1
|
Yamamoto H, Matano T. SIV-specific neutralizing antibody induction following selection of a PI3K drive-attenuated nef variant. eLife 2025; 12:RP88849. [PMID: 40029304 PMCID: PMC11875539 DOI: 10.7554/elife.88849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Abstract
HIV and simian immunodeficiency virus (SIV) infections are known for impaired neutralizing antibody (NAb) responses. While sequential virus-host B cell interaction appears to be basally required for NAb induction, driver molecular signatures predisposing to NAb induction still remain largely unknown. Here we describe SIV-specific NAb induction following a virus-host interplay decreasing aberrant viral drive of phosphoinositide 3-kinase (PI3K). Screening of seventy difficult-to-neutralize SIVmac239-infected macaques found nine NAb-inducing animals, with seven selecting for a specific CD8+ T-cell escape mutation in viral nef before NAb induction. This Nef-G63E mutation reduced excess Nef interaction-mediated drive of B-cell maturation-limiting PI3K/mammalian target of rapamycin complex 2 (mTORC2). In vivo imaging cytometry depicted preferential Nef perturbation of cognate Envelope-specific B cells, suggestive of polarized contact-dependent Nef transfer and corroborating cognate B-cell maturation post-mutant selection up to NAb induction. Results collectively exemplify a NAb induction pattern extrinsically reciprocal to human PI3K gain-of-function antibody-dysregulating disease and indicate that harnessing the PI3K/mTORC2 axis may facilitate NAb induction against difficult-to-neutralize viruses including HIV/SIV.
Collapse
Grants
- JP24fk0410066 Japan Agency for Medical Research and Development
- JP21jk0210002 Japan Agency for Medical Research and Development
- 24K21287 Ministry of Education, Culture, Sports, Science and Technology
- 21H02745 Ministry of Education, Culture, Sports, Science and Technology
- JP22wm0325006 Japan Agency for Medical Research and Development
- JP19fm0208017 Japan Agency for Medical Research and Development
- JP20fk0410022 Japan Agency for Medical Research and Development
- JP18fk0410003 Japan Agency for Medical Research and Development
- JP20fk0410011 Japan Agency for Medical Research and Development
- JP20fk0108125 Japan Agency for Medical Research and Development
- JP20jm0110012 Japan Agency for Medical Research and Development
- JP21fk0410035 Japan Agency for Medical Research and Development
- 17H02185 Ministry of Education, Culture, Sports, Science and Technology
- 18K07157 Ministry of Education, Culture, Sports, Science and Technology
- Takeda Science Foundation
- Imai Memorial Trust for AIDS Research
- Mitsui Sumitomo Insurance Welfare Foundation
Collapse
Affiliation(s)
- Hiroyuki Yamamoto
- AIDS Research Center, National Institute of Infectious DiseasesTokyoJapan
- Department of Biomedicine, University Hospital BaselBaselSwitzerland
- Joint Research Center for Human Retrovirus Infection, Kumamoto UniversityKumamotoJapan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious DiseasesTokyoJapan
- Joint Research Center for Human Retrovirus Infection, Kumamoto UniversityKumamotoJapan
- The Institute of Medical Science, The University of TokyoTokyoJapan
| |
Collapse
|
2
|
Berry N, Mee ET, Almond N, Rose NJ. The Impact and Effects of Host Immunogenetics on Infectious Disease Studies Using Non-Human Primates in Biomedical Research. Microorganisms 2024; 12:155. [PMID: 38257982 PMCID: PMC10818626 DOI: 10.3390/microorganisms12010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Understanding infectious disease pathogenesis and evaluating novel candidate treatment interventions for human use frequently requires prior or parallel analysis in animal model systems. While rodent species are frequently applied in such studies, there are situations where non-human primate (NHP) species are advantageous or required. These include studies of animals that are anatomically more akin to humans, where there is a need to interrogate the complexity of more advanced biological systems or simply reflect susceptibility to a specific infectious agent. The contribution of different arms of the immune response may be addressed in a variety of NHP species or subspecies in specific physiological compartments. Such studies provide insights into immune repertoires not always possible from human studies. However, genetic variation in outbred NHP models may confound, or significantly impact the outcome of a particular study. Thus, host factors need to be considered when undertaking such studies. Considerable knowledge of the impact of host immunogenetics on infection dynamics was elucidated from HIV/SIV research. NHP models are now important for studies of emerging infections. They have contributed to delineating the pathogenesis of SARS-CoV-2/COVID-19, which identified differences in outcomes attributable to the selected NHP host. Moreover, their use was crucial in evaluating the immunogenicity and efficacy of vaccines against COVID-19 and establishing putative correlates of vaccine protection. More broadly, neglected or highly pathogenic emerging or re-emergent viruses may be studied in selected NHPs. These studies characterise protective immune responses following infection or the administration of candidate immunogens which may be central to the accelerated licensing of new vaccines. Here, we review selected aspects of host immunogenetics, specifically MHC background and TRIM5 polymorphism as exemplars of adaptive and innate immunity, in commonly used Old and New World host species. Understanding this variation within and between NHP species will ensure that this valuable laboratory source is used most effectively to combat established and emerging virus infections and improve human health worldwide.
Collapse
Affiliation(s)
- Neil Berry
- Research & Development—Science, Research and Innovation, Medicines and Healthcare products Regulatory Agency, South Mimms, Hertfordshire EN6 3QG, UK; (E.T.M.); (N.A.); (N.J.R.)
| | | | | | | |
Collapse
|
3
|
Hierarchy of multiple viral CD8+ T-cell epitope mutations in sequential selection in simian immunodeficiency infection. Biochem Biophys Res Commun 2022; 607:124-130. [DOI: 10.1016/j.bbrc.2022.03.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022]
|
4
|
Ishii H, Terahara K, Nomura T, Okazaki M, Yamamoto H, Shu T, Sakawaki H, Miura T, Watkins DI, Matano T. Env-independent protection of intrarectal SIV challenge by vaccine induction of Gag/Vif-specific CD8+ T cells but not CD4+ T cells. Mol Ther 2022; 30:2048-2057. [PMID: 35231604 PMCID: PMC9092394 DOI: 10.1016/j.ymthe.2022.02.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/20/2022] [Accepted: 02/23/2022] [Indexed: 10/19/2022] Open
Abstract
Effective T cell induction is an important strategy in HIV-vaccine development. However, it has been indicated that vaccine-induced HIV-specific CD4+ T cells, the preferential targets of HIV infection, might increase viral acquisition after HIV exposure. We have recently developed an immunogen (CaV11), tandemly connected overlapping 11-mer peptides spanning the simian immunodeficiency virus (SIV) Gag capsid and Vif proteins, to selectively induce Gag- and Vif-specific CD8+ T cells but not CD4+ T cells. Here, we show protective efficacy of a CaV11-expressing vaccine against repeated intrarectal low-dose SIVmac239 challenge in rhesus macaques. Eight of the twelve vaccinated macaques were protected after eight challenges. Kaplan-Meier analysis indicated significant protection in the vaccinees compared to the unvaccinated macaques. Vaccine-induced Gag-specific CD8+ T cell responses were significantly higher in the protected than the unprotected vaccinees. These results suggest that classical CD8+ T cell induction by viral Env-independent vaccination can confer protection from intrarectal SIV acquisition, highlighting the rationale for this immunogen design to induce virus-specific CD8+ T cells but not CD4+ T cells in HIV-vaccine development.
Collapse
|
5
|
Kanno Y, Hau TTT, Kurokawa R, Nomura T, Nishizawa M, Matano T, Yamamoto H. Late-phase dominance of a single epitope-specific CD8+ T-cell response in passive neutralizing antibody-infused simian immunodeficiency virus controllers. AIDS 2021; 35:2281-2288. [PMID: 34224443 DOI: 10.1097/qad.0000000000003013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Analysis of the quantity and quality of epitope-specific CD8+ T-cell responses is crucial for understanding the mechanism of HIV/simian immunodeficiency virus (SIV) replication control. We have previously shown that acute-phase passive infusion of neutralizing antibodies (NAbs) results in augmented broad T-cell responses and robust SIVmac239 control in rhesus macaques. Analyzing long-term dynamics of CD8+ T-cell responses in these SIV controllers provides important insights into designing lasting anti-HIV immunity. DESIGN We analyzed dynamics and metabolic/functional profiles of SIV-specific CD8+ T-cell responses in rhesus macaques that controlled SIVmac239 replication following acute-phase passive NAb infusion. METHODS SIV epitope-specific CD8+ T-cell responses in peripheral blood at multiple chronic-phase time points were investigated in four passive NAb-infused SIV controllers. In particular, expression patterns of Eomesodermin (Eomes), phosphorylated AMP kinase (pAMPK), CD28 and programmed death-1 (PD-1) were examined. RESULTS In the NAb-infused SIV controllers, a single epitope-specific CD8+ T-cell response detected from acute infection and maintaining low levels up to year 1 showed a surge thereafter, up to year 2 postchallenge. Retention of an effector-skewed and unexhausted Eomes-high/pAMPK-low/CD28-negative/PD-1-low subpopulation in these epitope-specific CD8+ T cells implicated their front-line commitment in residual viral replication control. CONCLUSION In long-term SIV control following acute-phase passive NAb infusion, a single-epitope, high-quality CTL response was dominantly induced in the chronic phase. These results likely describe one favorable pattern of immunodominant epitope-specific CD8+ T-cell preservation and suggest the importance of incorporating metabolic marker signatures for understanding NAb/T-cell synergism-based HIV/SIV control.
