1
|
Westfall AK, Gopalan SS, Kay JC, Tippetts TS, Cervantes MB, Lackey K, Chowdhury SM, Pellegrino MW, Castoe TA. Single-cell resolution of intestinal regeneration in pythons without crypts illuminates conserved vertebrate regenerative mechanisms. Proc Natl Acad Sci U S A 2024; 121:e2405463121. [PMID: 39423244 PMCID: PMC11513969 DOI: 10.1073/pnas.2405463121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/09/2024] [Indexed: 10/21/2024] Open
Abstract
Canonical models of intestinal regeneration emphasize the critical role of the crypt stem cell niche to generate enterocytes that migrate to villus ends. Burmese pythons possess extreme intestinal regenerative capacity yet lack crypts, thus providing opportunities to identify noncanonical but potentially conserved mechanisms that expand our understanding of regenerative capacity in vertebrates, including humans. Here, we leverage single-nucleus RNA sequencing of fasted and postprandial python small intestine to identify the signaling pathways and cell-cell interactions underlying the python's regenerative response. We find that python intestinal regeneration entails the activation of multiple conserved mechanisms of growth and stress response, including core lipid metabolism pathways and the unfolded protein response in intestinal enterocytes. Our single-cell resolution highlights extensive heterogeneity in mesenchymal cell population signaling and intercellular communication that directs major tissue restructuring and the shift out of a dormant fasted state by activating both embryonic developmental and wound healing pathways. We also identify distinct roles of BEST4+ enterocytes in coordinating key regenerative transitions via NOTCH signaling. Python intestinal regeneration shares key signaling features and molecules with mammalian gastric bypass, indicating that conserved regenerative programs are common to both. Our findings provide different insights into cooperative and conserved regenerative programs and intercellular interactions in vertebrates independent of crypts which have been otherwise obscured in model species where temporal phases of generative growth are limited to embryonic development or recovery from injury.
Collapse
Affiliation(s)
- Aundrea K. Westfall
- Department of Biology, University of Texas at Arlington, Arlington, TX76019
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX75235
| | | | - Jarren C. Kay
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL35401
| | - Trevor S. Tippetts
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX75235
| | - Margaret B. Cervantes
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX75235
| | - Kimberly Lackey
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL35401
| | - Saiful M. Chowdhury
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX76019
| | - Mark W. Pellegrino
- Department of Biology, University of Texas at Arlington, Arlington, TX76019
| | - Todd A. Castoe
- Department of Biology, University of Texas at Arlington, Arlington, TX76019
| |
Collapse
|
2
|
Dantas-Ferreira R, Ciocca D, Vuillez P, Dumont S, Boitard C, Rogner UC, Challet E. Deletion of the Clock Gene Bmal2 Leads to Alterations in Hypothalamic Clocks, Circadian Regulation of Feeding, and Energy Balance. J Neurosci 2024; 44:e1886232024. [PMID: 38531632 PMCID: PMC11079965 DOI: 10.1523/jneurosci.1886-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 03/28/2024] Open
Abstract
BMAL2 (ARNTL2) is a paralog of BMAL1 that can form heterodimers with the other circadian factors CLOCK and NPAS2 to activate transcription of clock and clock-controlled genes. To assess a possible role of Bmal2 in the circadian regulation of metabolism, we investigated daily variations of energy metabolism, feeding behavior, and locomotor behavior, as well as ability to anticipate restricted food access in male mice knock-out for Bmal2 (B2KO). While their amount of food intake and locomotor activity were normal compared with wild-type mice, B2KO mice displayed increased adiposity (1.5-fold higher) and fasted hyperinsulinemia (fourfold higher) and tended to have lower energy expenditure at night. Impairment of the master clock in the suprachiasmatic nuclei was evidenced by the shorter free-running period (-14 min/cycle) of B2KO mice compared with wild-type controls and by a loss of daily rhythmicity in expression of intracellular metabolic regulators (e.g., Lipoprotein lipase and Uncoupling protein 2). The circadian window of eating was longer in B2KO mice. The circadian patterns of food intake and meal numbers were bimodal in control mice but not in B2KO mice. In response to restricted feeding, food-anticipatory activity was almost prevented in B2KO mice, suggesting altered food clock that controls anticipation of food availability. In the mediobasal hypothalamus of B2KO mice, expression of genes coding orexigenic neuropeptides (including Neuropeptide y and Agouti-Related Peptide) was downregulated, while Lipoprotein lipase expression lost its rhythmicity. Together, these data highlight that BMAL2 has major impacts on brain regulation of metabolic rhythms, sleep-wake cycle, and food anticipation.
