1
|
Cook CJ, Fletcher JM. Heterogeneity in disease resistance and the impact of antibiotics in the US. ECONOMICS AND HUMAN BIOLOGY 2022; 47:101155. [PMID: 35944452 PMCID: PMC9972546 DOI: 10.1016/j.ehb.2022.101155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/22/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
We hypothesize that the impact of antibiotics is moderated by a population's inherent (genetic) resistance to infectious disease. Using the introduction of sulfa drugs in 1937, we show that US states that are more genetically susceptible to infectious disease saw larger declines in their bacterial mortality rates following the introduction of sulfa drugs in 1937. This suggests area-level genetic endowments of disease resistance and the discovery of medical technologies have acted as substitutes in determining levels of health across the US. We also document immediate effects of sulfa drug exposure to the age of the workforce and cumulative effects on educational attainment for cohorts exposed to sulfa drugs in early life.
Collapse
|
2
|
Pollock NR, Harrison GF, Norman PJ. Immunogenomics of Killer Cell Immunoglobulin-Like Receptor (KIR) and HLA Class I: Coevolution and Consequences for Human Health. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1763-1775. [PMID: 35561968 PMCID: PMC10038757 DOI: 10.1016/j.jaip.2022.04.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
Abstract
Interactions of killer cell immunoglobin-like receptors (KIR) with human leukocyte antigens (HLA) class I regulate effector functions of key cytotoxic cells of innate and adaptive immunity. The extreme diversity of this interaction is genetically determined, having evolved in the ever-changing environment of pathogen exposure. Diversity of KIR and HLA genes is further facilitated by their independent segregation on separate chromosomes. That fetal implantation relies on many of the same types of immune cells as infection control places certain constraints on the evolution of KIR interactions with HLA. Consequently, specific inherited combinations of receptors and ligands may predispose to specific immune-mediated diseases, including autoimmunity. Combinatorial diversity of KIR and HLA class I can also differentiate success rates of immunotherapy directed to these diseases. Progress toward both etiopathology and predicting response to therapy is being achieved through detailed characterization of the extent and consequences of the combinatorial diversity of KIR and HLA. Achieving these goals is more tractable with the development of integrated analyses of molecular evolution, function, and pathology that will establish guidelines for understanding and managing risks. Here, we present what is known about the coevolution of KIR with HLA class I and the impact of their complexity on immune function and homeostasis.
Collapse
Affiliation(s)
- Nicholas R Pollock
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo
| | - Genelle F Harrison
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo
| | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo.
| |
Collapse
|
3
|
Di D, Nunes JM, Jiang W, Sanchez-Mazas A. Like Wings of a Bird: Functional Divergence and Complementarity between HLA-A and HLA-B Molecules. Mol Biol Evol 2021; 38:1580-1594. [PMID: 33320202 PMCID: PMC8355449 DOI: 10.1093/molbev/msaa325] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human leukocyte antigen (HLA) genes are among the most polymorphic of our genome, as a likely consequence of balancing selection related to their central role in adaptive immunity. HLA-A and HLA-B genes were recently suggested to evolve through a model of joint divergent asymmetric selection conferring all human populations, including those with severe loss of diversity, an equivalent immune potential. However, the mechanisms by which these two genes might undergo joint evolution while displaying very distinct allelic profiles in populations are still unknown. To address this issue, we carried out extensive data analyses (among which factorial correspondence analysis and linear modeling) on 2,909 common and rare HLA-A, HLA-B, and HLA-C alleles and 200,000 simulated pathogenic peptides by taking into account sequence variation, predicted peptide-binding affinity and HLA allele frequencies in 123 populations worldwide. Our results show that HLA-A and HLA-B (but not HLA-C) molecules maintain considerable functional divergence in almost all populations, which likely plays an instrumental role in their immune defense. We also provide robust evidence of functional complementarity between HLA-A and HLA-B molecules, which display asymmetric relationships in terms of amino acid diversity at both inter- and intraprotein levels and in terms of promiscuous or fastidious peptide-binding specificities. Like two wings of a flying bird, the functional complementarity of HLA-A and HLA-B is a perfect example, in our genome, of duplicated genes sharing their capacity of assuming common vital functions while being submitted to complex and sometimes distinct environmental pressures.
