1
|
Sirupurapu V, Safonova Y, Pevzner P. Gene prediction in the immunoglobulin loci. Genome Res 2022; 32:1152-1169. [PMID: 35545447 DOI: 10.1101/gr.276676.122] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/06/2022] [Indexed: 11/25/2022]
Abstract
The V(D)J recombination process rearranges the variable (V), diversity (D), and joining (J) genes in the immunoglobulin loci to generate antibody repertoires. Annotation of these loci across various species and predicting the V, D, and J genes (IG genes) is critical for studies of the adaptive immune system. However, since the standard gene finding algorithms are not suitable for predicting IG genes, they have been semi-manually annotated in very few species. We developed the IGDetective algorithm for predicting IG genes and applied it to species with the assembled IG loci. IGDetective generated the first large collection of IG genes across many species and enabled their evolutionary analysis, including the analysis of the "bat IG diversity" hypothesis. This analysis revealed extremely conserved V genes in evolutionary distant species indicating that these genes may be subjected to the same selective pressure, e.g., pressure driven by common pathogens. IGDetective also revealed extremely diverged V genes and a new family of evolutionary conserved V genes in bats with unusual noncanonical cysteines. Moreover, in difference from all other previously reported antibodies, these cysteines are located within complementarity-determining regions. Since cysteines form disulfide bonds, we hypothesize that these cysteine-rich V genes might generate antibodies with noncanonical conformations and could potentially form a unique part of the immune repertoire in bats. We also analyzed the diversity landscape of the recombination signal sequences and revealed their features that trigger the high/low usage of the IG genes.
Collapse
|
2
|
Huttener R, Thorrez L, Veld TI, Potter B, Baele G, Granvik M, Van Lommel L, Schuit F. Regional effect on the molecular clock rate of protein evolution in Eutherian and Metatherian genomes. BMC Ecol Evol 2021; 21:153. [PMID: 34348656 PMCID: PMC8336415 DOI: 10.1186/s12862-021-01882-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 07/22/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Different types of proteins diverge at vastly different rates. Moreover, the same type of protein has been observed to evolve with different rates in different phylogenetic lineages. In the present study we measured the rates of protein evolution in Eutheria (placental mammals) and Metatheria (marsupials) on a genome-wide basis and we propose that the gene position in the genome landscape has an important influence on the rate of protein divergence. RESULTS We analyzed a protein-encoding gene set (n = 15,727) common to 16 mammals (12 Eutheria and 4 Metatheria). Using sliding windows that averaged regional effects of protein divergence we constructed landscapes in which strong and lineage-specific regional effects were seen on the molecular clock rate of protein divergence. Within each lineage, the relatively high rates were preferentially found in subtelomeric chromosomal regions. Such regions were observed to contain important and well-studied loci for fetal growth, uterine function and the generation of diversity in the adaptive repertoire of immunoglobulins. CONCLUSIONS A genome landscape approach visualizes lineage-specific regional differences between Eutherian and Metatherian rates of protein evolution. This phenomenon of chromosomal position is a new element that explains at least part of the lineage-specific effects and differences between proteins on the molecular clock rates.
Collapse
Affiliation(s)
- Raf Huttener
- Gene Expression Unit, Dept. of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, Bus 901, 3000, Leuven, Belgium
| | - Lieven Thorrez
- Tissue Engineering Laboratory, Department of Development and Regeneration, KU Leuven, Kortrijk, Belgium
| | - Thomas In't Veld
- Gene Expression Unit, Dept. of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, Bus 901, 3000, Leuven, Belgium
| | - Barney Potter
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Mikaela Granvik
- Gene Expression Unit, Dept. of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, Bus 901, 3000, Leuven, Belgium
| | - Leentje Van Lommel
- Gene Expression Unit, Dept. of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, Bus 901, 3000, Leuven, Belgium
| | - Frans Schuit
- Gene Expression Unit, Dept. of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1, Bus 901, 3000, Leuven, Belgium.