Collapse
Affiliation(s)
- Rosana Dantas-Ferreira
- Institute of Cellular and Integrative Neurosciences, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Strasbourg 67000, France
| | - Dominique Ciocca
- Chronobiotron, CNRS, University of Strasbourg, Strasbourg 67000, France
| | - Patrick Vuillez
- Institute of Cellular and Integrative Neurosciences, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Strasbourg 67000, France
| | - Stéphanie Dumont
- Institute of Cellular and Integrative Neurosciences, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Strasbourg 67000, France
| | - Christian Boitard
- Institut Cochin, CNRS, Institut National de la Santé et la Recherche Médicale (INSERM), Université Paris Cité, Paris 75014, France
| | - Ute C Rogner
- Institut Cochin, CNRS, Institut National de la Santé et la Recherche Médicale (INSERM), Université Paris Cité, Paris 75014, France
| | - Etienne Challet
- Institute of Cellular and Integrative Neurosciences, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Strasbourg 67000, France
| |
Collapse
|
3
|
Xiang K, Xu Z, Hu YQ, He YS, Wu GC, Li TY, Wang XR, Ding LH, Zhang Q, Tao SS, Ye DQ, Pan HF, Wang DG. Circadian clock genes as promising therapeutic targets for autoimmune diseases. Autoimmun Rev 2021; 20:102866. [PMID: 34118460 DOI: 10.1016/j.autrev.2021.102866] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 03/30/2021] [Indexed: 12/31/2022]
Abstract
Circadian rhythm is a natural, endogenous process whose physiological functions are controlled by a set of clock genes. Disturbance of the clock genes have detrimental effects on both innate and adaptive immunity, which significantly enhance pro-inflammatory responses and susceptibility to autoimmune diseases via strictly controlling the individual cellular components of the immune system that initiate and perpetuate the inflammation pathways. Autoimmune diseases, especially rheumatoid arthritis (RA), often exhibit substantial circadian oscillations, and circadian rhythm is involved in the onset and progression of autoimmune diseases. Mounting evidence indicate that the synthetic ligands of circadian clock genes have the property of reducing the susceptibility and clinical severity of subjects. This review supplies an overview of the roles of circadian clock genes in the pathology of autoimmune diseases, including BMAL1, CLOCK, PER, CRY, REV-ERBα, and ROR. Furthermore, summarized some circadian clock genes as candidate genes for autoimmune diseases and current advancement on therapy of autoimmune diseases with synthetic ligands of circadian clock genes. The existing body of knowledge demonstrates that circadian clock genes are inextricably linked to autoimmune diseases. Future research should pay attention to improve the quality of life of patients with autoimmune diseases and reduce the effects of drug preparation on the normal circadian rhythms.
Collapse
Affiliation(s)
- Kun Xiang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Zhiwei Xu
- School of Public Health, Faculty of Medicine, University of Queensland, 288 Herston Road, Herston, QLD, 4006, Brisbane, Australia
| | - Yu-Qian Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Yi-Sheng He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Guo-Cui Wu
- School of Nursing, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Tian-Yu Li
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xue-Rong Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Li-Hong Ding
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qin Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Sha-Sha Tao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China.