Collapse
Affiliation(s)
- Yoshiaki Kanno
- AIDS Research Center, National Institute of Infectious Diseases
- The Institute of Medical Science, The University of Tokyo, Tokyo
| | - Trang Thi Thu Hau
- AIDS Research Center, National Institute of Infectious Diseases
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Rise Kurokawa
- AIDS Research Center, National Institute of Infectious Diseases
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Takushi Nomura
- AIDS Research Center, National Institute of Infectious Diseases
| | | | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases
- The Institute of Medical Science, The University of Tokyo, Tokyo
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | | |
Collapse
|
6
|
Mon HM, Feng M, Pattanawong U, Kosuwin R, Yanagi T, Kobayashi S, Putaporntip C, Jongwutiwes S, Cheng X, Tachibana H. Genotyping of Entamoeba nuttalli strains from the wild rhesus macaques of Myanmar and comparison with those from the wild rhesus macaques of Nepal and China. INFECTION GENETICS AND EVOLUTION 2021; 92:104830. [PMID: 33798757 DOI: 10.1016/j.meegid.2021.104830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 10/21/2022]
Abstract
Entamoeba nuttalli found in macaques is phylogenetically the closest species to Entamoeba histolytica and is potentially pathogenic. In this study, the prevalence of Entamoeba infections was examined in wild rhesus macaques by examining 73 and 90 fecal samples collected from two sites, Popa Taung Kalat (PTK) and Pho Win Taung (PWT), in Myanmar. The positive rates of E. nuttalli detected using PCR were 49% and 31% in PTK and PWT, respectively, but no infections of E. histolytica and E. moshkovskii were found. Entamoeba dispar was detected in 6% of samples only from PWT. Positive rates of E. chattoni and E. coli were both 70% in PWT and 67% and 79% in PTK, respectively. Six E. nuttalli strains from PTK and eight from PWT were obtained in the culture with xenic medium and then, one and two strains, respectively, were axenized and finally cloned. The genotypic analysis of serine-rich protein genes revealed two genotypes each in both sites. The genotypes found in five of six strains from PTK were similar to those from the strains found in Nepal, whereas the remaining one from PTK and two from PWT were similar to those obtained from macaques in China. The sequence of the 18S rDNA of strains with these four genotypes was identical to that of the strains from China. Six loci of tRNA-linked short tandem repeats were analyzed for further genotyping of the strains. Although there were two types in locus A-L in PTK isolates, one of each type for PTK and PWT was found in the other loci, including locus A-L in PWT strains. These results demonstrated that the E. nuttalli strains from Myanmar are closer to the strains from macaques in China rather than those from macaques in Nepal.
Collapse
Affiliation(s)
- Hla Myat Mon
- Yangon Technological University, Pharmaceutical Research Department, Myanma Scientific and Technological Research Department, Ministry of Science and Technology, Yangon, Myanmar
| | - Meng Feng
- Department of Parasitology, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan; Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Urassaya Pattanawong
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Rattiporn Kosuwin
- Department of Parasitology, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan; Division of Health Promotion, Faculty of Physical Therapy, Srinakharinwirot University, Ongkharak, Nakhon Nayok 26120, Thailand
| | - Tetsuo Yanagi
- Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Seiki Kobayashi
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Chaturong Putaporntip
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Somchai Jongwutiwes
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Xunjia Cheng
- Department of Parasitology, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan; Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Hiroshi Tachibana
- Department of Parasitology, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan.
| |
Collapse
|
7
|
Sil S, Thangaraj A, Chivero ET, Niu F, Kannan M, Liao K, Silverstein PS, Periyasamy P, Buch S. HIV-1 and drug abuse comorbidity: Lessons learned from the animal models of NeuroHIV. Neurosci Lett 2021; 754:135863. [PMID: 33794296 DOI: 10.1016/j.neulet.2021.135863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Various research studies that have investigated the association between HIV infection and addiction underpin the role of various drugs of abuse in impairing immunological and non-immunological pathways of the host system, ultimately leading to augmentation of HIV infection and disease progression. These studies have included both in vitro and in vivo animal models wherein investigators have assessed the effects of various drugs on several disease parameters to decipher the impact of drugs on both HIV infection and progression of HIV-associated neurocognitive disorders (HAND). However, given the inherent limitations in the existing animal models of HAND, these investigations only recapitulated specific aspects of the disease but not the complex human syndrome. Despite the inability of HIV to infect rodents over the last 30 years, multiple strategies have been employed to develop several rodent models of HAND. While none of these models can accurately mimic the overall pathophysiology of HAND, they serve the purpose of modeling some unique aspects of HAND. This review provides an overview of various animal models used in the field and a careful evaluation of methodological strengths and limitations inherent in both the model systems and study designs to understand better how the various animal models complement one another.
Collapse
Affiliation(s)
- Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Annadurai Thangaraj
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ernest T Chivero
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Fang Niu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Muthukumar Kannan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ke Liao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Peter S Silverstein
- School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
8
|
CD8 T Cells Show Protection against Highly Pathogenic Simian Immunodeficiency Virus (SIV) after Vaccination with SIV Gene-Expressing BCG Prime and Vaccinia Virus/Sendai Virus Vector Boosts. J Virol 2021; 95:JVI.01718-20. [PMID: 33087465 PMCID: PMC7851566 DOI: 10.1128/jvi.01718-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/12/2020] [Indexed: 11/27/2022] Open
Abstract
Because both AIDS and tuberculosis are serious health threats in middle/low-income countries, development of a dual vaccine against them would be highly beneficial. To approach the goal, here we first assessed a urease-deficient bacillus Calmette-Guérin (BCG) for improvement of immunogenicity against both Mycobacterium tuberculosis and SIV. Second, we demonstrated the usefulness of Asian-origin cynomolgus monkeys for development of a preclinical AIDS vaccine by direct comparison with Indian rhesus macaques as the only validated hosts that identically mirror the outcomes of clinical trials, since the availability of Indian rhesus macaques is limited in countries other than the United States. Finally, we report the protective effect of a vaccination regimen comprising BCG, the highly attenuated vaccinia virus LC16m8Δ strain, and nontransmissible Sendai virus as safe vectors expressing SIV genes using repeated mucosal challenge with highly pathogenic SIVmac251. Identification of CD8+ T cells as a protective immunity suggests a future direction of AIDS vaccine development. Toward development of a dual vaccine for human immunodeficiency virus type 1 (HIV-1) and tuberculosis infections, we developed a urease-deficient bacillus Calmette-Guérin (BCG) strain Tokyo172 (BCGΔurease) to enhance its immunogenicity. BCGΔurease expressing a simian immunodeficiency virus (SIV) Gag induced BCG antigen-specific CD4+ and CD8+ T cells more efficiently and more Gag-specific CD8+ T cells. We evaluated its protective efficacy against SIV infection in cynomolgus monkeys of Asian origin, shown to be as susceptible to infection with SIVmac251 as Indian rhesus macaques. Priming with recombinant BCG (rBCG) expressing SIV genes was followed by a boost with SIV gene-expressing LC16m8Δ vaccinia virus and a second boost with SIV Env-expressing Sendai virus. Eight weeks after the second boost, monkeys were repeatedly challenged with a low dose of SIVmac251 intrarectally. Two animals out of 6 vaccinees were protected, whereas all 7 control animals were infected without any early viral controls. In one vaccinated animal, which had the most potent CD8+ T cells in an in vitro suppression activity (ISA) assay of SIVmac239 replication, plasma viremia was undetectable throughout the follow-up period. Protection was confirmed by the lack of anamnestic antibody responses and detectable cell-associated provirus in various organs. Another monkey with a high ISA acquired a small amount of SIV, but it later became suppressed below the detection limit. Moreover, the ISA score correlated with SIV acquisition. On the other hand, any parameter relating anti-Env antibody was not correlated with the protection. IMPORTANCE Because both AIDS and tuberculosis are serious health threats in middle/low-income countries, development of a dual vaccine against them would be highly beneficial. To approach the goal, here we first assessed a urease-deficient bacillus Calmette-Guérin (BCG) for improvement of immunogenicity against both Mycobacterium tuberculosis and SIV. Second, we demonstrated the usefulness of Asian-origin cynomolgus monkeys for development of a preclinical AIDS vaccine by direct comparison with Indian rhesus macaques as the only validated hosts that identically mirror the outcomes of clinical trials, since the availability of Indian rhesus macaques is limited in countries other than the United States. Finally, we report the protective effect of a vaccination regimen comprising BCG, the highly attenuated vaccinia virus LC16m8Δ strain, and nontransmissible Sendai virus as safe vectors expressing SIV genes using repeated mucosal challenge with highly pathogenic SIVmac251. Identification of CD8+ T cells as a protective immunity suggests a future direction of AIDS vaccine development.
Collapse
|
9
|
Development and evaluation of a rapid and cost-efficient NGS-based MHC class I genotyping method for macaques by using a prevalent short-read sequencer. Immunogenetics 2021; 73:175-186. [PMID: 33447871 DOI: 10.1007/s00251-020-01199-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/02/2020] [Indexed: 10/22/2022]
Abstract
Rhesus macaque is one of the most widely used primate model animals for immunological research of infectious diseases including human immunodeficiency virus (HIV) infection. It is well known that major histocompatibility complex (MHC) class I genotypes affect the susceptibility and disease progression to simian immunodeficiency virus (SIV) in rhesus macaques, which is resembling to HIV in humans. It is required to convincingly determine the MHC genotypes in the immunological investigations, that is why several next-generation sequencing (NGS)-based methods have been established. In general, NGS-based genotyping methods using short amplicons are not often applied to MHC because of increasing number of alleles and inevitable ambiguity in allele detection, although there is an advantage of short read sequencing systems that are commonly used today. In this study, we developed a new high-throughput NGS-based genotyping method for MHC class I alleles in rhesus macaques and cynomolgus macaques. By using our method, 95% and 100% of alleles identified by PCR cloning-based method were detected in rhesus macaques and cynomolgus macaques, respectively, which were highly correlated with their expression levels. It was noted that the simulation of new-allele detection step using artificial alleles differing by a few nucleotide sequences from a known allele could be identified with high accuracy and that we could detect a real novel allele from a rhesus macaque sample. These findings supported that our method could be adapted for primate animal models such as macaques to reduce the cost and labor of previous NGS-based MHC genotyping.
Collapse
|
10
|
[In vivo protective mechanisms of neutralizing antibodies against simian immunodeficiency virus replicatio]. Uirusu 2021; 71:87-96. [PMID: 35526999 DOI: 10.2222/jsv.71.87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Identifying protective adaptive immune responses against human immunodeficiency virus type 1 (HIV-1), mainly comprising CD8+ cytotoxic T lymphocyte (CTL) and neutralizing antibody (NAb) responses, is crucial for understanding in vivo mechanisms of viral persistence and developing prophylactic/intervention strategies. In HIV-1 and pathogenic simian immunodeficiency virus (SIV) infections, CTL responses play the canonical role in primary viral replication control, whereas NAb responses are impaired. This NAb impairment in early infection conversely highlights the necessity of elucidating anti-HIV/SIV antibody defense/induction mechanisms, and one approach to analyze the impact of NAbs on HIV/SIV infection is passive immunization. We have analyzed a simian AIDS model of highly pathogenic SIVmac239-infected rhesus macaques, and characterized that a single acute-phase passive infusion of SIV-specific polyclonal NAbs drives a synergistic qualitative boosting of virus-specific T-cell responses, resulting in sustained SIV replication control. This in vivo functional augmentation of virus-specific T cells by NAbs in the SIV model provides insights into the design of protective immunity against HIV-1 infection.