Collapse
Affiliation(s)
- Da Di
- Laboratory of Anthropology, Genetics and Peopling History (AGP Lab), Department of Genetics and Evolution-Anthropology Unit, University of Geneva, Geneva, Switzerland
| | - Jose Manuel Nunes
- Laboratory of Anthropology, Genetics and Peopling History (AGP Lab), Department of Genetics and Evolution-Anthropology Unit, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (IGE3), University of Geneva Medical Centre (CMU), Geneva, Switzerland
| | - Wei Jiang
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Alicia Sanchez-Mazas
- Laboratory of Anthropology, Genetics and Peopling History (AGP Lab), Department of Genetics and Evolution-Anthropology Unit, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (IGE3), University of Geneva Medical Centre (CMU), Geneva, Switzerland
| |
Collapse
|
4
|
Näpflin K, O’Connor EA, Becks L, Bensch S, Ellis VA, Hafer-Hahmann N, Harding KC, Lindén SK, Olsen MT, Roved J, Sackton TB, Shultz AJ, Venkatakrishnan V, Videvall E, Westerdahl H, Winternitz JC, Edwards SV. Genomics of host-pathogen interactions: challenges and opportunities across ecological and spatiotemporal scales. PeerJ 2019; 7:e8013. [PMID: 31720122 PMCID: PMC6839515 DOI: 10.7717/peerj.8013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022] Open
Abstract
Evolutionary genomics has recently entered a new era in the study of host-pathogen interactions. A variety of novel genomic techniques has transformed the identification, detection and classification of both hosts and pathogens, allowing a greater resolution that helps decipher their underlying dynamics and provides novel insights into their environmental context. Nevertheless, many challenges to a general understanding of host-pathogen interactions remain, in particular in the synthesis and integration of concepts and findings across a variety of systems and different spatiotemporal and ecological scales. In this perspective we aim to highlight some of the commonalities and complexities across diverse studies of host-pathogen interactions, with a focus on ecological, spatiotemporal variation, and the choice of genomic methods used. We performed a quantitative review of recent literature to investigate links, patterns and potential tradeoffs between the complexity of genomic, ecological and spatiotemporal scales undertaken in individual host-pathogen studies. We found that the majority of studies used whole genome resolution to address their research objectives across a broad range of ecological scales, especially when focusing on the pathogen side of the interaction. Nevertheless, genomic studies conducted in a complex spatiotemporal context are currently rare in the literature. Because processes of host-pathogen interactions can be understood at multiple scales, from molecular-, cellular-, and physiological-scales to the levels of populations and ecosystems, we conclude that a major obstacle for synthesis across diverse host-pathogen systems is that data are collected on widely diverging scales with different degrees of resolution. This disparity not only hampers effective infrastructural organization of the data but also data granularity and accessibility. Comprehensive metadata deposited in association with genomic data in easily accessible databases will allow greater inference across systems in the future, especially when combined with open data standards and practices. The standardization and comparability of such data will facilitate early detection of emerging infectious diseases as well as studies of the impact of anthropogenic stressors, such as climate change, on disease dynamics in humans and wildlife.
Collapse
Affiliation(s)
- Kathrin Näpflin
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, United States of America
| | - Emily A. O’Connor
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Lund, Sweden
| | - Lutz Becks
- Aquatic Ecology and Evolution, Limnological Institute University Konstanz, Konstanz, Germany
| | - Staffan Bensch
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Lund, Sweden
| | - Vincenzo A. Ellis
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Lund, Sweden
| | - Nina Hafer-Hahmann
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany
- EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Karin C. Harding
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Centre for Advanced Studies in Science and Technology, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| | - Sara K. Lindén
- Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Morten T. Olsen
- Section for Evolutionary Genomics, Natural History Museum of Denmark, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Roved
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Lund, Sweden
| | - Timothy B. Sackton
- Informatics Group, Harvard University, Cambridge, MA, United States of America
| | - Allison J. Shultz
- Ornithology Department, Natural History Museum of Los Angeles County, Los Angeles, CA, United States of America
| | - Vignesh Venkatakrishnan
- Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Elin Videvall
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Lund, Sweden
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, United States of America
| | - Helena Westerdahl
- Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Lund, Sweden
| | - Jamie C. Winternitz
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany
| | - Scott V. Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, United States of America
- Gothenburg Centre for Advanced Studies in Science and Technology, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
5
|
Abstract
Human genetic diversity is the result of population genetic forces. This genetic variation influences disease risk and contributes to health disparities. Natural selection is an important influence on human genetic variation. Because immune and inflammatory function genes are enriched for signals of positive selection, the prevalence of rheumatic disease-risk alleles seen in different populations is partially the result of differing selective pressures (eg, due to pathogens). This review summarizes the genetic regions associated with susceptibility to different rheumatic diseases and concomitant evidence for natural selection, including known agents of selection exerting selective pressure in these regions.
Collapse
Affiliation(s)
- Paula S Ramos
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 816, Charleston, SC 29425, USA; Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
6
|
Sanchez-Mazas A, Černý V, Di D, Buhler S, Podgorná E, Chevallier E, Brunet L, Weber S, Kervaire B, Testi M, Andreani M, Tiercy JM, Villard J, Nunes JM. The HLA-B landscape of Africa: Signatures of pathogen-driven selection and molecular identification of candidate alleles to malaria protection. Mol Ecol 2017; 26:6238-6252. [PMID: 28950417 DOI: 10.1111/mec.14366] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/11/2017] [Indexed: 11/30/2022]
Abstract
Human leukocyte antigen (HLA) genes play a key role in the immune response to infectious diseases, some of which are highly prevalent in specific environments, like malaria in sub-Saharan Africa. Former case-control studies showed that one particular HLA-B allele, B*53, was associated with malaria protection in Gambia, but this hypothesis was not tested so far within a population genetics framework. In this study, our objective was to assess whether pathogen-driven selection associated with malaria contributed to shape the HLA-B genetic landscape of Africa. To that aim, we first typed the HLA-A and -B loci in 484 individuals from 11 populations living in different environments across the Sahel, and we analysed these data together with those available for 29 other populations using several approaches including linear modelling on various genetic, geographic and environmental parameters. In addition to relevant signatures of populations' demography and migrations history in the genetic differentiation patterns of both HLA-A and -B loci, we found that the frequencies of three HLA alleles, B*53, B*78 and A*74, were significantly associated with Plasmodium falciparum malaria prevalence, suggesting their increase through pathogen-driven selection in malaria-endemic environments. The two HLA-B alleles were further identified, by high-throughput sequencing, as B*53:01:01 (in putative linkage disequilibrium with one HLA-C allele, C*04:01:01:01) and B*78:01 in all but one individuals tested, making them appropriate candidates to malaria protection. These results highlight the role of environmental factors in the evolution of the HLA polymorphism and open key perspectives for functional studies focusing on HLA peptide-binding properties.