| | - De-Guang Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
4
|
Wang XS, Cao F, Zhang Y, Pan HF. Therapeutic potential of aryl hydrocarbon receptor in autoimmunity. Inflammopharmacology 2019; 28:63-81. [PMID: 31617124 DOI: 10.1007/s10787-019-00651-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/30/2019] [Indexed: 12/11/2022]
Abstract
Aryl hydrocarbon receptor (AhR), a type of transcriptional factor, is widely expressed in immune cells. The activation of AhR signaling pathway depends on its ligands, which exist in environment and can also be produced by metabolism. Normal expressions of AhR and AhR-mediated signaling may be essential for immune responses, and effects of AhR signaling on the development and function of innate and adaptive immune cells have also been revealed in previous studies. Recent studies also indicate that aberrant AhR signaling may be related to autoimmune diseases, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), multiple sclerosis (MS), autoimmune uveitis (AU), autoimmune diabetes, Behcet's disease (BD) and myasthenia gravis (MG). Moreover, administration of AhR ligands or drugs has been proven effective for improving pathological outcomes in some autoimmune diseases or models. In this review, we summarize the effects of AhR on several innate and adaptive immune cells associated with autoimmunity, and the mechanism on how AhR participates in autoimmune diseases. In addition, we also discuss therapeutic potential and application prospect of AhR in autoimmune diseases, so as to provide valuable information for exploring novel and effective approaches to autoimmune disease treatments.
Collapse
Affiliation(s)
- Xiao-Song Wang
- The First Affiliated Hospital of Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.,Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Fan Cao
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Yi Zhang
- Reproductive Medicine Center, Anhui Women and Child Health Care Hospital, 15 Yimin Street, Hefei, Anhui, 230011, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China. .,Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China.
| |
Collapse
|
5
|
Angelousi A, Kassi E, Nasiri-Ansari N, Weickert MO, Randeva H, Kaltsas G. Clock genes alterations and endocrine disorders. Eur J Clin Invest 2018; 48:e12927. [PMID: 29577261 DOI: 10.1111/eci.12927] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/19/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Various endocrine signals oscillate over the 24-hour period and so does the responsiveness of target tissues. These daily oscillations do not occur solely in response to external stimuli but are also under the control of an intrinsic circadian clock. DESIGN We searched the PubMed database to identify studies describing the associations of clock genes with endocrine diseases. RESULTS Various human single nucleotide polymorphisms of brain and muscle ARNT-like 1 (BMAL1) and Circadian Locomotor Output Cycles Kaput (CLOCK) genes exhibited significant associations with type 2 diabetes mellitus. ARNTL2 gene expression and upregulation of BMAL1 and PER1 were associated with the development of type 1 diabetes mellitus. Thyroid hormones modulated PER2 expression in a tissue-specific way, whereas BMAL1 regulated the expression of type 2 iodothyronine deiodinase in specific tissues. Adrenal gland and adrenal adenoma expressed PER1, PER2, CRY2, CLOCK and BMAL1 genes. Adrenal sensitivity to adrenocorticotrophin was also affected by circadian oscillations. A significant correlation between the expression of propio-melanocorticotrophin and PER 2, as well as between prolactin and CLOCK, was found in corticotroph and lactosomatotroph cells, respectively, in the pituitary. Clock genes and especially BMAL1 showed an important role in fertility, whereas oestradiol and androgens exhibited tissue-specific effects on clock gene expression. Metabolic disorders were also associated with circadian dysregulation according to studies in shift workers. CONCLUSIONS Clock genes are associated with various endocrine disorders through complex mechanisms. However, data on humans are scarce. Moreover, clock genes exhibit a tissue-specific expression representing an additional level of regulation. Their specific role in endocrine disorders and their potential implications remain to be further clarified.