Collapse
|
11
|
Nakamura-Hoshi M, Takahara Y, Matsuoka S, Ishii H, Seki S, Nomura T, Yamamoto H, Sakawaki H, Miura T, Tokusumi T, Shu T, Matano T. Therapeutic vaccine-mediated Gag-specific CD8 + T-cell induction under anti-retroviral therapy augments anti-virus efficacy of CD8 + cells in simian immunodeficiency virus-infected macaques. Sci Rep 2020; 10:11394. [PMID: 32647227 PMCID: PMC7347614 DOI: 10.1038/s41598-020-68267-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Anti-retroviral therapy (ART) can inhibit HIV proliferation but not achieve virus eradication from HIV-infected individuals. Under ART-based HIV control, virus-specific CD8+ T-cell responses are often reduced. Here, we investigated the impact of therapeutic vaccination inducing virus-specific CD8+ T-cell responses under ART on viral control in a macaque AIDS model. Twelve rhesus macaques received ART from week 12 to 32 after simian immunodeficiency virus (SIV) infection. Six of them were vaccinated with Sendai virus vectors expressing SIV Gag and Vif at weeks 26 and 32, and Gag/Vif-specific CD8+ T-cell responses were enhanced and became predominant. All macaques controlled viremia during ART but showed viremia rebound after ART cessation. Analysis of in vitro CD8+ cell ability to suppress replication of autologous lymphocytes-derived SIVs found augmentation of anti-SIV efficacy of CD8+ cells after vaccination. In the vaccinated animals, the anti-SIV efficacy of CD8+ cells at week 34 was correlated positively with Gag-specific CD8+ T-cell frequencies and inversely with rebound viral loads at week 34. These results indicate that Gag-specific CD8+ T-cell induction by therapeutic vaccination can augment anti-virus efficacy of CD8+ cells, which may be insufficient for functional cure but contribute to more stable viral control under ART.
Collapse
Affiliation(s)
- Midori Nakamura-Hoshi
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.,The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Yusuke Takahara
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.,The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Saori Matsuoka
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Hiroshi Ishii
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Sayuri Seki
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Takushi Nomura
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Hiroyuki Yamamoto
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Hiromi Sakawaki
- Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tomoyuki Miura
- Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | | | - Tsugumine Shu
- ID Pharma Co., Ltd., 6 Ohkubo, Tsukuba, Ibaraki, 300-2611, Japan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan. .,The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
12
|
Hau TTT, Nakamura-Hoshi M, Kanno Y, Nomura T, Nishizawa M, Seki S, Ishii H, Kawana-Tachikawa A, Hall WW, Nguyen Thi LA, Matano T, Yamamoto H. CD8 + T cell-based strong selective pressure on multiple simian immunodeficiency virus targets in macaques possessing a protective MHC class I haplotype. Biochem Biophys Res Commun 2019; 512:213-217. [PMID: 30878187 DOI: 10.1016/j.bbrc.2019.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 03/01/2019] [Indexed: 10/27/2022]
Abstract
In human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections, host major histocompatibility complex class I (MHC-I) genotypes have a great impact on viral replication and MHC-I-associated viral genome mutations are selected under CD8+ T-cell pressure. Association of MHC-I genotypes with HIV/SIV control has been investigated at MHC-I allele levels but not fully at haplotype levels. We previously established groups of rhesus macaques sharing individual MHC-I haplotypes. In the present study, we compared viral genome diversification after SIV infection in macaques possessing a protective MHC-I haplotype, 90-010-Id, with those possessing a non-protective MHC-I haplotype, 90-010-Ie. These two MHC-I haplotypes are associated with immunodominant CD8+ T-cell responses targeting similar regions of viral Nef antigen. Analyses of viral genome sequences and antigen-specific T-cell responses showed four and two candidates of viral CD8+ T-cell targets associated with 90-010-Id and 90-010-Ie, respectively, in addition to the Nef targets. In these CD8+ T-cell target regions, higher numbers of mutations were detected at the setpoint after SIV infection in macaques possessing 90-010-Id than those possessing 90-010-Ie. These results indicate higher selective pressure on overall CD8+ T-cell targets associated with the protective MHC-I haplotype, suggesting a pattern of HIV/SIV control by multiple target-specific CD8+ T-cell responses.
Collapse
Affiliation(s)
- Trang Thi Thu Hau
- AIDS Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama City, Tokyo, 208-0011, Japan; Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Kumamoto, 860-0811, Japan; Center of BioMedical Research, National Institute of Hygiene and Epidemiology, No.1 Yersin Street, Hanoi, Viet Nam
| | - Midori Nakamura-Hoshi
- AIDS Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama City, Tokyo, 208-0011, Japan; The Institute of Medical Science/Graduate School of Medicine/Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Yoshiaki Kanno
- AIDS Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama City, Tokyo, 208-0011, Japan; The Institute of Medical Science/Graduate School of Medicine/Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Takushi Nomura
- AIDS Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama City, Tokyo, 208-0011, Japan
| | - Masako Nishizawa
- AIDS Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama City, Tokyo, 208-0011, Japan
| | - Sayuri Seki
- AIDS Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama City, Tokyo, 208-0011, Japan
| | - Hiroshi Ishii
- AIDS Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama City, Tokyo, 208-0011, Japan
| | - Ai Kawana-Tachikawa
- AIDS Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama City, Tokyo, 208-0011, Japan; Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Kumamoto, 860-0811, Japan; The Institute of Medical Science/Graduate School of Medicine/Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - William W Hall
- Center of BioMedical Research, National Institute of Hygiene and Epidemiology, No.1 Yersin Street, Hanoi, Viet Nam; Centre for Research in Infectious Diseases, School of Medicine & Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lan Anh Nguyen Thi
- Center of BioMedical Research, National Institute of Hygiene and Epidemiology, No.1 Yersin Street, Hanoi, Viet Nam.
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama City, Tokyo, 208-0011, Japan; Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Kumamoto, 860-0811, Japan; The Institute of Medical Science/Graduate School of Medicine/Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| | - Hiroyuki Yamamoto
- AIDS Research Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama City, Tokyo, 208-0011, Japan.
| |
Collapse
|
13
|
MHC class I diversity of olive baboons (Papio anubis) unravelled by next-generation sequencing. Immunogenetics 2018; 70:439-448. [PMID: 29478145 PMCID: PMC6006219 DOI: 10.1007/s00251-018-1053-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/30/2018] [Indexed: 12/26/2022]
Abstract
The olive baboon represents an important model system to study various aspects of human biology and health, including the origin and diversity of the major histocompatibility complex. After screening of a group of related animals for polymorphisms associated with a well-defined microsatellite marker, subsequent MHC class I typing of a selected population of 24 animals was performed on two distinct next-generation sequencing (NGS) platforms. A substantial number of 21 A and 80 B transcripts were discovered, about half of which had not been previously reported. Per animal, from one to four highly transcribed A alleles (majors) were observed, in addition to ones characterised by low transcripion levels (minors), such as members of the A*14 lineage. Furthermore, in one animal, up to 13 B alleles with differential transcription level profiles may be present. Based on segregation profiles, 16 Paan-AB haplotypes were defined. A haplotype encodes in general one or two major A and three to seven B transcripts, respectively. A further peculiarity is the presence of at least one copy of a B*02 lineage on nearly every haplotype, which indicates that B*02 represents a separate locus with probably a specialistic function. Haplotypes appear to be generated by recombination-like events, and the breakpoints map not only between the A and B regions but also within the B region itself. Therefore, the genetic makeup of the olive baboon MHC class I region appears to have been subject to a similar or even more complex expansion process than the one documented for macaque species.
Collapse
|
14
|
Parham P, Guethlein LA. Genetics of Natural Killer Cells in Human Health, Disease, and Survival. Annu Rev Immunol 2018; 36:519-548. [PMID: 29394121 DOI: 10.1146/annurev-immunol-042617-053149] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Natural killer (NK) cells have vital functions in human immunity and reproduction. In the innate and adaptive immune responses to infection, particularly by viruses, NK cells respond by secreting inflammatory cytokines and killing infected cells. In reproduction, NK cells are critical for genesis of the placenta, the organ that controls the supply of oxygen and nutrients to the growing fetus. Controlling NK cell functions are interactions of HLA class I with inhibitory NK cell receptors. First evolved was the conserved interaction of HLA-E with CD94:NKG2A; later established were diverse interactions of HLA-A, -B, and -C with killer cell immunoglobulin-like receptors. Characterizing the latter interactions is rapid evolution, which distinguishes human populations and all species of higher primate. Driving this evolution are the different and competing selections imposed by pathogens on NK cell-mediated immunity and by the constraints of human reproduction on NK cell-mediated placentation. Promoting rapid evolution is independent segregation of polymorphic receptors and ligands throughout human populations.
Collapse
Affiliation(s)
- Peter Parham
- Department of Structural Biology and Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, California 94305, USA; ,
| | - Lisbeth A Guethlein
- Department of Structural Biology and Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, California 94305, USA; ,
| |
Collapse
|
15
|
NARUSE TK, AKARI H, MATANO T, KIMURA A. Diversity of ULBP5 in Old-World monkeys (Cercopithecidae) and divergence of the ULBP gene family in primates. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2018; 94:441-453. [PMID: 30541969 PMCID: PMC6374140 DOI: 10.2183/pjab.94.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 10/10/2018] [Indexed: 06/09/2023]
Abstract
Non-human primates such as rhesus macaque and cynomolgus macaque are important animals for medical research. These species are classified as Old-World monkeys (Cercopithecidae), in which the immune-related genome structure is characterized by gene duplications. In the present study, we investigated polymorphisms in two genes for ULBP5 encoding ligands for NKG2D. We found 18 and 11 ULBP5.1 alleles and 11 and 13 ULBP5.2 alleles in rhesus macaques and cynomolgus macaques, respectively. In addition, phylogenetic analyses revealed that ULBP5.2 diverged from a branch of ULBP5.1. These data suggested that human ULBP genes diverged from an ancestral gene of ULBP2-ULBP5 and that ULBP6/RAET1L, specifically identified in human, diverged from an ancestral ULBP2 by a recent gene duplication after the diversification of homininae (human and other higher great apes), which were consistent with the findings in our previous analysis of ULBP2 genes in rhesus and cynomolgus macaques.