Collapse
Affiliation(s)
- Alicia Sanchez-Mazas
- Department of Genetics and Evolution - Anthropology Unit, Laboratory of Anthropology, Genetics and Peopling History (AGP), University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (IGE3), Geneva, Switzerland
| | - Viktor Černý
- Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Prague, Czech Republic
| | - Da Di
- Department of Genetics and Evolution - Anthropology Unit, Laboratory of Anthropology, Genetics and Peopling History (AGP), University of Geneva, Geneva, Switzerland
| | - Stéphane Buhler
- Department of Genetics and Evolution - Anthropology Unit, Laboratory of Anthropology, Genetics and Peopling History (AGP), University of Geneva, Geneva, Switzerland.,Department of Genetic and Laboratory Medicine, Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility (UIT/LNRH), Geneva University Hospitals, Geneva, Switzerland
| | - Eliška Podgorná
- Department of the Archaeology of Landscape and Archaeobiology, Archaeogenetics Laboratory, Institute of Archaeology of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Elodie Chevallier
- Department of Genetics and Evolution - Anthropology Unit, Laboratory of Anthropology, Genetics and Peopling History (AGP), University of Geneva, Geneva, Switzerland
| | - Lydie Brunet
- Department of Genetics and Evolution - Anthropology Unit, Laboratory of Anthropology, Genetics and Peopling History (AGP), University of Geneva, Geneva, Switzerland.,Department of Genetic and Laboratory Medicine, Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility (UIT/LNRH), Geneva University Hospitals, Geneva, Switzerland
| | - Stephan Weber
- Department of Genetics and Evolution - Anthropology Unit, Laboratory of Anthropology, Genetics and Peopling History (AGP), University of Geneva, Geneva, Switzerland
| | - Barbara Kervaire
- Department of Genetic and Laboratory Medicine, Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility (UIT/LNRH), Geneva University Hospitals, Geneva, Switzerland
| | - Manuela Testi
- Laboratory of Immunogenetics and Transplant Biology, IME Foundation, Policlinic of the University of Tor Vergata, Rome, Italy
| | - Marco Andreani
- Laboratory of Immunogenetics and Transplant Biology, IME Foundation, Policlinic of the University of Tor Vergata, Rome, Italy
| | - Jean-Marie Tiercy
- Institute of Genetics and Genomics in Geneva (IGE3), Geneva, Switzerland.,Department of Genetic and Laboratory Medicine, Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility (UIT/LNRH), Geneva University Hospitals, Geneva, Switzerland
| | - Jean Villard
- Institute of Genetics and Genomics in Geneva (IGE3), Geneva, Switzerland.,Department of Genetic and Laboratory Medicine, Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility (UIT/LNRH), Geneva University Hospitals, Geneva, Switzerland
| | - José Manuel Nunes
- Department of Genetics and Evolution - Anthropology Unit, Laboratory of Anthropology, Genetics and Peopling History (AGP), University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (IGE3), Geneva, Switzerland
| |
Collapse
|
7
|
Sullivan AP, de Manuel M, Marques-Bonet T, Perry GH. An evolutionary medicine perspective on Neandertal extinction. J Hum Evol 2017. [PMID: 28622932 DOI: 10.1016/j.jhevol.2017.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Eurasian sympatry of Neandertals and anatomically modern humans - beginning at least 45,000 years ago and possibly lasting for more than 5000 years - has sparked immense anthropological interest into the factors that potentially contributed to Neandertal extinction. Among many different hypotheses, the "differential pathogen resistance" extinction model posits that Neandertals were disproportionately affected by exposure to novel infectious diseases that were transmitted during the period of spatiotemporal sympatry with modern humans. Comparisons of new archaic hominin paleogenome sequences with modern human genomes have confirmed a history of genetic admixture - and thus direct contact - between humans and Neandertals. Analyses of these data have also shown that Neandertal nuclear genome genetic diversity was likely considerably lower than that of the Eurasian anatomically modern humans with whom they came into contact, perhaps leaving Neandertal innate immune systems relatively more susceptible to novel pathogens. In this study, we compared levels of genetic diversity in genes for which genetic variation is hypothesized to benefit pathogen defense among Neandertals and African, European, and Asian modern humans, using available exome sequencing data (three individuals, or six chromosomes, per population). We observed that Neandertals had only 31-39% as many nonsynonymous (amino acid changing) polymorphisms across 73 innate immune system genes compared to modern human populations. We also found that Neandertal genetic diversity was relatively low in an unbiased set of balancing selection candidate genes for primates, those genes with the highest 1% genetic diversity genome-wide in non-human hominoids (apes). In contrast, Neandertals had similar or higher levels of genetic diversity than humans in 12 major histocompatibility complex (MHC) genes. Thus, while Neandertals may have been relatively more susceptible to some novel pathogens and differential pathogen resistance could be considered as one potential contributing factor in their extinction, the expectations of this model are not universally met.