| |
Collapse
|
3
|
Bai Y, Lin W, Xu J, Song J, Yang D, Chen YE, Li L, Li Y, Wang Z, Zhang J. Improving the genome assembly of rabbits with long-read sequencing. Genomics 2021; 113:3216-3223. [PMID: 34051323 DOI: 10.1016/j.ygeno.2021.05.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
The European rabbit (Oryctolagus cuniculus) is important as a biomedical model given its unique features in immunity and metabolism. The current reference genome OryCun2.0 established with whole-genome shotgun sequencing was quite fragmented and had not been updated for ten years. In this work, we provided a new rabbit genome assembly UM_NZW_1.0 to improve OryCun2.0 by leveraging the contig lengths based on long-read sequencing and a wealth of available Illumina paired-end sequence data. UM_NZW_1.0 showed a remarkable increase of continuity compared with OryCun2.0, with 5 times longer contig N50 and approximately 75% gaps closed. Many of the closed gaps were overlapped with protein-coding genes or transcriptional features, resulting in an enhancement of gene annotations. In particular, UM_NZW_1.0 presented a more complete landscape of the MHC region and the IGH locus, therefore provided a valuable resource for future researches on rabbits.
Collapse
Affiliation(s)
- Yiqin Bai
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Weili Lin
- Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Jun Song
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Dongshan Yang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Lin Li
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Yixue Li
- Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China; Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China.
| | - Zhen Wang
- Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Jifeng Zhang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Larson PA, Bartlett ML, Garcia K, Chitty J, Balkema-Buschmann A, Towner J, Kugelman J, Palacios G, Sanchez-Lockhart M. Genomic features of humoral immunity support tolerance model in Egyptian rousette bats. Cell Rep 2021; 35:109140. [PMID: 34010652 DOI: 10.1016/j.celrep.2021.109140] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 10/08/2020] [Accepted: 04/26/2021] [Indexed: 01/05/2023] Open
Abstract
Bats asymptomatically harbor many viruses that can cause severe human diseases. The Egyptian rousette bat (ERB) is the only known reservoir for Marburgviruses and Sosuga virus, making it an exceptional animal model to study antiviral mechanisms in an asymptomatic host. With this goal in mind, we constructed and annotated the immunoglobulin heavy chain locus, finding an expansion on immunoglobulin variable genes associated with protective human antibodies to different viruses. We also annotated two functional and distinct immunoglobulin epsilon genes and four distinctive functional immunoglobulin gamma genes. We described the Fc receptor repertoire in ERBs, including features that may affect activation potential, and discovered the lack of evolutionary conserved short pentraxins. These findings reinforce the hypothesis that a differential threshold of regulation and/or absence of key immune mediators may promote tolerance and decrease inflammation in ERBs.
Collapse
Affiliation(s)
- Peter A Larson
- Center for Genome Sciences, US Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - Maggie L Bartlett
- Center for Genome Sciences, US Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Karla Garcia
- Center for Genome Sciences, US Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Joseph Chitty
- Center for Genome Sciences, US Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | | | - Jonathan Towner
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Jeffrey Kugelman
- Center for Genome Sciences, US Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | - Gustavo Palacios
- Center for Genome Sciences, US Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA.
| | - Mariano Sanchez-Lockhart
- Center for Genome Sciences, US Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
5
|
Genetic Diversity of IGHM and IGHE in the Leporids Revealed Different Patterns of Diversity in the Two European Rabbit Subspecies ( O. cuniculus algirus and O. c. cuniculus). Animals (Basel) 2019; 9:ani9110955. [PMID: 31718112 PMCID: PMC6912466 DOI: 10.3390/ani9110955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 11/19/2022] Open
Abstract
Simple Summary The study of European rabbit immunoglobulin genes has contributed decisively to the current knowledge on antibody structure and diversification. The European rabbit has also been increasingly used as an animal model for the study of many human diseases, such as syphilis, tuberculosis, and AIDS. As such, the study of its immune system genes is of crucial relevance, but the study of rabbit immunoglobulins has focused only on the IgG and IgA antibodies. In this study, we added to the knowledge of the rabbit immune system by investigating the genetic diversity of two antibodies, IgM and IgE, in wild and domestic rabbits as well as other rabbit close species. With the data obtained in this study, we showed a high similarity between the different rabbit close species studied and we pointed out important genetic differences in the wild and domestic rabbits. Our findings are a valuable tool for the management of rabbit wild populations and domestic breeds and may contribute to the identification of immunoglobulins genetic variants with greater efficiency against pathogens. Abstract The European rabbit (Oryctolagus cuniculus) has been an important model for immunological studies but the study of its immunoglobulins (Ig) has been restricted to its unique IgA and IgG. Here, we studied the genetic diversity of IgM and IgE in several species of leporids and performed population genetics studies on European rabbit wild populations and domestic breeds. The leporids sequencing showed that these Ig are well conserved (98% sequence similarity among leporids), For IgM the Cµ1 and Cµ4 were the most diverse and most conserved domains, respectively, while for IgE the Cε1 was the most diverse domain and Cε2 and Cε3 the most conserved domains. The differences in the pattern of most conserved and most diverse domain between the Ig isotypes are most likely related to each isotype function. The genetic population data showed contrasting results for IgM and IgE. For both Ig, as expected, a greater diversity was observed in the original species range, the Iberian Peninsula. However, unexpectedly the genetic diversity found for IgE in the domestic animals is higher than that for the French wild populations. These results will increase knowledge of the genetic diversity of leporids and wild and domestic rabbit populations and are important tools for the management of wild populations and rabbitries.