Collapse
Affiliation(s)
- Taeko K. NARUSE
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hirofumi AKARI
- Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Tetsuro MATANO
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Akinori KIMURA
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
16
|
de Groot NG, Heijmans CMC, de Ru AH, Janssen GMC, Drijfhout JW, Otting N, Vangenot C, Doxiadis GGM, Koning F, van Veelen PA, Bontrop RE. A Specialist Macaque MHC Class I Molecule with HLA-B*27-like Peptide-Binding Characteristics. THE JOURNAL OF IMMUNOLOGY 2017; 199:3679-3690. [PMID: 29021373 DOI: 10.4049/jimmunol.1700502] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/15/2017] [Indexed: 11/19/2022]
Abstract
In different macaque species, the MHC A2*05 gene is present in abundance, and its gene products are characterized by low cell-surface expression and a highly conserved peptide-binding cleft. We have characterized the peptide-binding motif of Mamu-A2*05:01, and elucidated the binding capacity for virus-derived peptides. The macaque A2*05 allotype prefers the basic amino acid arginine at the second position of the peptide, and hydrophobic and polar amino acids at the C-terminal end. These preferences are shared with HLA-B*27 and Mamu-B*008, molecules shown to be involved in elite control in human HIV type 1 and macaque SIV infections, respectively. In contrast, however, Mamu-A2*05 preferentially binds 8-mer peptides. Retention in the endoplasmic reticulum seems to be the cause of the lower cell-surface expression. Subsequent peptide-binding studies have illustrated that Mamu-A2*05:01 is able to bind SIV-epitopes known to evoke a strong CD8+ T cell response in the context of the Mamu-B*008 allotype in SIV-infected rhesus macaques. Thus, the macaque A2*05 gene encodes a specialized MHC class I molecule, and is most likely transported to the cell surface only when suitable peptides become available.
Collapse
Affiliation(s)
- Natasja G de Groot
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands;
| | - Corrine M C Heijmans
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands
| | - Arnoud H de Ru
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - George M C Janssen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Jan W Drijfhout
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Nel Otting
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands
| | - Christelle Vangenot
- Anthropology Unit, Department of Genetics and Evolution, University of Geneva, 1211 Geneva 4, Switzerland; and
| | - Gaby G M Doxiadis
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands
| | - Frits Koning
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Peter A van Veelen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Ronald E Bontrop
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ Rijswijk, the Netherlands.,Department of Theoretical Biology and Bioinformatics, Utrecht University, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
17
|
Seki S, Nomura T, Nishizawa M, Yamamoto H, Ishii H, Matsuoka S, Shiino T, Sato H, Mizuta K, Sakawaki H, Miura T, Naruse TK, Kimura A, Matano T. In vivo virulence of MHC-adapted AIDS virus serially-passaged through MHC-mismatched hosts. PLoS Pathog 2017; 13:e1006638. [PMID: 28931083 PMCID: PMC5624644 DOI: 10.1371/journal.ppat.1006638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/02/2017] [Accepted: 09/09/2017] [Indexed: 01/02/2023] Open
Abstract
CD8+ T-cell responses exert strong suppressive pressure on HIV replication and select for viral escape mutations. Some of these major histocompatibility complex class I (MHC-I)-associated mutations result in reduction of in vitro viral replicative capacity. While these mutations can revert after viral transmission to MHC-I-disparate hosts, recent studies have suggested that these MHC-I-associated mutations accumulate in populations and make viruses less pathogenic in vitro. Here, we directly show an increase in the in vivo virulence of an MHC-I-adapted virus serially-passaged through MHC-I-mismatched hosts in a macaque AIDS model despite a reduction in in vitro viral fitness. The first passage simian immunodeficiency virus (1pSIV) obtained 1 year after SIVmac239 infection in a macaque possessing a protective MHC-I haplotype 90-120-Ia was transmitted into 90-120-Ia- macaques, whose plasma 1 year post-infection was transmitted into other 90-120-Ia- macaques to obtain the third passage SIV (3pSIV). Most of the 90-120-Ia-associated mutations selected in 1pSIV did not revert even in 3pSIV. 3pSIV showed lower in vitro viral fitness but induced persistent viremia in 90-120-Ia- macaques. Remarkably, 3pSIV infection in 90-120-Ia+ macaques resulted in significantly higher viral loads and reduced survival compared to wild-type SIVmac239. These results indicate that MHC-I-adapted SIVs serially-transmitted through MHC-I-mismatched hosts can have higher virulence in MHC-I-matched hosts despite their lower in vitro viral fitness. This study suggests that multiply-passaged HIVs could result in loss of HIV-specific CD8+ T cell responses in human populations and the in vivo pathogenic potential of these escaped viruses may be enhanced. CD8+ T-cell responses exert considerable control over replication of HIV and select for viral escape mutations. Recent studies have suggested that these major histocompatibility complex class I (MHC-I)-associated mutations accumulate in populations and make viruses less pathogenic in vitro. Other studies have shown that some of these escape mutations can revert after passage to MHC-I-disparate hosts. In an attempt to reconcile these apparently conflicting results, we serially passaged a virus isolate through MHC-I-mismatched hosts in the macaque AIDS model of simian immunodeficiency virus (SIV) infection. Here we show an increase in the in vivo virulence of an MHC-I-adapted virus despite a reduction in in vitro viral replication capacity. Only a few of the selected escape mutations reverted after transmission to MHC-I-disparate recipients. Results clearly showed that MHC-I-adapted SIVs that have been serially-transmitted through MHC-I-mismatched hosts can have higher in vivo virulence in MHC-I-matched hosts despite their lower in vitro viral fitness. This study suggests that HIVs may become less sensitive to CD8+ T cell responses and could have increased in vivo virulence by adaptation to MHC-I in human populations.
Collapse
Affiliation(s)
- Sayuri Seki
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takushi Nomura
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Center for AIDS Research, Kumamoto University, Tokyo, Japan
| | - Masako Nishizawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroyuki Yamamoto
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroshi Ishii
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Saori Matsuoka
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Teiichiro Shiino
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hironori Sato
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuta Mizuta
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiromi Sakawaki
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Tomoyuki Miura
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Taeko K. Naruse
- Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akinori Kimura
- Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Center for AIDS Research, Kumamoto University, Tokyo, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
18
|
Ishii H, Matsuoka S, Nomura T, Nakamura M, Shiino T, Sato Y, Iwata-Yoshikawa N, Hasegawa H, Mizuta K, Sakawaki H, Miura T, Koyanagi Y, Naruse TK, Kimura A, Matano T. Association of lymph-node antigens with lower Gag-specific central-memory and higher Env-specific effector-memory CD8(+) T-cell frequencies in a macaque AIDS model. Sci Rep 2016; 6:30153. [PMID: 27452272 PMCID: PMC4958968 DOI: 10.1038/srep30153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 06/27/2016] [Indexed: 01/17/2023] Open
Abstract
Virus-specific CD8+ T cells exert strong suppressive pressure on human/simian immunodeficiency virus (HIV/SIV) replication. These responses have been intensively examined in peripheral blood mononuclear cells (PBMCs) but not fully analyzed in lymph nodes (LNs), where interaction between CD8+ T cells and HIV/SIV-infected cells occurs. Here, we investigated target antigen specificity of CD8+ T cells in LNs in a macaque AIDS model. Analysis of virus antigen-specific CD8+ T-cell responses in the inguinal LNs obtained from twenty rhesus macaques in the chronic phase of SIV infection showed an inverse correlation between viral loads and frequencies of CD8+ T cells with CD28+ CD95+ central memory phenotype targeting the N-terminal half of SIV core antigen (Gag-N). In contrast, analysis of LNs but not PBMCs revealed a positive correlation between viral loads and frequencies of CD8+ T cells with CD28−CD95+ effector memory phenotype targeting the N-terminal half of SIV envelope (Env-N), soluble antigen. Indeed, LNs with detectable SIV capsid p27 antigen in the germinal center exhibited significantly lower Gag-N-specific CD28+ CD95+ CD8+ T-cell and higher Env-N-specific CD28−CD95+ CD8+ T-cell responses than those without detectable p27. These results imply that core and envelope antigen-specific CD8+ T cells show different patterns of interactions with HIV/SIV-infected cells.
Collapse
Affiliation(s)
- Hiroshi Ishii
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Saori Matsuoka
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Takushi Nomura
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.,Center for AIDS Research, Kumamoto University, Tokyo 162-8640, Japan
| | - Midori Nakamura
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Teiichiro Shiino
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Yuko Sato
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Naoko Iwata-Yoshikawa
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Kazuta Mizuta
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Hiromi Sakawaki
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Tomoyuki Miura
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Yoshio Koyanagi
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Taeko K Naruse
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Akinori Kimura
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.,The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
19
|
Shiina T, Blancher A, Inoko H, Kulski JK. Comparative genomics of the human, macaque and mouse major histocompatibility complex. Immunology 2016; 150:127-138. [PMID: 27395034 DOI: 10.1111/imm.12624] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/22/2016] [Accepted: 04/27/2016] [Indexed: 12/20/2022] Open
Abstract
The MHC is a highly polymorphic genomic region that encodes the transplantation and immune regulatory molecules. It receives special attention for genetic investigation because of its important role in the regulation of innate and adaptive immune responses and its strong association with numerous infectious and/or autoimmune diseases. The MHC locus was first discovered in the mouse and for the past 50 years it has been studied most intensively in both mice and humans. However, in recent years the macaque species have emerged as some of the more important and advanced experimental animal models for biomedical research into MHC with important human immunodeficiency virus/simian immunodeficiency virus and transplantation studies undertaken in association with precise MHC genotyping and haplotyping methods using Sanger sequencing and next-generation sequencing. Here, in this special issue on 'Macaque Immunology' we provide a short review of the genomic similarities and differences among the human, macaque and mouse MHC class I and class II regions, with an emphasis on the association of the macaque class I region with MHC polymorphism, haplotype structure and function.