Collapse
Affiliation(s)
- Anna Angelousi
- Department of Pathophysiology, Endocrine Unit, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Eva Kassi
- Department of Biochemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Narjes Nasiri-Ansari
- Department of Biochemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Martin O Weickert
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- Division of Translational and Experimental Medicine, Warwick Medical School, University of Warwick, Coventry, UK
- Centre for Applied Biological & Exercise Sciences, Coventry University, Coventry, UK
| | - Harpal Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- Division of Translational and Experimental Medicine, Warwick Medical School, University of Warwick, Coventry, UK
- Centre for Applied Biological & Exercise Sciences, Coventry University, Coventry, UK
| | - Gregory Kaltsas
- 1st Department of Propaedeutic Internal Medicine, Medical School, Laikon Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
6
|
Torres-Ruiz J, Sulli A, Cutolo M, Shoenfeld Y. Air Travel, Circadian Rhythms/Hormones, and Autoimmunity. Clin Rev Allergy Immunol 2018; 53:117-125. [PMID: 28244020 DOI: 10.1007/s12016-017-8599-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biological rhythms are fundamental for homeostasis and have recently been involved in the regulatory processes of various organs and systems. Circadian cycle proteins and hormones have a direct effect on the inflammatory response and have shown pro- or anti-inflammatory effects in animal models of autoimmune diseases. The cells of the immune system have their own circadian rhythm, and the light-dark cycle directly influences the inflammatory response. On the other hand, patients with autoimmune diseases characteristically have sleep disorders and fatigue, and in certain disease, such as rheumatoid arthritis (RA), a frank periodicity in the signs and symptoms is recognized. The joint symptoms predominate in the morning, and apparently, subjects with RA have relative adrenal insufficiency, with a cortisol peak unable to control the late night load of pro-inflammatory cytokines. Transatlantic flights represent a challenge in the adjustment of biological rhythms, since they imply sleep deprivation, time zone changes, and potential difficulties for drug administration. In patients with autoimmune diseases, the use of DMARDs and prednisone at night is probably best suited to lessen morning symptoms. It is also essential to sleep during the trip to improve adaptation to the new time zone and to avoid, as far as possible, works involving flexible or nocturnal shifts. The study of proteins and hormones related to biological rhythms will demonstrate new pathophysiological pathways of autoimmune diseases, which will emphasize the use of general measures for sleep respect and methods for drug administration at key daily times to optimize their anti-inflammatory and immune modulatory effects.
Collapse
Affiliation(s)
- J Torres-Ruiz
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico city, Mexico
| | - A Sulli
- Research Laboratories and Academic Division of Clinical Rheumatology, Director Postgraduate School on Rheumatology-Department of Internal Medicine, University of Genoa, Genoa, Italy.,IRCCS San Martino AOU, Genoa, Italy
| | - M Cutolo
- Research Laboratories and Academic Division of Clinical Rheumatology, Director Postgraduate School on Rheumatology-Department of Internal Medicine, University of Genoa, Genoa, Italy.,IRCCS San Martino AOU, Genoa, Italy
| | - Y Shoenfeld
- The Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, 5265601, Tel-Hashomer, Israel.
| |
Collapse
|
7
|
Abstract
The expression of clock genes ARNTL2, NPAS2 and DEC2 are disturbed in rheumatoid arthritis, an autoimmune disease with circadian variation of symptoms. We have shown that TNF is a potent inducer of these genes. We investigated the regulation of ARNTL2 and NPAS2 by TNF and elucidated their effect on other clock gene expressions. Additionally, we studied the effect of DEC1 and DEC2 on ARNTL, ARNTL2 and NPAS2. Cultured primary human fibroblasts were stimulated with TNF and the effects on ARNTL2 and NPAS2 were studied with RT-qPCR and immunofluorescence staining. The role of NF-κB was analyzed using IKK-2 inhibitor IMD-0354. TNF promoted ARNTL2 localization into the nuclei. Similar to DEC2, the effects of TNF on ARNTL2 and NPAS2 expressions were mediated via NF-κB. Cloned ARNTL, ARNTL2, NPAS2, DEC1 and DEC2 were transfected into HEK293. The ARNTL2/NPAS2 dimer was a weaker inducer of PER3 and DBP than ARNTL/NPAS2. ARNTL2 and NPAS2 are regulated by TNF via the same mechanism as DEC2. Compared to their paralogs they have unique effects on other circadian components. Our data suggest that these genes are responsible, at least in fibroblasts, for the accurate adaptation of circadian timekeeping in individual cells during inflammation.