Collapse
Affiliation(s)
- Alexis P Sullivan
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Marc de Manuel
- Institut de Biologia Evolutiva (CSIC/UPF), Parque de Investigación Biomédica de Barcelona (PRBB), Barcelona, Catalonia 08003, Spain
| | - Tomas Marques-Bonet
- Institut de Biologia Evolutiva (CSIC/UPF), Parque de Investigación Biomédica de Barcelona (PRBB), Barcelona, Catalonia 08003, Spain; CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain; Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010, Barcelona, Spain
| | - George H Perry
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA; Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
8
|
Kromer J, Hummel T, Pietrowski D, Giani AS, Sauter J, Ehninger G, Schmidt AH, Croy I. Influence of HLA on human partnership and sexual satisfaction. Sci Rep 2016; 6:32550. [PMID: 27578547 PMCID: PMC5006172 DOI: 10.1038/srep32550] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 08/09/2016] [Indexed: 12/22/2022] Open
Abstract
The major histocompatibility complex (MHC, called HLA in humans) is an important genetic component of the immune system. Fish, birds and mammals prefer mates with different genetic MHC code compared to their own, which they determine using olfactory cues. This preference increases the chances of high MHC variety in the offspring, leading to enhanced resilience against a variety of pathogens. Humans are also able to discriminate HLA related olfactory stimuli, however, it is debated whether this mechanism is of behavioural relevance. We show on a large sample (N = 508), with high-resolution typing of HLA class I/II, that HLA dissimilarity correlates with partnership, sexuality and enhances the desire to procreate. We conclude that HLA mediates mate behaviour in humans.
Collapse
Affiliation(s)
- J. Kromer
- Smell & Taste Clinic, Department of Otorhinolaryngology, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Fetscherstr 74, 01307 Dresden, Germany
| | - T. Hummel
- Smell & Taste Clinic, Department of Otorhinolaryngology, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Fetscherstr 74, 01307 Dresden, Germany
| | - D. Pietrowski
- Smell & Taste Clinic, Department of Otorhinolaryngology, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Fetscherstr 74, 01307 Dresden, Germany
| | - A. S. Giani
- DKMS German Bone Marrow Donor Center, Kressbach 1, 72072 Tübingen, Germany
| | - J. Sauter
- DKMS German Bone Marrow Donor Center, Kressbach 1, 72072 Tübingen, Germany
| | - G. Ehninger
- Department of Internal Medicine, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Fetscherstr 74, 01307 Dresden, Germany
| | - A. H. Schmidt
- DKMS German Bone Marrow Donor Center, Kressbach 1, 72072 Tübingen, Germany
| | - I. Croy
- Smell & Taste Clinic, Department of Otorhinolaryngology, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Fetscherstr 74, 01307 Dresden, Germany
- Department of Psychotherapy and Psychosomatic Medicine, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Fetscherstr 74, 01307 Dresden, Germany
| |
Collapse
|
9
|
Mikhailova SV, Babenko VN, Ivanoshchuk DE, Gubina MA, Maksimov VN, Solovjova IG, Voevoda MI. Haplotype analysis of the HFE gene among populations of Northern Eurasia, in patients with metabolic disorders or stomach cancer, and in long-lived people. BMC Genet 2016; 17:83. [PMID: 27317329 PMCID: PMC4912798 DOI: 10.1186/s12863-016-0396-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 06/10/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Previously, it was shown that the HFE gene (associated with human hereditary hemochromatosis) has several haplotypes of intronic polymorphisms. Some haplotype frequencies are race specific and hence can be used in phylogenetic analysis. We assumed that analysis of Caucasoid patients-living now in Western Siberia and having diseases associated with dietary habits and metabolic rate-will allow us to understand the processes of possible selection during settling of the northern part of Asia. RESULTS Haplotype analysis of Northern Eurasian native and recently settled ethnic groups was performed on polymorphisms rs1799945, rs1800730, rs1800562, rs2071303, rs1800708, rs1572982, rs2794719, rs807209, and rs2032451 of this gene. The CCA haplotype of the rs2071303, rs1800708, and rs1572982 was found to be associated with HLA-A2 (39 %) in Asian populations. Haplotype analysis for the rs1799945, rs1800730, rs1800562, rs2071303, rs1800708, and rs1572982 was performed on Russian patients with some metabolic disorders or stomach cancer and among long-lived people. Decreased frequencies of the TTA haplotype (T in rs2071303, T in rs1800708, and A in rs1572982) were observed in the groups of patients with diseases associated with overweight (fatty liver disease, type 2 diabetes mellitus, or metabolic syndrome + arterial hypertension) as compared with the control sample. We detected significant differences in this haplotype's frequency between the patients with type 2 diabetes mellitus and Russian adolescents, elderly citizens, and long-lived people (χ(2) P value = 0.003, 0.010, and 0.015, respectively). CONCLUSIONS No significant differences in frequencies of the alleles with mutations in coding regions of the HFE gene (C282Y, H63D, and S65C) were detected between the analyzed patients (with stomach cancer, metabolic syndrome, fatty liver disease, or type 2 diabetes mellitus) and the control Caucasoid sample. Monophyletic origin of H63D (rs1799945) was confirmed in Caucasoids and Northern Asians. The reasons for a sharp increase in the frequency of CCA haplotype of HFE in the Asian race remain unclear.