Collapse
Affiliation(s)
- Takashi Shiina
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Antoine Blancher
- Laboratoire d'Immunogénétique moléculaire (LIMT, EA 3034), Laboratoire d'immunologie, Faculté de Médecine Purpan, Université Toulouse 3, CHU de Toulouse, Toulouse, France
| | - Hidetoshi Inoko
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Jerzy K Kulski
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan.,School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
20
|
Biphasic CD8+ T-Cell Defense in Simian Immunodeficiency Virus Control by Acute-Phase Passive Neutralizing Antibody Immunization. J Virol 2016; 90:6276-6290. [PMID: 27122584 DOI: 10.1128/jvi.00557-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 04/22/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Identifying human immunodeficiency virus type 1 (HIV-1) control mechanisms by neutralizing antibodies (NAbs) is critical for anti-HIV-1 strategies. Recent in vivo studies on animals infected with simian immunodeficiency virus (SIV) and related viruses have shown the efficacy of postinfection NAb passive immunization for viremia reduction, and one suggested mechanism is its occurrence through modulation of cellular immune responses. Here, we describe SIV control in macaques showing biphasic CD8(+) cytotoxic T lymphocyte (CTL) responses following acute-phase NAb passive immunization. Analysis of four SIVmac239-infected rhesus macaque pairs matched with major histocompatibility complex class I haplotypes found that counterparts receiving day 7 anti-SIV polyclonal NAb infusion all suppressed viremia for up to 2 years without accumulating viral CTL escape mutations. In the first phase of primary viremia control attainment, CD8(+) cells had high capacities to suppress SIVs carrying CTL escape mutations. Conversely, in the second, sustained phase of SIV control, CTL responses converged on a pattern of immunodominant CTL preservation. During this sustained phase of viral control, SIV epitope-specific CTLs showed retention of phosphorylated extracellular signal-related kinase (ERK)(hi)/phosphorylated AMP-activated protein kinase (AMPK)(lo) subpopulations, implying their correlation with SIV control. The results suggest that virus-specific CTLs functionally boosted by acute-phase NAbs may drive robust AIDS virus control. IMPORTANCE In early HIV infection, NAb responses are lacking and CTL responses are insufficient, which leads to viral persistence. Hence, it is important to identify immune responses that can successfully control such HIV replication. Here, we show that monkeys receiving NAb passive immunization in early SIV infection strictly control viral replication for years. Passive infusion of NAbs with CTL cross-priming capacity resulted in induction of functionally boosted early CTL responses showing enhanced suppression of CTL escape mutant virus replication. Accordingly, the NAb-infused animals did not show accumulation of viral CTL escape mutations during sustained SIV control, and immunodominant CTL responses were preserved. This early functional augmentation of CTLs by NAbs provides key insights into the design of lasting and viral escape mutation-free protective immunity against HIV-1 infection.
Collapse
|
21
|
Nomura T, Yamamoto H, Ishii H, Akari H, Naruse TK, Kimura A, Matano T. Broadening of Virus-Specific CD8+ T-Cell Responses Is Indicative of Residual Viral Replication in Aviremic SIV Controllers. PLoS Pathog 2015; 11:e1005247. [PMID: 26536034 PMCID: PMC4633064 DOI: 10.1371/journal.ppat.1005247] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/02/2015] [Indexed: 12/01/2022] Open
Abstract
Control of HIV replication is a rare immunological event, providing clues to understand the viral control mechanism. CD8+ T-cell responses are crucial for virus control, but it is unclear whether lasting HIV containment can be achieved after establishment of infection. Here, we describe lasting SIV containment in a macaque AIDS model. Analysis of ten rhesus macaques that controlled viremia for 2 years post-infection found accumulation of proviral gag and nef CD8+ T-cell escape mutations in four of them. These four controllers mounted CD8+ T cells targeting Gag, Nef, and other viral proteins at 4 months, suggesting that broadening of CD8+ T-cell targets can be an indicator of the beginning of viral control failure. The remaining six aviremic SIV controllers, however, harbored proviruses without mutations and showed no or little broadening of their CD8+ T-cell responses in the chronic phase. Indeed, three of the latter six exhibiting no change in CD8+ T-cell targets showed gradual decreases in SIV-specific CD8+ T-cell frequencies, implying a concomitant reduction in viral replication. Thus, stability of the breadth of virus-specific CD8+ T-cell responses may represent a status of lasting HIV containment by CD8+ T cells. CD8+ T-cell responses are crucial for HIV control, but it is unclear whether lasting HIV containment can be achieved after establishment of infection. Several T cell-based vaccine trials have currently shown primary viremia control in macaque AIDS models of simian immunodeficiency virus (SIV) infection, but residual viral replication may occur, followed by accumulation of viral CD8+ T-cell escape mutations, possibly leading to eventual viremia rebound. In the present study, we analyzed ten rhesus macaques that controlled SIV replication without detectable viremia for more than 2 years. Animals were divided into two groups on the basis of proviral genome sequences at 2 years post-infection. Analysis of the first group exhibiting multiple CD8+ T-cell escape mutations indicated that broadening of CD8+ T-cell responses can be an indicator of the beginning of viral control failure. Conversely, analysis of the second group having no mutation suggested that stability of the breadth of virus-specific CD8+ T-cell responses represents a status of lasting HIV containment by CD8+ T cells. Thus, this study presents a model of stable SIV containment, contributing to elucidation of the requisites for lasting HIV control.
Collapse
Affiliation(s)
- Takushi Nomura
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroyuki Yamamoto
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroshi Ishii
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hirofumi Akari
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Taeko K. Naruse
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akinori Kimura
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
22
|
Seki S, Matano T. Development of a Sendai virus vector-based AIDS vaccine inducing T cell responses. Expert Rev Vaccines 2015; 15:119-27. [PMID: 26512881 DOI: 10.1586/14760584.2016.1105747] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Virus-specific CD8(+) T-cell responses play a major role in the control of HIV replication, and induction of HIV-specific T-cell responses is an important strategy for AIDS vaccine development. Optimization of the delivery system and immunogen would be the key for the development of an effective T cell-based AIDS vaccine. Heterologous prime-boost vaccine regimens using multiple viral vectors are a promising protocol for efficient induction of HIV-specific T-cell responses, and the development of a variety of potent viral vectors have been attempted. This review describes the current progress of the development of T cell-based AIDS vaccines using viral vectors, focusing on Sendai virus vectors, whose phase I clinical trials have been performed.
Collapse
Affiliation(s)
- Sayuri Seki
- a AIDS Research Center , National Institute of Infectious Diseases , Tokyo , Japan
| | - Tetsuro Matano
- a AIDS Research Center , National Institute of Infectious Diseases , Tokyo , Japan.,b The Institute of Medical Science , The University of Tokyo , Tokyo , Japan
| |
Collapse
|
23
|
Walter L, Ansari AA. MHC and KIR Polymorphisms in Rhesus Macaque SIV Infection. Front Immunol 2015; 6:540. [PMID: 26557119 PMCID: PMC4617107 DOI: 10.3389/fimmu.2015.00540] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/08/2015] [Indexed: 02/04/2023] Open
Abstract
Natural killer lymphocytes are essentially involved as the first line of defense against agents such as viruses and malignant cells. The activity of these cells is regulated via interaction of specific and diverse killer cell immunoglobulin-like receptors (KIR) with the highly polymorphic cognate MHC class I proteins on target cells. Genetic variability of both KIR and MHC-I ligands has been shown to be associated with resistance to many diseases, including infection with the immunodeficiency virus. Disease course and progression to AIDS after infection with human immunodeficiency virus-1 (HIV-1) is essentially influenced by the presence of the stimulatory KIR3DS1 receptor in combination with HLA-Bw4. Knowledge of such genetic interactions that contribute to not only disease resistance but also susceptibility are just as important. Such combined genetic factors were recently reported in the rhesus macaque AIDS model. Here, we review the rhesus macaque MHC class I and KIR gene systems and the role of their polymorphisms in the SIV infection model.
Collapse
Affiliation(s)
- Lutz Walter
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research , Göttingen , Germany
| | - Aftab A Ansari
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine , Atlanta, GA , USA
| |
Collapse
|
24
|
Nomura T, Yamamoto H, Takahashi N, Naruse TK, Kimura A, Matano T. Identification of SIV Nef CD8(+) T cell epitopes restricted by a MHC class I haplotype associated with lower viral loads in a macaque AIDS model. Biochem Biophys Res Commun 2014; 450:942-7. [PMID: 24971540 DOI: 10.1016/j.bbrc.2014.06.072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 06/16/2014] [Indexed: 11/18/2022]
Abstract
Virus-specific CD8(+) T-cell responses are crucial for the control of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication. Multiple studies on HIV-infected individuals and SIV-infected macaques have indicated association of several major histocompatibility complex class I (MHC-I) genotypes with lower viral loads and delayed AIDS progression. Understanding of the viral control mechanism associated with these MHC-I genotypes would contribute to the development of intervention strategy for HIV control. We have previously reported a rhesus MHC-I haplotype, 90-120-Ia, associated with lower viral loads after SIVmac239 infection. Gag206-216 and Gag241-249 epitope-specific CD8(+) T-cell responses have been shown to play a central role in the reduction of viral loads, whereas the effect of Nef-specific CD8(+) T-cell responses induced in all the 90-120-Ia(+) macaques on SIV replication remains unknown. Here, we identified three CD8(+) T-cell epitopes, Nef9-19, Nef89-97, and Nef193-203, associated with 90-120-Ia. Nef9-19 and Nef193-203 epitope-specific CD8(+) T-cell responses frequently selected for mutations resulting in viral escape from recognition by these CD8(+) T cells, indicating that these CD8(+) T cells exert strong suppressive pressure on SIV replication. Results would be useful for elucidation of the viral control mechanism associated with 90-120-Ia.
Collapse
Affiliation(s)
- Takushi Nomura
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Hiroyuki Yamamoto
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Naofumi Takahashi
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Taeko K Naruse
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Akinori Kimura
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
25
|
Divergence and diversity of ULBP2 genes in rhesus and cynomolgus macaques. Immunogenetics 2014; 66:161-70. [PMID: 24469065 DOI: 10.1007/s00251-014-0760-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 01/13/2014] [Indexed: 10/25/2022]
Abstract
Non-human primates such as rhesus macaque and cynomolgus macaque are important animals for medical research fields and they are classified as Old World monkey, in which genome structure is characterized by gene duplications. In the present study, we investigated polymorphisms in two genes for ULBP2 molecules that are ligands for NKG2D. A total of 15 and 11 ULBP2.1 alleles and 11 and 10 ULBP2.2 alleles were identified in rhesus macaques and cynomolgus macaques, respectively. Nucleotide sequences of exons for extra cellular domain were highly polymorphic and more than 70 % were non-synonymous variations in both ULBP2.1 and ULBP2.2. In addition, phylogenetic analyses revealed that the ULBP2.2 was diverged from a branch of ULBP2.1 along with ULBP2s of higher primates. Moreover, when 3D structural models were constructed for the rhesus ULBP2 molecules, residues at presumed contact sites with NKG2D were polymorphic in ULBP2.1 and ULBP2.2 in the rhesus macaque and cynomolgus macaque, respectively. These observations suggest that amino acid replacements at the interaction sites with NKG2D might shape a specific nature of ULBP2 molecules in the Old World monkeys.
