotide deletion in exon 7 and a change in the donor splice site of intron 7. The A. geoffroyi haplotype contained at least six gene models including a pseudogene, two coding inhibitory receptors, and three coding activating receptors. The centromeric region was in a tail-to-tail orientation with respect to the telomeric region. The owl monkey KIR haplotype shared this organization, and in phylogenetic trees, the centromeric genes clustered together with those of A. geoffroyi, whereas their telomeric genes clustered independently. KIR cDNAs from the other Atelidae species conformed to this pattern. Signatures of positive selection were found in residues predicted to interact with the major histocompatibility complex. Such signatures, however, primarily explained variability between paralogous genes but not between alleles in a locus. Atelidae, therefore, has expanded the KIR family in a bimodal fashion, where an inverted centromeric region has remained relatively conserved and the telomeric region has diversified by a rapid process of gene duplication and divergence, likely favored by positive selection for ligand binding.
Collapse
|
12
|
Futas J, Horin P. Natural killer cell receptor genes in the family Equidae: not only Ly49. PLoS One 2013; 8:e64736. [PMID: 23724088 PMCID: PMC3665701 DOI: 10.1371/journal.pone.0064736] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/17/2013] [Indexed: 01/31/2023] Open
Abstract
Natural killer (NK) cells have important functions in immunity. NK recognition in mammals can be mediated through killer cell immunoglobulin-like receptors (KIR) and/or killer cell lectin-like Ly49 receptors. Genes encoding highly variable NK cell receptors (NKR) represent rapidly evolving genomic regions. No single conservative model of NKR genes was observed in mammals. Single-copy low polymorphic NKR genes present in one mammalian species may expand into highly polymorphic multigene families in other species. In contrast to other non-rodent mammals, multiple Ly49-like genes appear to exist in the horse, while no functional KIR genes were observed in this species. In this study, Ly49 and KIR were sought and their evolution was characterized in the entire family Equidae. Genomic sequences retrieved showed the presence of at least five highly conserved polymorphic Ly49 genes in horses, asses and zebras. These findings confirmed that the expansion of Ly49 occurred in the entire family. Several KIR-like sequences were also identified in the genome of Equids. Besides a previously identified non-functional KIR-Immunoglobulin-like transcript fusion gene (KIR-ILTA) and two putative pseudogenes, a KIR3DL-like sequence was analyzed. In contrast to previous observations made in the horse, the KIR3DL sequence, genomic organization and mRNA expression suggest that all Equids might produce a functional KIR receptor protein molecule with a single non-mutated immune tyrosine-based inhibition motif (ITIM) domain. No evidence for positive selection in the KIR3DL gene was found. Phylogenetic analysis including rhinoceros and tapir genomic DNA and deduced amino acid KIR-related sequences showed differences between families and even between species within the order Perissodactyla. The results suggest that the order Perissodactyla and its family Equidae with expanded Ly49 genes and with a potentially functional KIR gene may represent an interesting model for evolutionary biology of NKR genes.
Collapse
Affiliation(s)
- Jan Futas
- Departmen of Animal Genetics, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
- CEITEC-VFU, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Petr Horin
- Departmen of Animal Genetics, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
- CEITEC-VFU, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
13
|
Parham P, Moffett A. Variable NK cell receptors and their MHC class I ligands in immunity, reproduction and human evolution. Nat Rev Immunol 2013; 13:133-44. [PMID: 23334245 DOI: 10.1038/nri3370] [Citation(s) in RCA: 374] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Natural killer (NK) cells have roles in immunity and reproduction that are controlled by variable receptors that recognize MHC class I molecules. The variable NK cell receptors found in humans are specific to simian primates, in which they have progressively co-evolved with MHC class I molecules. The emergence of the MHC-C gene in hominids drove the evolution of a system of NK cell receptors for MHC-C molecules that is most elaborate in chimpanzees. By contrast, the human system of MHC-C receptors seems to have been subject to different selection pressures that have acted in competition on the immunological and reproductive functions of MHC class I molecules. We suggest that this compromise facilitated the development of the bigger brains that enabled archaic and modern humans to migrate out of Africa and populate other continents.