Collapse
Affiliation(s)
- S V Mikhailova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation.
| | - V N Babenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - D E Ivanoshchuk
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation.,Institute of Internal and Preventive Medicine, Novosibirsk, Russian Federation.,Novosibirsk State University, Novosibirsk, Russian Federation
| | - M A Gubina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - V N Maksimov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation.,Institute of Internal and Preventive Medicine, Novosibirsk, Russian Federation.,Novosibirsk State University, Novosibirsk, Russian Federation
| | - I G Solovjova
- Novosibirsk State Medical University, Novosibirsk, Russian Federation
| | - M I Voevoda
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation.,Institute of Internal and Preventive Medicine, Novosibirsk, Russian Federation.,Novosibirsk State University, Novosibirsk, Russian Federation
| |
Collapse
|
10
|
Buhler S, Nunes JM, Sanchez-Mazas A. HLA class I molecular variation and peptide-binding properties suggest a model of joint divergent asymmetric selection. Immunogenetics 2016; 68:401-416. [PMID: 27233953 PMCID: PMC4911380 DOI: 10.1007/s00251-016-0918-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/17/2016] [Indexed: 01/20/2023]
Abstract
The main function of HLA class I molecules is to present pathogen-derived peptides to cytotoxic T lymphocytes. This function is assumed to drive the maintenance of an extraordinary amount of polymorphism at each HLA locus, providing an immune advantage to heterozygote individuals capable to present larger repertories of peptides than homozygotes. This seems contradictory, however, with a reduced diversity at individual HLA loci exhibited by some isolated populations. This study shows that the level of functional diversity predicted for the two HLA-A and HLA-B genes considered simultaneously is similar (almost invariant) between 46 human populations, even when a reduced diversity exists at each locus. We thus propose that HLA-A and HLA-B evolved through a model of joint divergent asymmetric selection conferring all populations an equivalent immune potential. The distinct pattern observed for HLA-C is explained by its functional evolution towards killer cell immunoglobulin-like receptor (KIR) activity regulation rather than peptide presentation.
Collapse
Affiliation(s)
- Stéphane Buhler
- Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution, Anthropology Unit, University of Geneva, Geneva, Switzerland. .,Transplantation Immunology Unit & National Reference Laboratory for Histocompatibility, Department of Genetic and Laboratory Medicine, Geneva University Hospital, Geneva, Switzerland.
| | - José Manuel Nunes
- Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution, Anthropology Unit, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Alicia Sanchez-Mazas
- Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution, Anthropology Unit, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| |
Collapse
|
11
|
Ramos PS, Shedlock AM, Langefeld CD. Genetics of autoimmune diseases: insights from population genetics. J Hum Genet 2015; 60:657-64. [PMID: 26223182 PMCID: PMC4660050 DOI: 10.1038/jhg.2015.94] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/12/2015] [Accepted: 06/19/2015] [Indexed: 12/14/2022]
Abstract
Human genetic diversity is the result of population genetic forces. This genetic variation influences disease risk and contributes to health disparities. Autoimmune diseases (ADs) are a family of complex heterogeneous disorders with similar underlying mechanisms characterized by immune responses against self. Collectively, ADs are common, exhibit gender and ethnic disparities, and increasing incidence. As natural selection is an important influence on human genetic variation, and immune function genes are enriched for signals of positive selection, it is thought that the prevalence of AD risk alleles seen in different population is partially the result of differing selective pressures (for example, due to pathogens). With the advent of high-throughput technologies, new analytical methodologies and large-scale projects, evidence for the role of natural selection in contributing to the heritable component of ADs keeps growing. This review summarizes the genetic regions associated with susceptibility to different ADs and concomitant evidence for selection, including known agents of selection exerting selective pressure in these regions. Examples of specific adaptive variants with phenotypic effects are included as an evidence of natural selection increasing AD susceptibility. Many of the complexities of gene effects in different ADs can be explained by population genetics phenomena. Integrating AD susceptibility studies with population genetics to investigate how natural selection has contributed to genetic variation that influences disease risk will help to identify functional variants and elucidate biological mechanisms. As such, the study of population genetics in human population holds untapped potential for elucidating the genetic causes of human disease and more rapidly focusing to personalized medicine.
Collapse
Affiliation(s)
- Paula S Ramos
- Division of Rheumatology and Immunology, Department of Medicine, and Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Andrew M Shedlock
- Department of Biology, College of Charleston, Charleston, SC, USA
- Hollings Marine Laboratory Center for Marine Biomedicine and College of Graduate Studies, Medical University of South Carolina, Charleston, SC, USA
| | - Carl D Langefeld
- Division of Public Health Sciences, Department of Biostatistical Sciences; and Center for Public Health Genomics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
12
|
White KD, Chung WH, Hung SI, Mallal S, Phillips EJ. Evolving models of the immunopathogenesis of T cell-mediated drug allergy: The role of host, pathogens, and drug response. J Allergy Clin Immunol 2015; 136:219-34; quiz 235. [PMID: 26254049 DOI: 10.1016/j.jaci.2015.05.050] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 12/12/2022]
Abstract
Immune-mediated (IM) adverse drug reactions (ADRs) are an underrecognized source of preventable morbidity, mortality, and cost. Increasingly, genetic variation in the HLA loci is associated with risk of severe reactions, highlighting the importance of T-cell immune responses in the mechanisms of both B cell-mediated and primary T cell-mediated IM-ADRs. In this review we summarize the role of host genetics, microbes, and drugs in IM-ADR development; expand on the existing models of IM-ADR pathogenesis to address multiple unexplained observations; discuss the implications of this work in clinical practice today; and describe future applications for preclinical drug toxicity screening, drug design, and development.