Collapse
|
26
|
Control of simian immunodeficiency virus replication by vaccine-induced Gag- and Vif-specific CD8+ T cells. J Virol 2013; 88:425-33. [PMID: 24155398 DOI: 10.1128/jvi.02634-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For development of an effective T cell-based AIDS vaccine, it is critical to define the antigens that elicit the most potent responses. Recent studies have suggested that Gag-specific and possibly Vif/Nef-specific CD8(+) T cells can be important in control of the AIDS virus. Here, we tested whether induction of these CD8(+) T cells by prophylactic vaccination can result in control of simian immunodeficiency virus (SIV) replication in Burmese rhesus macaques sharing the major histocompatibility complex class I (MHC-I) haplotype 90-010-Ie associated with dominant Nef-specific CD8(+) T-cell responses. In the first group vaccinated with Gag-expressing vectors (n = 5 animals), three animals that showed efficient Gag-specific CD8(+) T-cell responses in the acute phase postchallenge controlled SIV replication. In the second group vaccinated with Vif- and Nef-expressing vectors (n = 6 animals), three animals that elicited Vif-specific CD8(+) T-cell responses in the acute phase showed SIV control, whereas the remaining three with Nef-specific but not Vif-specific CD8(+) T-cell responses failed to control SIV replication. Analysis of 18 animals, consisting of seven unvaccinated noncontrollers and the 11 vaccinees described above, revealed that the sum of Gag- and Vif-specific CD8(+) T-cell frequencies in the acute phase was inversely correlated with plasma viral loads in the chronic phase. Our results suggest that replication of the AIDS virus can be controlled by vaccine-induced subdominant Gag/Vif epitope-specific CD8(+) T cells, providing a rationale for the induction of Gag- and/or Vif-specific CD8(+) T-cell responses by prophylactic AIDS vaccines.
Collapse
|
27
|
Identification of MHC class I sequences in four species of Macaca of China. Immunogenetics 2013; 65:851-9. [PMID: 24045838 DOI: 10.1007/s00251-013-0735-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 09/06/2013] [Indexed: 10/26/2022]
Abstract
Tibetan macaques (Macaca thibetana), stump-tailed macaques (M. arctoides), Assamese macaques (M. assamensis), and northern pig-tailed macaques (M. leonina) are four major species of Macaca in China. In order to effectively use these species in biomedical research, thorough investigations of their MHC immunogenetics are required. In this study, we identified MHC class I sequences using cDNA cloning and sequencing on a cohort of six M. thibetana, three M. arctoides, three M. assamensis, and three M. leonina derived from Sichuan and Yunnan provinces of China. Eighty new alleles were identified, including 26 MHC-A alleles, 46 MHC-B alleles, and 8 MHC-I alleles. Among them, Math-A1*126:01, Math-B*190:01, Math-B*191:01, Math-B*192:01, Maar-A1*127:01, Maar-A1*129:01, and Maas-A1*128:01 represent lineages that had not been reported earlier in Macaca. Phylogenetic analyses show that no obvious separation of lineages among these species of Macaca. This study provides important information about the MHC immunogenetics for the four major species of Chinese macaques and adds value to these species as model organisms in biomedical research.
Collapse
|
28
|
Nakane T, Nomura T, Shi S, Nakamura M, Naruse TK, Kimura A, Matano T, Yamamoto H. Limited impact of passive non-neutralizing antibody immunization in acute SIV infection on viremia control in rhesus macaques. PLoS One 2013; 8:e73453. [PMID: 24039947 PMCID: PMC3767751 DOI: 10.1371/journal.pone.0073453] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 07/17/2013] [Indexed: 11/28/2022] Open
Abstract
Background Antiviral antibodies, especially those with neutralizing activity against the incoming strain, are potentially important immunological effectors to control human immunodeficiency virus (HIV) infection. While neutralizing activity appears to be central in sterile protection against HIV infection, the entity of inhibitory mechanisms via HIV and simian immunodeficiency virus (SIV)-specific antibodies remains elusive. The recent HIV vaccine trial RV144 and studies in nonhuman primate models have indicated controversial protective efficacy of HIV/SIV-specific non-neutralizing binding antibodies (non-NAbs). While reports on HIV-specific non-NAbs have demonstrated virus inhibitory activity in vitro, whether non-NAbs could also alter the pathogenic course of established SIV replication in vivo, likewise via neutralizing antibody (NAb) administration, has been unclear. Here, we performed post-infection passive immunization of SIV-infected rhesus macaques with polyclonal SIV-specific, antibody-dependent cell-mediated viral inhibition (ADCVI)-competent non-NAbs. Methods and Findings Ten lots of polyclonal immunoglobulin G (IgG) were prepared from plasma of ten chronically SIVmac239-infected, NAb-negative rhesus macaques, respectively. Their binding capacity to whole SIVmac239 virions showed a propensity similar to ADCVI activity. A cocktail of three non-NAb lots showing high virion-binding capacity and ADCVI activity was administered to rhesus macaques at day 7 post-SIVmac239 challenge. This resulted in an infection course comparable with control animals, with no significant difference in set point plasma viral loads or immune parameters. Conclusions Despite virus-specific suppressive activity of the non-NAbs having been observed in vitro, their passive immunization post-infection did not result in SIV control in vivo. Virion binding and ADCVI activity with lack of virus neutralizing activity were indicated to be insufficient for antibody-triggered non-sterile SIV control. More diverse effector functions or sophisticated localization may be required for non-NAbs to impact HIV/SIV replication in vivo.
Collapse
Affiliation(s)
- Taku Nakane
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takushi Nomura
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shoi Shi
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Midori Nakamura
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Taeko K. Naruse
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akinori Kimura
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- * E-mail: ; (HY)
| | - Hiroyuki Yamamoto
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- * E-mail: ; (HY)
| |
Collapse
|
29
|
Karl JA, Bohn PS, Wiseman RW, Nimityongskul FA, Lank SM, Starrett GJ, O’Connor DH. Major histocompatibility complex class I haplotype diversity in Chinese rhesus macaques. G3 (BETHESDA, MD.) 2013; 3:1195-201. [PMID: 23696100 PMCID: PMC3704247 DOI: 10.1534/g3.113.006254] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/14/2013] [Indexed: 12/28/2022]
Abstract
The use of Chinese-origin rhesus macaques (Macaca mulatta) for infectious disease immunity research is increasing despite the relative lack of major histocompatibility complex (MHC) class I immunogenetics information available for this population. We determined transcript-based MHC class I haplotypes for 385 Chinese rhesus macaques from five different experimental cohorts, providing a concise representation of the full complement of MHC class I major alleles expressed by each animal. In total, 123 Mamu-A and Mamu-B haplotypes were defined in the full Chinese rhesus macaque cohort. We then performed an analysis of haplotype frequencies across the experimental cohorts of Chinese rhesus macaques, as well as a comparison against a group of 96 Indian rhesus macaques. Notably, 35 of the 51 Mamu-A and Mamu-B haplotypes observed in Indian rhesus macaques were also detected in the Chinese population, with 85% of the 385 Chinese-origin rhesus macaques expressing at least one of these class I haplotypes. This unexpected conservation of Indian rhesus macaque MHC class I haplotypes in the Chinese rhesus macaque population suggests that immunologic insights originally gleaned from studies using Indian rhesus macaques may be more applicable to Chinese rhesus macaques than previously appreciated and may provide an opportunity for studies of CD8(+) T-cell responses between populations. It may also be possible to extend these studies across multiple species of macaques, as we found evidence of shared ancestral haplotypes between Chinese rhesus and Mauritian cynomolgus macaques.
Collapse
Affiliation(s)
- Julie A. Karl
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53715
| | - Patrick S. Bohn
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53715
| | - Roger W. Wiseman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53715
| | | | - Simon M. Lank
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53715
| | - Gabriel J. Starrett
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53715
| | - David H. O’Connor
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53715
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53705
| |
Collapse
|
30
|
Haplotype diversity generated by ancient recombination-like events in the MHC of Indian rhesus macaques. Immunogenetics 2013; 65:569-84. [PMID: 23715823 PMCID: PMC3710572 DOI: 10.1007/s00251-013-0707-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 04/23/2013] [Indexed: 12/11/2022]
Abstract
The Mamu-A, Mamu-B, and Mamu-DRB genes of the rhesus macaque show several levels of complexity such as allelic heterogeneity (polymorphism), copy number variation, differential segregation of genes/alleles present on a haplotype (diversity) and transcription level differences. A combination of techniques was implemented to screen a large panel of pedigreed Indian rhesus macaques (1,384 individuals representing the offspring of 137 founding animals) for haplotype diversity in an efficient and inexpensive manner. This approach allowed the definition of 140 haplotypes that display a relatively low degree of region variation as reflected by the presence of only 17 A, 18 B and 22 DRB types, respectively, exhibiting a global linkage disequilibrium comparable to that in humans. This finding contrasts with the situation observed in rhesus macaques from other geographic origins and in cynomolgus monkeys from Indonesia. In these latter populations, nearly every haplotype appears to be characterised by a unique A, B and DRB region. In the Indian population, however, a reshuffling of existing segments generated “new” haplotypes. Since the recombination frequency within the core MHC of the Indian rhesus macaques is relatively low, the various haplotypes were most probably produced by recombination events that accumulated over a long evolutionary time span. This idea is in accord with the notion that Indian rhesus macaques experienced a severe reduction in population during the Pleistocene due to a bottleneck caused by geographic changes. Thus, recombination-like processes appear to be a way to expand a diminished genetic repertoire in an isolated and relatively small founder population.
Collapse
|
31
|
Abstract
The AIDS pandemic continues to present us with unique scientific and public health challenges. Although the development of effective antiretroviral therapy has been a major triumph, the emergence of drug resistance requires active management of treatment regimens and the continued development of new antiretroviral drugs. Moreover, despite nearly 30 years of intensive investigation, we still lack the basic scientific knowledge necessary to produce a safe and effective vaccine against HIV-1. Animal models offer obvious advantages in the study of HIV/AIDS, allowing for a more invasive investigation of the disease and for preclinical testing of drugs and vaccines. Advances in humanized mouse models, non-human primate immunogenetics and recombinant challenge viruses have greatly increased the number and sophistication of available mouse and simian models. Understanding the advantages and limitations of each of these models is essential for the design of animal studies to guide the development of vaccines and antiretroviral therapies for the prevention and treatment of HIV-1 infection.