Collapse
|
6
|
Li C, Chen L, Liu X, Shi X, Guo Y, Huang R, Nie F, Zheng C, Zhang C, Ma RZ. A high-density BAC physical map covering the entire MHC region of addax antelope genome. BMC Genomics 2019; 20:479. [PMID: 31185912 PMCID: PMC6558854 DOI: 10.1186/s12864-019-5790-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 05/10/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The mammalian major histocompatibility complex (MHC) harbours clusters of genes associated with the immunological defence of animals against infectious pathogens. At present, no complete MHC physical map is available for any of the wild ruminant species in the world. RESULTS The high-density physical map is composed of two contigs of 47 overlapping bacterial artificial chromosome (BAC) clones, with an average of 115 Kb for each BAC, covering the entire addax MHC genome. The first contig has 40 overlapping BAC clones covering an approximately 2.9 Mb region of MHC class I, class III, and class IIa, and the second contig has 7 BAC clones covering an approximately 500 Kb genomic region that harbours MHC class IIb. The relative position of each BAC corresponding to the MHC sequence was determined by comparative mapping using PCR screening of the BAC library of 192,000 clones, and the order of BACs was determined by DNA fingerprinting. The overlaps of neighboring BACs were cross-verified by both BAC-end sequencing and co-amplification of identical PCR fragments within the overlapped region, with their identities further confirmed by DNA sequencing. CONCLUSIONS We report here the successful construction of a high-quality physical map for the addax MHC region using BACs and comparative mapping. The addax MHC physical map we constructed showed one gap of approximately 18 Mb formed by an ancient autosomal inversion that divided the MHC class II into IIa and IIb. The autosomal inversion provides compelling evidence that the MHC organizations in all of the ruminant species are relatively conserved.
Collapse
Affiliation(s)
- Chaokun Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, S2-316 Building #2, West Beichen Road, Chaoyang District, Beijing, 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Longxin Chen
- Zhengzhou Key Laboratory of Molecular Biology, Zhengzhou Normal University, Zhengzhou, 450044, China
| | - Xuefeng Liu
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, 100044, China
| | - Xiaoqian Shi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, S2-316 Building #2, West Beichen Road, Chaoyang District, Beijing, 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Guo
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, S2-316 Building #2, West Beichen Road, Chaoyang District, Beijing, 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, S2-316 Building #2, West Beichen Road, Chaoyang District, Beijing, 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fangyuan Nie
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, S2-316 Building #2, West Beichen Road, Chaoyang District, Beijing, 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changming Zheng
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, 100044, China
| | - Chenglin Zhang
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, 100044, China.
- Beijing Zoo, No. 137 West straight door Avenue, Xicheng District, Beijing, 100032, China.
| | - Runlin Z Ma
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, S2-316 Building #2, West Beichen Road, Chaoyang District, Beijing, 100101, China.
- Zhengzhou Key Laboratory of Molecular Biology, Zhengzhou Normal University, Zhengzhou, 450044, China.