Collapse
Affiliation(s)
- Katie D White
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn
| | - Wen-Hung Chung
- Department of Dermatology, Chang Gung Memorial Hospital, Keelung, Taiwan; Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shuen-Iu Hung
- Program in Molecular Medicine, Institute of Pharmacology, School of Medicine, Infection and Immunity Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Simon Mallal
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn; Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Elizabeth J Phillips
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn; Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia.
| |
Collapse
|
13
|
Dos Santos Francisco R, Buhler S, Nunes JM, Bitarello BD, França GS, Meyer D, Sanchez-Mazas A. HLA supertype variation across populations: new insights into the role of natural selection in the evolution of HLA-A and HLA-B polymorphisms. Immunogenetics 2015; 67:651-63. [PMID: 26459025 PMCID: PMC4636516 DOI: 10.1007/s00251-015-0875-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 09/29/2015] [Indexed: 01/03/2023]
Abstract
Supertypes are groups of human leukocyte antigen (HLA) alleles which bind overlapping sets of peptides due to sharing specific residues at the anchor positions-the B and F pockets-of the peptide-binding region (PBR). HLA alleles within the same supertype are expected to be functionally similar, while those from different supertypes are expected to be functionally distinct, presenting different sets of peptides. In this study, we applied the supertype classification to the HLA-A and HLA-B data of 55 worldwide populations in order to investigate the effect of natural selection on supertype rather than allelic variation at these loci. We compared the nucleotide diversity of the B and F pockets with that of the other PBR regions through a resampling procedure and compared the patterns of within-population heterozygosity (He) and between-population differentiation (G ST) observed when using the supertype definition to those estimated when using randomized groups of alleles. At HLA-A, low levels of variation are observed at B and F pockets and randomized He and G ST do not differ from the observed data. By contrast, HLA-B concentrates most of the differences between supertypes, the B pocket showing a particularly high level of variation. Moreover, at HLA-B, the reassignment of alleles into random groups does not reproduce the patterns of population differentiation observed with supertypes. We thus conclude that differently from HLA-A, for which supertype and allelic variation show similar patterns of nucleotide diversity within and between populations, HLA-B has likely evolved through specific adaptations of its B pocket to local pathogens.
Collapse
Affiliation(s)
- Rodrigo Dos Santos Francisco
- Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, Brazil. .,Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution-Anthropology Unit, University of Geneva, Geneva, Switzerland. .,Hospital Israelita Albert Einstein, São Paulo, Brazil.
| | - Stéphane Buhler
- Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution-Anthropology Unit, University of Geneva, Geneva, Switzerland.,Transplantation Immunology Unit and National Reference Laboratory for Histocompatibility, Department of Genetic and Laboratory Medicine, Geneva University Hospital, Geneva, Switzerland
| | - José Manuel Nunes
- Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution-Anthropology Unit, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (IGE3), Geneva, Switzerland
| | | | - Gustavo Starvaggi França
- Department of Biochemistry, Chemistry Institute, University of São Paulo, São Paulo, Brazil.,Molecular Oncology Center, Sírio-Libanês Hospital, São Paulo, Brazil
| | - Diogo Meyer
- Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, Brazil.
| | - Alicia Sanchez-Mazas
- Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution-Anthropology Unit, University of Geneva, Geneva, Switzerland. .,Institute of Genetics and Genomics in Geneva (IGE3), Geneva, Switzerland.
| |
Collapse
|
14
|
Abstract
Tuberculosis (TB) ranks as the second cause of death from an infectious disease worldwide after HIV. Archaeogenetics and evolutionary scenario for the Mycobacterium tuberculosis complex (MTBC) are in favor of a long-term interaction between tuberculosis and humans, predating the Neolithic period, contrary to the traditional belief. If tuberculosis evolved as a human pathogen in Africa and has spread outside Africa about more than ten-thousand years ago, its life history traits have been shaped by the immune system. Numerous studies described a variety of human susceptibility factors to TB, suggesting that MTBC strains have evolved different ways to overcome this system. However, the results of these studies reveal some inconsistencies even within populations. The temporally varying history of epidemics and ever-varying genetic diversity of pathogens and strains could easily contribute to blur out signal of selection in our human genome. Palaeomicrobiology gives the opportunity to genotype ancient TB strains circulating in past populations. Accessing ancient human pathogens allows us to a better understanding of infectious agents over a longer time scale and confrontation with the dynamic of modern TB strains. Nevertheless, we have to consider tuberculosis as a multifactorial disorder in which environmental factors interact tightly with human and pathogen genetic.