Collapse
|
32
|
Takahashi N, Nomura T, Takahara Y, Yamamoto H, Shiino T, Takeda A, Inoue M, Iida A, Hara H, Shu T, Hasegawa M, Sakawaki H, Miura T, Igarashi T, Koyanagi Y, Naruse TK, Kimura A, Matano T. A novel protective MHC-I haplotype not associated with dominant Gag-specific CD8+ T-cell responses in SIVmac239 infection of Burmese rhesus macaques. PLoS One 2013; 8:e54300. [PMID: 23342126 PMCID: PMC3544795 DOI: 10.1371/journal.pone.0054300] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 12/10/2012] [Indexed: 11/18/2022] Open
Abstract
Several major histocompatibility complex class I (MHC-I) alleles are associated with lower viral loads and slower disease progression in human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections. Immune-correlates analyses in these MHC-I-related HIV/SIV controllers would lead to elucidation of the mechanism for viral control. Viral control associated with some protective MHC-I alleles is attributed to CD8+ T-cell responses targeting Gag epitopes. We have been trying to know the mechanism of SIV control in multiple groups of Burmese rhesus macaques sharing MHC-I genotypes at the haplotype level. Here, we found a protective MHC-I haplotype, 90-010-Id (D), which is not associated with dominant Gag-specific CD8+ T-cell responses. Viral loads in five D+ animals became significantly lower than those in our previous cohorts after 6 months. Most D+ animals showed predominant Nef-specific but not Gag-specific CD8+ T-cell responses after SIV challenge. Further analyses suggested two Nef-epitope-specific CD8+ T-cell responses exerting strong suppressive pressure on SIV replication. Another set of five D+ animals that received a prophylactic vaccine using a Gag-expressing Sendai virus vector showed significantly reduced viral loads compared to unvaccinated D+ animals at 3 months, suggesting rapid SIV control by Gag-specific CD8+ T-cell responses in addition to Nef-specific ones. These results present a pattern of SIV control with involvement of non-Gag antigen-specific CD8+ T-cell responses.
Collapse
Affiliation(s)
- Naofumi Takahashi
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takushi Nomura
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yusuke Takahara
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Yamamoto
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Teiichiro Shiino
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Akiko Takeda
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | | | | | | | - Hiromi Sakawaki
- Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Tomoyuki Miura
- Institute for Virus Research, Kyoto University, Kyoto, Japan
| | | | - Yoshio Koyanagi
- Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Taeko K. Naruse
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akinori Kimura
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
33
|
Liu Y, Li A, Wang X, Sui L, Li M, Zhao Y, Liu B, Zeng L, Sun Z. Mamu-B genes and their allelic repertoires in different populations of Chinese-origin rhesus macaques. Immunogenetics 2012; 65:273-80. [PMID: 23271617 DOI: 10.1007/s00251-012-0673-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/11/2012] [Indexed: 11/24/2022]
Abstract
Since rhesus monkeys of Chinese origin have gained greater utilization in recent years, it is urgent to investigate the major histocompatibility complex (MHC) immunogenetics of Chinese rhesus macaques. In this study, we identified 81 Mamu-B sequences using complementary DNA cloning and sequencing on a cohort of 58 rhesus monkeys derived from three local populations of China. Twenty of these Mamu-B alleles are novel and four of them represent new lineages. Although more alleles are shared among different populations than Mamu-A locus, the Mamu-B allelic repertoires found in these three populations of Chinese macaques are largely independent, which underscores the MHC polymorphism among different populations of Chinese rhesus macaques. Our results are an important addition to the limited MHC immunogenetic information available for rhesus macaques of Chinese origin.
Collapse
Affiliation(s)
- Yi Liu
- Laboratory Animal Center of the Academy of Military Medical Science, Beijing, 100071, China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Li A, Wang X, Liu Y, Zhao Y, Liu B, Sui L, Zeng L, Sun Z. Preliminary observations of MHC class I A region polymorphism in three populations of Chinese-origin rhesus macaques. Immunogenetics 2012; 64:887-94. [PMID: 22940774 DOI: 10.1007/s00251-012-0645-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 08/05/2012] [Indexed: 02/06/2023]
Abstract
Rhesus macaques are an animal model for the study of a variety of human diseases. The Chinese rhesus macaques have been widely used in biomedical research in recent years. However, the polymorphism of major histocompatibility complex (MHC) class I A region among different local populations of Chinese rhesus macaques has never been investigated. In this study, we identified 46 Mamu-A alleles by cDNA cloning and sequencing on a cohort of 53 Chinese rhesus monkeys including Zhiming, Chuanxi, and Fujian populations, of which 5 were first reported in rhesus monkeys. The frequencies of alleles were identified for each population. The result suggests that the repertoire of allelic variants of MHC class I A region found in different populations of Chinese macaques is largely non-overlapping. The frequencies of alleles and the popular allele are also different for different populations. PCR-SSP experiment further confirms the different frequencies of two alleles, Mamu-A*026:01 and Mamu-A*022:01, in additional 99 Zhiming monkeys and 191 Chuanxi monkeys. Our findings have important practical implications in that the origin of the individuals and the genetic polymorphism of the monkeys need to be considered at the level of local populations for Chinese rhesus monkeys in biomedical research. Further immunogenetic work is needed to investigate the MHC polymorphism among different populations of Chinese rhesus macaques and to reveal the functional implication of such polymorphism and disease outcome correlations.
Collapse
Affiliation(s)
- Aixue Li
- Laboratory Animal Center of the Academy of Military Medical Science, Beijing, 100071, China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Kurihara K, Takahara Y, Nomura T, Ishii H, Iwamoto N, Takahashi N, Inoue M, Iida A, Hara H, Shu T, Hasegawa M, Moriya C, Matano T. Immunogenicity of repeated Sendai viral vector vaccination in macaques. Microbes Infect 2012; 14:1169-76. [PMID: 22884717 DOI: 10.1016/j.micinf.2012.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 06/21/2012] [Accepted: 07/21/2012] [Indexed: 11/29/2022]
Abstract
Induction of durable cellular immune responses by vaccination is an important strategy for the control of persistent pathogen infection. Viral vectors are promising vaccine tools for eliciting antigen-specific T-cell responses. Repeated vaccination may contribute to durable memory T-cell induction, but anti-vector antibodies could be an obstacle to its efficacy. We previously developed a Sendai virus (SeV) vector vaccine and showed the potential of this vector for efficient T-cell induction in macaques. Here, we examined whether repeated SeV vector vaccination with short intervals can enhance antigen-specific CD8(+) T-cell responses. Four rhesus macaques possessing the MHC-I haplotype 90-120-Ia were immunized three times with intervals of three weeks. For the vaccination, we used replication-defective F-deleted SeV vectors inducing CD8(+) T-cell responses specific for simian immunodeficiency virus Gag(206-216) and Gag(241-249), which are dominant epitopes restricted by 90-120-Ia-derived MHC-I molecules. All four animals showed higher Gag(206-216)-specific and Gag(241-249)-specific CD8(+) T-cell responses after the third vaccination than those after the first vaccination, indicating enhancement of antigen-specific CD8(+) T-cell responses by the second/third SeV vector vaccination even with short intervals. These results suggest that repeated SeV vector vaccination can contribute to induction of efficient and durable T-cell responses.
Collapse
Affiliation(s)
- Kyoko Kurihara
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Nomura T, Matano T. Association of MHC-I genotypes with disease progression in HIV/SIV infections. Front Microbiol 2012; 3:234. [PMID: 22754552 PMCID: PMC3386493 DOI: 10.3389/fmicb.2012.00234] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 06/11/2012] [Indexed: 12/27/2022] Open
Abstract
Virus-specific cytotoxic T lymphocytes (CTLs) are major effectors in acquired immune responses against viral infection. Virus-specific CTLs recognize specific viral peptides presented by major histocompatibility complex class-I (MHC-I) on the surface of virus-infected target cells via their T cell receptor (TCR) and eliminate target cells by both direct and indirect mechanisms. In human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections, host immune responses fail to contain the virus and allow persistent viral replication, leading to AIDS progression. CTL responses exert strong suppressive pressure on HIV/SIV replication and cumulative studies have indicated association of HLA/MHC-I genotypes with rapid or slow AIDS progression.
Collapse
Affiliation(s)
- Takushi Nomura
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | |
Collapse
|
37
|
Association of major histocompatibility complex class I haplotypes with disease progression after simian immunodeficiency virus challenge in burmese rhesus macaques. J Virol 2012; 86:6481-90. [PMID: 22491464 DOI: 10.1128/jvi.07077-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nonhuman primate AIDS models are essential for the analysis of AIDS pathogenesis and the evaluation of vaccine efficacy. Multiple studies on human immunodeficiency virus and simian immunodeficiency virus (SIV) infection have indicated the association of major histocompatibility complex class I (MHC-I) genotypes with rapid or slow AIDS progression. The accumulation of macaque groups that share not only a single MHC-I allele but also an MHC-I haplotype consisting of multiple polymorphic MHC-I loci would greatly contribute to the progress of AIDS research. Here, we investigated SIVmac239 infections in four groups of Burmese rhesus macaques sharing individual MHC-I haplotypes, referred to as A, E, B, and J. Out of 20 macaques belonging to A(+) (n = 6), E(+) (n = 6), B(+) (n = 4), and J(+) (n = 4) groups, 18 showed persistent viremia. Fifteen of them developed AIDS in 0.5 to 4 years, with the remaining three at 1 or 2 years under observation. A(+) animals, including two controllers, showed slower disease progression, whereas J(+) animals exhibited rapid progression. E(+) and B(+) animals showed intermediate plasma viral loads and survival periods. Gag-specific CD8(+) T-cell responses were efficiently induced in A(+) animals, while Nef-specific CD8(+) T-cell responses were in A(+), E(+), and B(+) animals. Multiple comparisons among these groups revealed significant differences in survival periods, peripheral CD4(+) T-cell decline, and SIV-specific CD4(+) T-cell polyfunctionality in the chronic phase. This study indicates the association of MHC-I haplotypes with AIDS progression and presents an AIDS model facilitating the analysis of virus-host immune interaction.