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Pinheiro A, de Sousa-Pereira P, Strive T, Knight KL, Woof JM, Esteves PJ, Abrantes J. Identification of a new European rabbit IgA with a serine-rich hinge region. PLoS One 2018; 13:e0201567. [PMID: 30089177 PMCID: PMC6082545 DOI: 10.1371/journal.pone.0201567] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/17/2018] [Indexed: 12/20/2022] Open
Abstract
In mammals, the most striking IgA system belongs to Lagomorpha. Indeed, 14 IgA subclasses have been identified in European rabbits, 11 of which are expressed. In contrast, most other mammals have only one IgA, or in the case of hominoids, two IgA subclasses. Characteristic features of the mammalian IgA subclasses are the length and amino acid sequence of their hinge regions, which are often rich in Pro, Ser and Thr residues and may also carry Cys residues. Here, we describe a new IgA that was expressed in New Zealand White domestic rabbits of IGHVa1 allotype. This IgA has an extended hinge region containing an intriguing stretch of nine consecutive Ser residues and no Pro or Thr residues, a motif exclusive to this new rabbit IgA. Considering the amino acid properties, this hinge motif may present some advantage over the common IgA hinge by affording novel functional capabilities. We also sequenced for the first time the IgA14 CH2 and CH3 domains and showed that IgA14 and IgA3 are expressed.
Collapse
Affiliation(s)
- Ana Pinheiro
- CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
- * E-mail:
| | - Patricia de Sousa-Pereira
- CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Max von Pettenkofer-Institute for Virology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tanja Strive
- Commonwealth Scientific and Industrial Research Organization, Canberra, ACT, Australia
| | - Katherine L. Knight
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Jenny M. Woof
- Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Pedro J. Esteves
- CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Centro de Investigação em Tecnologias da Saúde, IPSN, CESPU, Gandra, Portugal
| | - Joana Abrantes
- CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
| |
Collapse
|
8
|
Gilbert JR, Taylor GM, Losee JE, Mooney MP, Cooper GM. Resequencing of the Col1A1 gene of Oryctolagus cuniculus identifies splicing errors and single nucleotide polymorphisms. Genes Genomics 2017. [DOI: 10.1007/s13258-017-0521-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Weber J, Peng H, Rader C. From rabbit antibody repertoires to rabbit monoclonal antibodies. Exp Mol Med 2017; 49:e305. [PMID: 28336958 PMCID: PMC5382564 DOI: 10.1038/emm.2017.23] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 12/22/2016] [Indexed: 12/11/2022] Open
Abstract
In this review, we explain why and how rabbit monoclonal antibodies have become outstanding reagents for laboratory research and increasingly for diagnostic and therapeutic applications. Starting with the unique ontogeny of rabbit B cells that affords highly distinctive antibody repertoires rich in in vivo pruned binders of high diversity, affinity and specificity, we describe the generation of rabbit monoclonal antibodies by hybridoma technology, phage display and alternative methods, along with an account of successful humanization strategies.
Collapse
Affiliation(s)
- Justus Weber
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Haiyong Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Christoph Rader
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| |
Collapse
|
10
|
Molecular characterization and analysis of TLR-1 in rabbit tissues. Cent Eur J Immunol 2016; 41:236-242. [PMID: 27833439 PMCID: PMC5099378 DOI: 10.5114/ceji.2016.63121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/09/2015] [Indexed: 12/14/2022] Open
Abstract
The rabbit has great commercial importance as a source of meat and fur, as well as its uses as a laboratory animal for the production of antibodies, used to detect the presence or absence of disease and for research in infectious diseases and immunology. One of the most critical problems in immunology is to understand how the immune system detects the presence of infectious agents and disposes the invader without destroying the self-tissues. Genetic characterization of Toll-like receptors has established that innate immunity is a skillful system that detects invasion of microbial pathogens. Our work aimed to identify, clone and express the Oryctolagus cuniculus (rabbit) TLR-1 mRNA and its encoding protein. We cloned the complete mRNA sequence of Oryctolagus cuniculus TLR-1 and deposit it in the GenBank under accession number (KC349941), which has 2388 base pair and it encodes encode an open reading frame (ORF) translated into 796 amino acids mRNA and consist of 20 types of amino acids. The analysis of amino acid sequence revealed that the rabbit TLR-1 has a typical protein components belonging to the TLR family. Rabbit TLR-1 was expressed in a wide variety of rabbit tissues, which indicate an important role in immune system in different organs.