Collapse
Affiliation(s)
- Peter Parham
- Department of Structural Biology, Stanford University, Stanford, California 94305, USA.
| | | |
Collapse
|
14
|
Codner GF, Birch J, Hammond JA, Ellis SA. Constraints on haplotype structure and variable gene frequencies suggest a functional hierarchy within cattle MHC class I. Immunogenetics 2012; 64:435-45. [DOI: 10.1007/s00251-012-0612-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 01/13/2012] [Indexed: 12/11/2022]
|
15
|
Guzman E, Birch JR, Ellis SA. Cattle MIC is a ligand for the activating NK cell receptor NKG2D. Vet Immunol Immunopathol 2010; 136:227-34. [DOI: 10.1016/j.vetimm.2010.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 03/01/2010] [Accepted: 03/15/2010] [Indexed: 11/26/2022]
|
16
|
Dobromylskyj MJ, Connelley T, Hammond JA, Ellis SA. Cattle Ly49 is polymorphic. Immunogenetics 2009; 61:789-95. [DOI: 10.1007/s00251-009-0406-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 10/23/2009] [Indexed: 11/29/2022]
|
17
|
Hammond JA, Guethlein LA, Abi-Rached L, Moesta AK, Parham P. Evolution and survival of marine carnivores did not require a diversity of killer cell Ig-like receptors or Ly49 NK cell receptors. THE JOURNAL OF IMMUNOLOGY 2009; 182:3618-27. [PMID: 19265140 DOI: 10.4049/jimmunol.0803026] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ly49 lectin-like receptors and killer cell Ig-like receptors (KIR) are structurally unrelated cell surface glycoproteins that evolved independently to function as diverse NK cell receptors for MHC class I molecules. Comparison of primates and various domesticated animals has shown that species have either a diverse Ly49 or KIR gene family, but not both. In four pinniped species of wild marine carnivore, three seals and one sea lion, we find that Ly49 and KIR are each represented by single, orthologous genes that exhibit little polymorphism and are transcribed to express cell surface protein. Pinnipeds are therefore species in which neither Ly49 nor KIR are polygenic, but retain the ancestral single-copy state. Whereas pinniped Ly49 has been subject to purifying selection, we find evidence for positive selection on KIR3DL during pinniped evolution. This selection, which focused on the D0 domain and the stem, points to the functionality of the KIR and most likely led to the sea lion's loss of D0. In contrast to the dynamic and rapid evolution of the KIR and Ly49 genes in other species, the pinniped KIR and Ly49 have been remarkably stable during the >33 million years since the last common ancestor of seals and sea lions. These results demonstrate that long-term survival of placental mammal species need not require a diverse system of either Ly49 or KIR NK cell receptors.
Collapse
Affiliation(s)
- John A Hammond
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
18
|
Parham P. The genetic and evolutionary balances in human NK cell receptor diversity. Semin Immunol 2009; 20:311-6. [PMID: 19036608 DOI: 10.1016/j.smim.2008.10.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 10/06/2008] [Indexed: 11/16/2022]
Abstract
In primates and cattle two ancient killer-cell immunoglobulin-like receptor (KIR) lineages independently evolved to become diverse NK cell receptors. In mice, KIR genes were sidelined to the X chromosome, a possible consequence of pathogen-mediated selection on the receptor for IgA-Fc. In humans, KIR uniquely form two omnipresent haplotype groups (A and B), postulated here to play complementary and necessary roles in immune defense and reproduction. The basis of KIR3DL1/S1 polymorphism is three ancient lineages maintained by long-term balancing selection and present in all human populations. Conserved and variable NK cell receptors produce structurally diverse NK cell receptor repertoires within a defined range of missing-self-response.