Collapse
|
8
|
Lebailly B, Langa F, Boitard C, Avner P, Rogner UC. The circadian gene Arntl2 on distal mouse chromosome 6 controls thymocyte apoptosis. Mamm Genome 2016; 28:1-12. [DOI: 10.1007/s00335-016-9665-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/11/2016] [Indexed: 10/20/2022]
|
9
|
Candidate SNP Markers of Chronopathologies Are Predicted by a Significant Change in the Affinity of TATA-Binding Protein for Human Gene Promoters. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8642703. [PMID: 27635400 PMCID: PMC5011241 DOI: 10.1155/2016/8642703] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/25/2016] [Accepted: 06/28/2016] [Indexed: 01/14/2023]
Abstract
Variations in human genome (e.g., single nucleotide polymorphisms, SNPs) may be associated with hereditary diseases, their complications, comorbidities, and drug responses. Using Web service SNP_TATA_Comparator presented in our previous paper, here we analyzed immediate surroundings of known SNP markers of diseases and identified several candidate SNP markers that can significantly change the affinity of TATA-binding protein for human gene promoters, with circadian consequences. For example, rs572527200 may be related to asthma, where symptoms are circadian (worse at night), and rs367732974 may be associated with heart attacks that are characterized by a circadian preference (early morning). By the same method, we analyzed the 90 bp proximal promoter region of each protein-coding transcript of each human gene of the circadian clock core. This analysis yielded 53 candidate SNP markers, such as rs181985043 (susceptibility to acute Q fever in male patients), rs192518038 (higher risk of a heart attack in patients with diabetes), and rs374778785 (emphysema and lung cancer in smokers). If they are properly validated according to clinical standards, these candidate SNP markers may turn out to be useful for physicians (to select optimal treatment for each patient) and for the general population (to choose a lifestyle preventing possible circadian complications of diseases).
Collapse
|
10
|
Lebailly B, Boitard C, Rogner UC. Circadian rhythm-related genes: implication in autoimmunity and type 1 diabetes. Diabetes Obes Metab 2015; 17 Suppl 1:134-8. [PMID: 26332978 DOI: 10.1111/dom.12525] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/05/2015] [Indexed: 01/11/2023]
Abstract
Recent gene association and functional studies have proven the implication of several circadian rhythm-related genes in diabetes. Diabetes has been related to variation in central circadian regulation and peripheral oscillation. Different transcriptional regulators have been identified. Circadian genes are clearly implicated in metabolic pathways, pancreatic function and in type 2 diabetes. Much less evidence has been shown for the link between circadian regulation and type 1 diabetes. The hypothesis that circadian genes are involved in type 1 diabetes is reinforced by findings that the immune system undergoes circadian variation and that several autoimmune diseases are associated with circadian genes. Recent findings in the non-obese diabetic mouse model pinpoint to specific mechanisms controlling type 1 diabetes by the clock-related gene Arntl2 in the immune system.
Collapse
Affiliation(s)
- B Lebailly
- Institut Cochin (INSERM U1016, CNRS UMR-S8104, Département "Endocrinologie, Métabolisme et Diabètes), Paris, France
- Cellule Pasteur, University Pierre and Marie Curie, Paris, France
| | - C Boitard
- Institut Cochin (INSERM U1016, CNRS UMR-S8104, Département "Endocrinologie, Métabolisme et Diabètes), Paris, France
| | - U C Rogner
- Institut Cochin (INSERM U1016, CNRS UMR-S8104, Département "Endocrinologie, Métabolisme et Diabètes), Paris, France
| |
Collapse
|
11
|
Lebailly B, He C, Rogner UC. Linking the circadian rhythm gene Arntl2 to interleukin 21 expression in type 1 diabetes. Diabetes 2014; 63:2148-57. [PMID: 24520124 DOI: 10.2337/db13-1702] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The circadian rhythm-related aryl hydrocarbon receptor nuclear translocator-like 2 (Arntl2) gene has been identified as a candidate gene for the murine type 1 diabetes locus Idd6.3. Previous studies suggested a role in expansion of CD4(+)CD25(-) T cells, and this then creates an imbalance in the ratio between T-effector and CD4(+)CD25(+) T-regulator cells. Our transcriptome analyses identify the interleukin 21 (IL21) gene (Il21) as a direct target of ARNTL2. ARNTL2 binds in an allele-specific manner to the RNA polymerase binding site of the Il21 promoter and inhibits its expression in NOD.C3H congenic mice carrying C3H alleles at Idd6.3. IL21 is known to promote T-cell expansion, and in agreement with these findings, mice with C3H alleles at Idd6.3 produce lower numbers of CD4(+)IL21(+) and CD4(+) and CD8(+) T cells compared with mice with NOD alleles at Idd6.3. Our results describe a novel and rather unexpected role for Arntl2 in the immune system that lies outside of its predicted function in circadian rhythm regulation.