Collapse
|
11
|
Pinheiro A, Neves F, Lemos de Matos A, Abrantes J, van der Loo W, Mage R, Esteves PJ. An overview of the lagomorph immune system and its genetic diversity. Immunogenetics 2016; 68:83-107. [PMID: 26399242 DOI: 10.1007/s00251-015-0868-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 08/31/2015] [Indexed: 01/11/2023]
Abstract
Our knowledge of the lagomorph immune system remains largely based upon studies of the European rabbit (Oryctolagus cuniculus), a major model for studies of immunology. Two important and devastating viral diseases, rabbit hemorrhagic disease and myxomatosis, are affecting European rabbit populations. In this context, we discuss the genetic diversity of the European rabbit immune system and extend to available information about other lagomorphs. Regarding innate immunity, we review the most recent advances in identifying interleukins, chemokines and chemokine receptors, Toll-like receptors, antiviral proteins (RIG-I and Trim5), and the genes encoding fucosyltransferases that are utilized by rabbit hemorrhagic disease virus as a portal for invading host respiratory and gut epithelial cells. Evolutionary studies showed that several genes of innate immunity are evolving by strong natural selection. Studies of the leporid CCR5 gene revealed a very dramatic change unique in mammals at the second extracellular loop of CCR5 resulting from a gene conversion event with the paralogous CCR2. For the adaptive immune system, we review genetic diversity at the loci encoding antibody variable and constant regions, the major histocompatibility complex (RLA) and T cells. Studies of IGHV and IGKC genes expressed in leporids are two of the few examples of trans-species polymorphism observed outside of the major histocompatibility complex. In addition, we review some endogenous viruses of lagomorph genomes, the importance of the European rabbit as a model for human disease studies, and the anticipated role of next-generation sequencing in extending knowledge of lagomorph immune systems and their evolution.
Collapse
Affiliation(s)
- Ana Pinheiro
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal
- SaBio-IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13071, Ciudad Real, Spain
| | - Fabiana Neves
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal
- UMIB/UP-Unidade Multidisciplinar de Investigação Biomédica, Universidade do Porto, Porto, Portugal
| | - Ana Lemos de Matos
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Joana Abrantes
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal
| | - Wessel van der Loo
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal
| | - Rose Mage
- NIAID, NIH, Bethesda, MD, 20892, USA
| | - Pedro José Esteves
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal.
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal.
- CITS-Centro de Investigação em Tecnologias de Saúde, CESPU, Gandra, Portugal.
| |
Collapse
|
12
|
Pinheiro A, Almeida T, Esteves PJ. Survey of genetic diversity of IgG in wild and domestic rabbits. Int J Immunogenet 2015. [DOI: 10.1111/iji.12222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- A. Pinheiro
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology; Universidade do Porto; Campus de Vairão; Vairão Portugal
- Departamento de Biologia; Faculdade de Ciências da Universidade do Porto; Porto; Portugal
- SaBio IREC (CSIC-UCLM-JCCM); Ciudad Real; Spain
| | - T. Almeida
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology; Universidade do Porto; Campus de Vairão; Vairão Portugal
| | - P. J. Esteves
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology; Universidade do Porto; Campus de Vairão; Vairão Portugal
- Departamento de Biologia; Faculdade de Ciências da Universidade do Porto; Porto; Portugal
- CESPU; Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde; Gandra PRD; Portugal
| |
Collapse
|
13
|
Myllymäki H, Niskanen M, Oksanen KE, Rämet M. Animal models in tuberculosis research - where is the beef? Expert Opin Drug Discov 2015; 10:871-83. [PMID: 26073097 DOI: 10.1517/17460441.2015.1049529] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Tuberculosis (TB) is a major global health problem, and new drugs and vaccines are urgently needed. As clinical trials in humans require tremendous resources, preclinical drug and vaccine development largely relies on valid animal models that recapitulate the pathology of human disease and the immune responses of the host as closely as possible. AREAS COVERED This review describes the animal models used in TB research, the most widely used being mice, guinea pigs and nonhuman primates. In addition, rabbits and cattle provide models with a disease pathology resembling that of humans. Invertebrate models, including the fruit fly and the Dictyostelium amoeba, have also been used to study mycobacterial infections. Recently, the zebrafish has emerged as a promising model for studying mycobacterial infections. The zebrafish model also facilitates the large-scale screening of drug and vaccine candidates. EXPERT OPINION Animal models are needed for TB research and provide valuable information on the mechanisms of the disease and on ways of preventing it. However, the data obtained in animal studies need to be carefully interpreted and evaluated before making assumptions concerning humans. With an increasing understanding of disease mechanisms, animal models can be further improved to best serve research goals.