Collapse
Affiliation(s)
- Pascale Perrin
- MIVEGEC Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (CNRS 5290-IRD 224-UM1)/ Université Montpellier 2, DYSMI Team, Centre IRD de Montpellier, 911Avenue Agropolis - BP 64501, 34394 Montpellier Cedex, France.
| |
Collapse
|
15
|
Roberts CH, Molina S, Makalo P, Joof H, Harding-Esch EM, Burr SE, Mabey DCW, Bailey RL, Burton MJ, Holland MJ. Conjunctival scarring in trachoma is associated with the HLA-C ligand of KIR and is exacerbated by heterozygosity at KIR2DL2/KIR2DL3. PLoS Negl Trop Dis 2014; 8:e2744. [PMID: 24651768 PMCID: PMC3961204 DOI: 10.1371/journal.pntd.0002744] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 01/30/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Chlamydia trachomatis is globally the predominant infectious cause of blindness and one of the most common bacterial causes of sexually transmitted infection. Infections of the conjunctiva cause the blinding disease trachoma, an immuno-pathological disease that is characterised by chronic conjunctival inflammation and fibrosis. The polymorphic Killer-cell Immunoglobulin-like Receptors (KIR) are found on Natural Killer cells and have co-evolved with the Human Leucocyte Antigen (HLA) class I system. Certain genetic constellations of KIR and HLA class I polymorphisms are associated with a number of diseases in which modulation of the innate responses to viral and intracellular bacterial pathogens is central. METHODOLOGY A sample of 134 Gambian pedigrees selected to contain at least one individual with conjunctival scarring in the F1 generation was used. Individuals (n = 830) were genotyped for HLA class I and KIR gene families. Family Based Association Tests and Case Pseudo-control tests were used to extend tests for transmission disequilibrium to take full advantage of the family design, genetic model and phenotype. PRINCIPLE FINDINGS We found that the odds of trachomatous scarring increased with the number of genome copies of HLA-C2 (C1/C2 OR = 2.29 BHP-value = 0.006; C2/C2 OR = 3.97 BHP-value = 0.0004) and further increased when both KIR2DL2 and KIR2DL3 (C2/C2 OR = 5.95 BHP-value = 0.006) were present. CONCLUSIONS To explain the observations in the context of chlamydial infection and trachoma we propose a two-stage model of response and disease that balances the cytolytic response of KIR expressing NK cells with the ability to secrete interferon gamma, a combination that may cause pathology. The data presented indicate that HLA-C genotypes are important determinants of conjunctival scarring in trachoma and that KIR2DL2/KIR2DL3 heterozygosity further increases risk of conjunctival scarring in individuals carrying HLA-C2.
Collapse
Affiliation(s)
- Chrissy h. Roberts
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sandra Molina
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Pateh Makalo
- Medical Research Council Unit, The Gambia, Atlantic Boulevard, Fajara, The Gambia
| | - Hassan Joof
- Medical Research Council Unit, The Gambia, Atlantic Boulevard, Fajara, The Gambia
| | - Emma M. Harding-Esch
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sarah E. Burr
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Medical Research Council Unit, The Gambia, Atlantic Boulevard, Fajara, The Gambia
| | - David C. W. Mabey
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Robin L. Bailey
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Matthew J. Burton
- International Centre for Eye Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Martin J. Holland
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Medical Research Council Unit, The Gambia, Atlantic Boulevard, Fajara, The Gambia
| |
Collapse
|
16
|
Ramos PS, Shaftman SR, Ward RC, Langefeld CD. Genes associated with SLE are targets of recent positive selection. Autoimmune Dis 2014; 2014:203435. [PMID: 24587899 PMCID: PMC3920976 DOI: 10.1155/2014/203435] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/12/2013] [Indexed: 01/03/2023] Open
Abstract
The reasons for the ethnic disparities in the prevalence of systemic lupus erythematosus (SLE) and the relative high frequency of SLE risk alleles in the population are not fully understood. Population genetic factors such as natural selection alter allele frequencies over generations and may help explain the persistence of such common risk variants in the population and the differential risk of SLE. In order to better understand the genetic basis of SLE that might be due to natural selection, a total of 74 genomic regions with compelling evidence for association with SLE were tested for evidence of recent positive selection in the HapMap and HGDP populations, using population differentiation, allele frequency, and haplotype-based tests. Consistent signs of positive selection across different studies and statistical methods were observed at several SLE-associated loci, including PTPN22, TNFSF4, TET3-DGUOK, TNIP1, UHRF1BP1, BLK, and ITGAM genes. This study is the first to evaluate and report that several SLE-associated regions show signs of positive natural selection. These results provide corroborating evidence in support of recent positive selection as one mechanism underlying the elevated population frequency of SLE risk loci and supports future research that integrates signals of natural selection to help identify functional SLE risk alleles.