Collapse
Affiliation(s)
- Basile Lebailly
- Department of Developmental & Stem Cells Biology, Institut Pasteur, CNRS URA 2578, Laboratoire de Génétique Moléculaire Murine, Paris, FranceUniversité Pierre et Marie Curie, Cellule Pasteur UPMC, Paris, France
| | - Chenxia He
- Department of Developmental & Stem Cells Biology, Institut Pasteur, CNRS URA 2578, Laboratoire de Génétique Moléculaire Murine, Paris, France
| | - Ute C Rogner
- Department of Developmental & Stem Cells Biology, Institut Pasteur, CNRS URA 2578, Laboratoire de Génétique Moléculaire Murine, Paris, France
| |
Collapse
|
12
|
Global effect of interleukin-10 on the transcriptional profile induced by Neisseria meningitidis in human monocytes. Infect Immun 2012; 80:4046-54. [PMID: 22966040 DOI: 10.1128/iai.00386-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In meningococcal septic shock, the dominant inducer of inflammation is lipopolysaccharide (LPS) in the outer membrane of Neisseria meningitidis, while interleukin-10 (IL-10) is the principal anti-inflammatory cytokine. We have used microarrays and Ingenuity Pathway Analysis to study the global effects of IL-10 on gene expression induced by N. meningitidis, after exposure of human monocytes (n = 5) for 3 h to N. meningitidis (10(6) cells/ml), recombinant human IL-10 (rhIL-10) (25 ng/ml), and N. meningitidis combined with rhIL-10. N. meningitidis and IL-10 differentially expressed 3,579 and 648 genes, respectively. IL-10 downregulated 125 genes which were upregulated by N. meningitidis, including NLRP3, the key molecule of the NLRP3 inflammasome. IL-10 also upregulated 270 genes which were downregulated by N. meningitidis, including members of the leukocyte immunuglobulin-like receptor (LIR) family. Fifty-three genes revealed a synergistically increased expression when N. meningitidis and IL-10 were combined. AIM2 (the principal molecule of the AIM2 inflammasome) was among these genes (fold change [FC], 18.3 versus 7.4 and 9.4 after stimulation by N. meningitidis and IL-10, respectively). We detected reduced concentrations (92% to 40%) of six cytokines (IL-1b, IL-6, IL-8, tumor necrosis factor alpha [TNF-α], macrophage inflammatory protein alpha [MIP-α], MIP-β) in the presence of IL-10, compared with concentrations with stimulation by N. meningitidis alone. Our data analysis of the effects of IL-10 on gene expression induced by N. meningitidis suggests that high plasma levels of IL-10 in meningococcal septic shock plasma may have a profound effect on a variety of functions and cellular processes in human monocytes, including cell-to-cell signaling, cellular movement, cellular development, antigen presentation, and cell death.
Collapse
|
13
|
He CX, Avner P, Boitard C, Rogner UC. Downregulation of the circadian rhythm related gene Arntl2 suppresses diabetes protection in Idd6 NOD.C3H congenic mice. Clin Exp Pharmacol Physiol 2011; 37:1154-8. [PMID: 20880188 DOI: 10.1111/j.1440-1681.2010.05451.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
1. Our previous studies of the murine genetic locus Idd6 revealed the aryl hydrocarbon receptor nuclear translocator-like protein 2 (Arntl2) as a candidate gene for type 1 diabetes; and in Idd6 NOD.C3H congenic mice, Arntl2 upregulation is linked to decreased diabetes development. 2. In the present study, shRNA plasmids capable of suppressing Arntl2 expression were developed and given to diabetes resistant NOD.C3H congenic mice by hydrodynamic tail vein injection. The effects of Arntl2 suppression on diabetes incidence and immune cell numbers were investigated. 3. Diabetes incidence was increased by Arntl2 mRNA interference in the congenic strain and this was associated with an increase in CD4(+) T cells and a decrease in regulatory T cells in the peripheral immune system. 4. These results provide additional support for the protective role of the Arntl2 gene located in locus Idd6 in diabetes progression in NOD.C3H congenic mice.
Collapse
Affiliation(s)
- Chen-Xia He
- Institut Pasteur, Unité de Génétique Moléculaire Murine, Paris, France
| | | | | | | |
Collapse
|