Collapse
Affiliation(s)
- Henna Myllymäki
- BioMediTech, University of Tampere , FIN 33014 Tampere , Finland
| | | | | | | |
Collapse
|
14
|
Nowland MH, Brammer DW, Garcia A, Rush HG. Biology and Diseases of Rabbits. LABORATORY ANIMAL MEDICINE 2015. [PMCID: PMC7150064 DOI: 10.1016/b978-0-12-409527-4.00010-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Beginning in 1931, an inbred rabbit colony was developed at the Phipps Institute for the Study, Treatment and Prevention of Tuberculosis at the University of Pennsylvania. This colony was used to study natural resistance to infection with tuberculosis (Robertson et al., 1966). Other inbred colonies or well-defined breeding colonies were also developed at the University of Illinois College of Medicine Center for Genetics, the Laboratories of the International Health Division of The Rockefeller Foundation, the University of Utrecht in the Netherlands, and Jackson Laboratories. These colonies were moved or closed in the years to follow. Since 1973, the U.S. Department of Agriculture has reported the total number of certain species of animals used by registered research facilities (1997). In 1973, 447,570 rabbits were used in research. There has been an overall decrease in numbers of rabbits used. This decreasing trend started in the mid-1990s. In 2010, 210,172 rabbits were used in research. Despite the overall drop in the number used in research, the rabbit is still a valuable model and tool for many disciplines.
Collapse
|
15
|
Carneiro M, Rubin CJ, Di Palma F, Albert FW, Alföldi J, Martinez Barrio A, Pielberg G, Rafati N, Sayyab S, Turner-Maier J, Younis S, Afonso S, Aken B, Alves JM, Barrell D, Bolet G, Boucher S, Burbano HA, Campos R, Chang JL, Duranthon V, Fontanesi L, Garreau H, Heiman D, Johnson J, Mage RG, Peng Z, Queney G, Rogel-Gaillard C, Ruffier M, Searle S, Villafuerte R, Xiong A, Young S, Forsberg-Nilsson K, Good JM, Lander ES, Ferrand N, Lindblad-Toh K, Andersson L. Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Science 2014; 345:1074-1079. [PMID: 25170157 PMCID: PMC5421586 DOI: 10.1126/science.1253714] [Citation(s) in RCA: 275] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The genetic changes underlying the initial steps of animal domestication are still poorly understood. We generated a high-quality reference genome for the rabbit and compared it to resequencing data from populations of wild and domestic rabbits. We identified more than 100 selective sweeps specific to domestic rabbits but only a relatively small number of fixed (or nearly fixed) single-nucleotide polymorphisms (SNPs) for derived alleles. SNPs with marked allele frequency differences between wild and domestic rabbits were enriched for conserved noncoding sites. Enrichment analyses suggest that genes affecting brain and neuronal development have often been targeted during domestication. We propose that because of a truly complex genetic background, tame behavior in rabbits and other domestic animals evolved by shifts in allele frequencies at many loci, rather than by critical changes at only a few domestication loci.