Collapse
Affiliation(s)
- Peter Parham
- Department of Structural Biology, Stanford University School of Medicine, 299 Campus Drive West, Stanford, CA 94305, USA.
| |
Collapse
|
19
|
Boysen P, Storset AK. Bovine natural killer cells. Vet Immunol Immunopathol 2009; 130:163-77. [PMID: 19339058 DOI: 10.1016/j.vetimm.2009.02.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 02/11/2009] [Accepted: 02/20/2009] [Indexed: 01/23/2023]
Abstract
Natural killer (NK) cells have received much attention due to their cytotoxic abilities, often with a focus on their implications for cancer and transplantation. But despite their name, NK cells are also potent producers of cytokines like interferon-gamma. Recent discoveries of their interplay with dendritic cells and T-cells have shown that NK cells participate significantly in the onset and shaping of adaptive cellular immune responses, and increasingly these cells have become associated with protection from viral, bacterial and parasitic infections. Furthermore, they are substantially present in the placenta, apparently participating in the establishment of normal pregnancy. Consequently, NK cells have entered arenas of particular relevance in veterinary immunology. Limited data still exist on these cells in domestic animal species, much due to the lack of specific markers. However, bovine NK cells can be identified as NKp46 (CD335) expressing, CD3(-) lymphocytes. Recent studies have indicated a role for NK cells in important infectious diseases of cattle, and identified important bovine NK receptor families, including multiple KIRs and a single Ly49. In this review we will briefly summarize the current understanding of general NK cell biology, and then present the knowledge obtained thus far in the bovine species.
Collapse
Affiliation(s)
- Preben Boysen
- Norwegian School of Veterinary Science, Department of Food Safety and Infection Biology, PO Box 8146 Dep, Oslo NO-0033, Norway.
| | | |
Collapse
|
20
|
Biassoni R. Human natural killer receptors, co-receptors, and their ligands. CURRENT PROTOCOLS IN IMMUNOLOGY 2009; Chapter 14:14.10.1-14.10.40. [PMID: 19235767 DOI: 10.1002/0471142735.im1410s84] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the last 20 years, the study of human natural killer (NK) cells has moved from the first molecular characterizations of very few receptor molecules to the identification of a plethora of receptors displaying surprisingly divergent functions. Our laboratory has contributed to the description of inhibitory receptors and their signaling pathways, important in fine regulation in many cell types, but unknown until their discovery in the NK cells. Inhibitory function is central to regulating NK-mediated cytolysis, with different molecular structures evolving during speciation to assure its persistence. Only in the last ten years has it become possible to characterize the NK triggering receptors mediating natural cytotoxicity, leading to an appreciation of the existence of a cellular interaction network between effectors of both natural and adaptive immunity. This report reviews the contemporary history of molecular studies of receptors and ligands involved in NK cell function, characterizing the ligands of the triggering receptor and the mechanisms for finely regulating their expression in pathogen-infected or tumor cells.
Collapse
Affiliation(s)
- Roberto Biassoni
- Instituto Giannina Gaslini, Laboratory of Molecular Medicine, Genova, Italy
| |
Collapse
|
21
|
Dissen E, Fossum S, Hoelsbrekken SE, Saether PC. NK cell receptors in rodents and cattle. Semin Immunol 2008; 20:369-75. [PMID: 18977671 DOI: 10.1016/j.smim.2008.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 09/04/2008] [Indexed: 11/17/2022]
Abstract
Natural killer (NK) cells discriminate between normal syngeneic cells and infected, neoplastic or MHC-disparate allogeneic cells. The reactivity of NK cells appears to be regulated by a balance between activating receptors that recognize non-self or altered self, and inhibitory receptors recognizing normal, self-encoded MHC class I molecules. Subfamilies of NK receptors undergo rapid evolution, and appear to co-evolve with the MHC. We here review present views on the evolution and function of NK cell receptors, with an emphasis on knowledge gained in cattle and rodents.
Collapse
Affiliation(s)
- Erik Dissen
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, PO Box 1105 Blindern, N-0317 Oslo, Norway.
| | | | | | | |
Collapse
|
22
|
Genomic location and characterisation of nonclassical MHC class I genes in cattle. Immunogenetics 2008; 60:267-73. [DOI: 10.1007/s00251-008-0294-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 03/20/2008] [Indexed: 01/19/2023]
|
23
|
Martinez-Borra J, Khakoo SI. Speed and selection in the evolution of killer-cell immunoglobulin-like receptors. Int J Immunogenet 2008; 35:89-96. [DOI: 10.1111/j.1744-313x.2008.00756.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|