Collapse
Affiliation(s)
- Paula S. Ramos
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Stephanie R. Shaftman
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ralph C. Ward
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Carl D. Langefeld
- Department of Public Health Sciences, Wake Forest School of Medicine and Center for Public Health Genomics, Winston-Salem, NC 27157, USA
| |
Collapse
|
17
|
Di D, Sanchez-Mazas A. HLA variation reveals genetic continuity rather than population group structure in East Asia. Immunogenetics 2014; 66:153-60. [PMID: 24449274 DOI: 10.1007/s00251-014-0757-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 01/07/2014] [Indexed: 01/15/2023]
Abstract
Genetic differences between Northeast Asian (NEA) and Southeast Asian (SEA) populations have been observed in numerous studies. At the among-population level, despite a clear north-south differentiation observed for many genetic markers, debates were led between abrupt differences and a continuous pattern. At the within-population level, whether NEA or SEA populations have higher genetic diversity is also highly controversial. In this study, we analyzed a large set of HLA data from East Asia in order to map the genetic variation among and within populations in this continent and to clarify the distribution pattern of HLA lineages and alleles. We observed a genetic differentiation between NEA and SEA populations following a continuous pattern from north to south, and we show a significant and continuous decrease of HLA diversity by the same direction. This continuity is shaped by clinal distributions of many HLA lineages and alleles with increasing or decreasing frequencies along the latitude. These results bring new evidence in favor of the "overlapping model" proposed previously for East Asian peopling history, whereby modern humans migrated eastward from western Eurasia via two independent routes along each side of the Himalayas and, later, overlapped in East Asia across open land areas. Our study strongly suggests that intensive gene flow between NEA and SEA populations occurred and shaped the latitude-related continuous pattern of genetic variation and the peculiar HLA lineage and allele distributions observed in this continent. Probably for a very long period, the exact duration of these events remains to be estimated.
Collapse
Affiliation(s)
- Da Di
- Laboratory of Anthropology, Genetics and Peopling History (AGP lab), Anthropology Unit, Department of Genetics and Evolution, University of Geneva, 12 rue Gustave-Revilliod, CH-1211, Geneva, Switzerland,
| | | |
Collapse
|
18
|
Ellis SA, Hammond JA. The functional significance of cattle major histocompatibility complex class I genetic diversity. Annu Rev Anim Biosci 2013; 2:285-306. [PMID: 25384144 DOI: 10.1146/annurev-animal-022513-114234] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Current concerns about food security highlight the importance of maintaining productive and disease-resistant livestock populations. Major histocompatibility complex (MHC) class I genes have a central role in immunity. A high level of diversity in these genes allows populations to survive despite exposure to rapidly evolving pathogens. This review aims to describe the key features of MHC class I genetic diversity in cattle and to discuss their role in disease resistance. Discussion centers on data derived from the cattle genome sequence and studies addressing MHC class I gene expression and function. The impact of intensive selection on MHC diversity is also considered. A high level of complexity in MHC class I genes and functionally related gene families is revealed. This highlights the need for increased efforts to determine key genetic components that govern cattle immune responses to disease, which is increasingly important in the face of changing human and environmental demands.
Collapse
Affiliation(s)
- Shirley A Ellis
- The Pirbright Institute, Pirbright, Woking, Surrey GU24 0NF, United Kingdom; ,
| | | |
Collapse
|
19
|
Common risk alleles for inflammatory diseases are targets of recent positive selection. Am J Hum Genet 2013; 92:517-29. [PMID: 23522783 DOI: 10.1016/j.ajhg.2013.03.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/13/2012] [Accepted: 03/01/2013] [Indexed: 11/22/2022] Open
Abstract
Genome-wide association studies (GWASs) have identified hundreds of loci harboring genetic variation influencing inflammatory-disease susceptibility in humans. It has been hypothesized that present day inflammatory diseases may have arisen, in part, due to pleiotropic effects of host resistance to pathogens over the course of human history, with significant selective pressures acting to increase host resistance to pathogens. The extent to which genetic factors underlying inflammatory-disease susceptibility has been influenced by selective processes can now be quantified more comprehensively than previously possible. To understand the evolutionary forces that have shaped inflammatory-disease susceptibility and to elucidate functional pathways affected by selection, we performed a systems-based analysis to integrate (1) published GWASs for inflammatory diseases, (2) a genome-wide scan for signatures of positive selection in a population of European ancestry, (3) functional genomics data comprised of protein-protein interaction networks, and (4) a genome-wide expression quantitative trait locus (eQTL) mapping study in peripheral blood mononuclear cells (PBMCs). We demonstrate that loci for inflammatory-disease susceptibility are enriched for genomic signatures of recent positive natural selection, with selected loci forming a highly interconnected protein-protein interaction network. Further, we identify 21 loci for inflammatory-disease susceptibility that display signatures of recent positive selection, of which 13 also show evidence of cis-regulatory effects on genes within the associated locus. Thus, our integrated analyses highlight a set of susceptibility loci that might subserve a shared molecular function and has experienced selective pressure over the course of human history; today, these loci play a key role in influencing susceptibility to multiple different inflammatory diseases, in part through alterations of gene expression in immune cells.
Collapse
|
20
|
Abstract
The molecular basis of adaptation--and, in particular, the relative roles of protein-coding versus gene expression changes--has long been the subject of speculation and debate. Recently, the genotyping of diverse human populations has led to the identification of many putative "local adaptations" that differ between populations. Here I show that these local adaptations are over 10-fold more likely to affect gene expression than amino acid sequence. In addition, a novel framework for identifying polygenic local adaptations detects recent positive selection on the expression levels of genes involved in UV radiation response, immune cell proliferation, and diabetes-related pathways. These results provide the first examples of polygenic gene expression adaptation in humans, as well as the first genome-scale support for the hypothesis that changes in gene expression have driven human adaptation.
Collapse
Affiliation(s)
- Hunter B Fraser
- Department of Biology, Stanford University, Stanford, California 94305, USA.
| |
Collapse
|