Collapse
MESH Headings
- Animals
- Animals, Domestic/anatomy & histology
- Animals, Domestic/genetics
- Animals, Domestic/psychology
- Animals, Wild/anatomy & histology
- Animals, Wild/genetics
- Animals, Wild/psychology
- Base Sequence
- Behavior, Animal
- Breeding
- Evolution, Molecular
- Gene Frequency
- Genetic Loci
- Genome/genetics
- Molecular Sequence Data
- Phenotype
- Polymorphism, Single Nucleotide
- Rabbits/anatomy & histology
- Rabbits/genetics
- Rabbits/psychology
- Selection, Genetic
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Miguel Carneiro
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
| | - Carl-Johan Rubin
- Science of Life Laboratory Uppsala, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Federica Di Palma
- Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA
- Vertebrate and Health Genomics, The Genome Analysis Center, Norwich, UK
| | - Frank W Albert
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Jessica Alföldi
- Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Alvaro Martinez Barrio
- Science of Life Laboratory Uppsala, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Gerli Pielberg
- Science of Life Laboratory Uppsala, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Nima Rafati
- Science of Life Laboratory Uppsala, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Shumaila Sayyab
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jason Turner-Maier
- Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Shady Younis
- Science of Life Laboratory Uppsala, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Animal Production, Ain Shams University, Shoubra El-Kheima, Cairo, Egypt
| | - Sandra Afonso
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
| | - Bronwen Aken
- Wellcome Trust Sanger Institute, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Joel M Alves
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Daniel Barrell
- Wellcome Trust Sanger Institute, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Gerard Bolet
- INRA, UMR1388 Génétique, Physiologie et Systèmes d'Elevage, F-31326 Castanet-Tolosan, France
| | | | - Hernán A Burbano
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Rita Campos
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
| | - Jean L Chang
- Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Veronique Duranthon
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - Luca Fontanesi
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, 40127 Bologna Italy
| | - Hervé Garreau
- INRA, UMR1388 Génétique, Physiologie et Systèmes d'Elevage, F-31326 Castanet-Tolosan, France
| | - David Heiman
- Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Jeremy Johnson
- Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Rose G Mage
- Laboratory of Immunology, NIAID, NIH, Bethesda, MD, 20892, USA
| | - Ze Peng
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 2800 Mitchell Drive, Walnut Creek, CA 94598
| | | | - Claire Rogel-Gaillard
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, F- 78350, Jouy-en-Josas, France
| | - Magali Ruffier
- Wellcome Trust Sanger Institute, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | | | - Rafael Villafuerte
- Instituto de Estudios Sociales Avanzados, (IESA-CSIC) Campo Santo de los Mártires 7, Córdoba Spain
| | - Anqi Xiong
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Sarah Young
- Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Karin Forsberg-Nilsson
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Jeffrey M Good
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA
| | - Eric S Lander
- Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Nuno Ferrand
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n. 4169-007 Porto, Portugal
| | - Kerstin Lindblad-Toh
- Science of Life Laboratory Uppsala, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Leif Andersson
- Science of Life Laboratory Uppsala, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, USA
| |
Collapse
|
16
|
Lavinder JJ, Hoi KH, Reddy ST, Wine Y, Georgiou G. Systematic characterization and comparative analysis of the rabbit immunoglobulin repertoire. PLoS One 2014; 9:e101322. [PMID: 24978027 PMCID: PMC4076286 DOI: 10.1371/journal.pone.0101322] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 06/04/2014] [Indexed: 11/18/2022] Open
Abstract
Rabbits have been used extensively as a model system for the elucidation of the mechanism of immunoglobulin diversification and for the production of antibodies. We employed Next Generation Sequencing to analyze Ig germline V and J gene usage, CDR3 length and amino acid composition, and gene conversion frequencies within the functional (transcribed) IgG repertoire of the New Zealand white rabbit (Oryctolagus cuniculus). Several previously unannotated rabbit heavy chain variable (VH) and light chain variable (VL) germline elements were deduced bioinformatically using multidimensional scaling and k-means clustering methods. We estimated the gene conversion frequency in the rabbit at 23% of IgG sequences with a mean gene conversion tract length of 59±36 bp. Sequencing and gene conversion analysis of the chicken, human, and mouse repertoires revealed that gene conversion occurs much more extensively in the chicken (frequency 70%, tract length 79±57 bp), was observed to a small, yet statistically significant extent in humans, but was virtually absent in mice.
Collapse
Affiliation(s)
- Jason J. Lavinder
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, United States of America
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Kam Hon Hoi
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, United States of America
| | - Sai T. Reddy
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, United States of America
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, United States of America
| | - Yariv Wine
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, United States of America
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, United States of America
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, United States of America
- Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|