Collapse
|
38
|
Nakamura M, Takahara Y, Ishii H, Sakawaki H, Horiike M, Miura T, Igarashi T, Naruse TK, Kimura A, Matano T, Matsuoka S. Major histocompatibility complex class I-restricted cytotoxic T lymphocyte responses during primary simian immunodeficiency virus infection in Burmese rhesus macaques. Microbiol Immunol 2012; 55:768-73. [PMID: 21895748 DOI: 10.1111/j.1348-0421.2011.00384.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Major histocompatibility complex class I (MHC-I)-restricted CD8(+) cytotoxic T lymphocyte (CTL) responses are crucial for the control of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication. In particular, Gag-specific CTL responses have been shown to exert strong suppressive pressure on HIV/SIV replication. Additionally, association of Vif-specific CTL frequencies with in vitro anti-SIV efficacy has been suggested recently. Host MHC-I genotypes could affect the immunodominance patterns of these potent CTL responses. Here, Gag- and Vif-specific CTL responses during primary SIVmac239 infection were examined in three groups of Burmese rhesus macaques, each group having a different MHC-I haplotype. The first group of four macaques, which possessed the MHC-I haplotype 90-010-Ie, did not show Gag- or Vif-specific CTL responses. However, Nef-specific CTL responses were elicited, suggesting that primary SIV infection does not induce predominant CTL responses specific for Gag/Vif epitopes restricted by 90-010-Ie-derived MHC-I molecules. In contrast, Gag- and Vif-specific CTL responses were induced in the second group of two 89-075-Iw-positive animals and the third group of two 91-010-Is-positive animals. Considering the potential of prophylactic vaccination to affect CTL immunodominance post-viral exposure, these groups of macaques would be useful for evaluation of vaccine antigen-specific CTL efficacy against SIV infection.
Collapse
Affiliation(s)
- Midori Nakamura
- Division for AIDS Vaccine Development, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Saito Y, Naruse TK, Akari H, Matano T, Kimura A. Diversity of MHC class I haplotypes in cynomolgus macaques. Immunogenetics 2012; 64:131-41. [PMID: 21881951 DOI: 10.1007/s00251-011-0568-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Accepted: 08/19/2011] [Indexed: 12/01/2022]
Abstract
Cynomolgus macaques are widely used as a primate model for human diseases associated with an immunological process. Because there are individual differences in immune responsiveness, which are controlled by the polymorphic nature of the major histocompatibility (MHC) locus, it is important to reveal the diversity of MHC in the model animal. In this study, we analyzed 26 cynomolgus macaques from five families for MHC class I genes. We identified 32 Mafa-A, 46 Mafa-B, 6 Mafa-I, and 3 Mafa-AG alleles in which 14, 20, 3, and 3 alleles were novel. There were 23 MHC class I haplotypes and each haplotype was composed of one to three Mafa-A alleles and one to five Mafa-B alleles. Family studies revealed that there were two haplotypes which contained two Mafa-A1 alleles. These observations demonstrated further the complexity of MHC class I locus in the Old World monkey.
Collapse
Affiliation(s)
- Yusuke Saito
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | |
Collapse
|
40
|
Reed JS, Sidney J, Piaskowski SM, Glidden CE, León EJ, Burwitz BJ, Kolar HL, Eernisse CM, Furlott JR, Maness NJ, Walsh AD, Rudersdorf RA, Bardet W, McMurtrey CP, O’Connor DH, Hildebrand WH, Sette A, Watkins DI, Wilson NA. The role of MHC class I allele Mamu-A*07 during SIV(mac)239 infection. Immunogenetics 2011; 63:789-807. [PMID: 21732180 PMCID: PMC3706270 DOI: 10.1007/s00251-011-0541-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 05/19/2011] [Indexed: 01/23/2023]
Abstract
Virus-specific CD8(+) T cells play an important role in controlling HIV/SIV replication. These T cells recognize intracellular pathogen-derived peptides displayed on the cell surface by individual MHC class I molecules. In the SIV-infected rhesus macaque model, five Mamu class I alleles have been thoroughly characterized with regard to peptide binding, and a sixth was shown to be uninvolved. In this study, we describe the peptide binding of Mamu-A1*007:01 (formerly Mamu-A*07), an allele present in roughly 5.08% of Indian-origin rhesus macaques (n = 63 of 1,240). We determined a preliminary binding motif by eluting and sequencing endogenously bound ligands. Subsequently, we used a positional scanning combinatorial library and panels of single amino acid substitution analogs to further characterize peptide binding of this allele and derive a quantitative motif. Using this motif, we selected and tested 200 peptides derived from SIV(mac)239 for their capacity to bind Mamu-A1*007:01; 33 were found to bind with an affinity of 500 nM or better. We then used PBMC from SIV-infected or vaccinated but uninfected, A1*007:01-positive rhesus macaques in IFN-γ Elispot assays to screen the peptides for T-cell reactivity. In all, 11 of the peptides elicited IFN-γ(+) T-cell responses. Six represent novel A1*007:01-restricted epitopes. Furthermore, both Sanger and ultradeep pyrosequencing demonstrated the accumulation of amino acid substitutions within four of these six regions, suggestive of selective pressure on the virus by antigen-specific CD8(+) T cells. Thus, it appears that Mamu-A1*007:01 presents SIV-derived peptides to antigen-specific CD8(+) T cells and is part of the immune response to SIV(mac)239.
Collapse
Affiliation(s)
- Jason S. Reed
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53711
| | - John Sidney
- La Jolla Institute for Allergy and Immunology, San Diego, CA 92109
| | - Shari M. Piaskowski
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53711
| | - Chrystal E. Glidden
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53711
| | - Enrique J. León
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53711
| | - Benjamin J. Burwitz
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53711
| | - Holly L. Kolar
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53711
| | | | - Jessica R. Furlott
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53711
| | - Nicholas J. Maness
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53711
| | - Andrew D. Walsh
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53711
| | - Richard A. Rudersdorf
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53711
| | - Wilfried Bardet
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Curtis P. McMurtrey
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53711
| | - William H. Hildebrand
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, San Diego, CA 92109
| | - David I. Watkins
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53711
| | - Nancy A. Wilson
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53711
| |
Collapse
|
41
|
Impact of vaccination on cytotoxic T lymphocyte immunodominance and cooperation against simian immunodeficiency virus replication in rhesus macaques. J Virol 2011; 86:738-45. [PMID: 22072784 DOI: 10.1128/jvi.06226-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytotoxic T lymphocyte (CTL) responses play a central role in viral suppression in human immunodeficiency virus (HIV) infections. Prophylactic vaccination resulting in effective CTL responses after viral exposure would contribute to HIV control. It is important to know how CTL memory induction by vaccination affects postexposure CTL responses. We previously showed vaccine-based control of a simian immunodeficiency virus (SIV) challenge in a group of Burmese rhesus macaques sharing a major histocompatibility complex class I haplotype. Gag(206-216) and Gag(241-249) epitope-specific CTL responses were responsible for this control. In the present study, we show the impact of individual epitope-specific CTL induction by prophylactic vaccination on postexposure CTL responses. In the acute phase after SIV challenge, dominant Gag(206-216)-specific CTL responses with delayed, naive-derived Gag(241-249)-specific CTL induction were observed in Gag(206-216) epitope-vaccinated animals with prophylactic induction of single Gag(206-216) epitope-specific CTL memory, and vice versa in Gag(241-249) epitope-vaccinated animals with single Gag(241-249) epitope-specific CTL induction. Animals with Gag(206-216)-specific CTL induction by vaccination selected for a Gag(206-216)-specific CTL escape mutation by week 5 and showed significantly less decline of plasma viral loads from week 3 to week 5 than in Gag(241-249) epitope-vaccinated animals without escape mutations. Our results present evidence indicating significant influence of prophylactic vaccination on postexposure CTL immunodominance and cooperation of vaccine antigen-specific and non-vaccine antigen-specific CTL responses, which affects virus control. These findings provide great insights into antigen design for CTL-inducing AIDS vaccines.
Collapse
|
42
|
Blokhuis JH, van der Wiel MK, Doxiadis GGM, Bontrop RE. The extreme plasticity of killer cell Ig-like receptor (KIR) haplotypes differentiates rhesus macaques from humans. Eur J Immunol 2011; 41:2719-28. [DOI: 10.1002/eji.201141621] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 05/16/2011] [Accepted: 06/20/2011] [Indexed: 11/09/2022]
|
43
|
ULBP4/RAET1E is highly polymorphic in the Old World monkey. Immunogenetics 2011; 63:501-9. [DOI: 10.1007/s00251-011-0531-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 04/21/2011] [Indexed: 01/14/2023]
|
44
|
Genomic plasticity of the MHC class I A region in rhesus macaques: extensive haplotype diversity at the population level as revealed by microsatellites. Immunogenetics 2010; 63:73-83. [PMID: 20949353 PMCID: PMC3019358 DOI: 10.1007/s00251-010-0486-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 09/30/2010] [Indexed: 12/11/2022]
Abstract
The Mamu-A genes of the rhesus macaque show different degrees of polymorphism, transcription level variation, and differential haplotype distribution. Per haplotype, usually one “major” transcribed gene is present, A1 (A7), in various combinations with “minor” genes, A2 to A6. In silico analysis of the physical map of a heterozygous animal revealed the presence of similar Mamu-A regions consisting of four duplication units, but with dissimilar positions of the A1 genes on both haplotypes, and in combination with different minor genes. Two microsatellites, D6S2854 and D6S2859, have been selected as potential tools to characterize this complex region. Subsequent analysis of a large breeding colony resulted in the description of highly discriminative patterns, displaying copy number variation in concert with microsatellite repeat length differences. Sequencing and segregation analyses revealed that these patterns are unique for each Mamu-A haplotype. In animals of Indian, Burmese, and Chinese origin, 19, 15, or 9 haplotypes, respectively, could be defined, illustrating the occurrence of differential block duplications and subsequent rearrangements by recombination. The haplotypes can be assigned to 12 unique combinations of genes (region configurations). Although most configurations harbor two transcribed A genes, one or three genes per haplotype are also present. Additionally, haplotypes lacking an A1 gene or with an A1 duplication appear to exist. The presence of different transcribed A genes/alleles in monkeys from various origins may have an impact on differential disease susceptibilities. The high-throughput microsatellite technique will be a valuable tool in animal selection for diverse biomedical research projects.
Collapse
|