1
|
Sampson JM, Morrissey KA, Mikolajova KJ, Zimmerly KM, Gemmell NJ, Gardner MG, Bertozzi T, Miller RD. Squamate reptiles may have compensated for the lack of γδTCR with a duplication of the TRB locus. Front Immunol 2025; 15:1524471. [PMID: 39850903 PMCID: PMC11754216 DOI: 10.3389/fimmu.2024.1524471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
Squamate reptiles are amongst the most successful terrestrial vertebrate lineages, with over 10,000 species across a broad range of ecosystems. Despite their success, squamates are also amongst the least studied lineages immunologically. Recently, a universal lack of γδ T cells in squamates due to deletions of the genes encoding the T cell receptor (TCR) γ and δ chains was discovered. Here, we begin to address how the loss of γδ T cells may have impacted the evolution of the squamate immune system. Using the skink Tiliqua rugosa, we found that squamates have not significantly increased the complexity of conventional T cell receptor beta (TCRβ or TRB) chain V regions compared to that of the nearest living squamate relative, the tuatara, Sphenodon punctatus or other amniotes. Our analyses include a putative new TCR locus. This novel locus contains V, D, and J gene segments that undergo V(D)J recombination, albeit with a limited number of gene segments in most squamate species. Based on conserved residues, the predicted protein chain would be expected to form a heterodimer with TCRα. This new TCR locus appears to be derived from an ancient duplication of the TRB locus and is homologous to the recently described T cell receptor epsilon (TRE). TRE is absent from the genomes of the tuatara and all Archosaurs examined and appears squamate specific.
Collapse
MESH Headings
- Animals
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Gene Duplication
- Phylogeny
- Reptiles/immunology
- Reptiles/genetics
- Lizards/immunology
- Lizards/genetics
- Evolution, Molecular
- Receptors, Antigen, T-Cell, alpha-beta/genetics
Collapse
Affiliation(s)
- Jordan M. Sampson
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Kimberly A. Morrissey
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Kieran J. Mikolajova
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Kourtney M. Zimmerly
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Neil J. Gemmell
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Michael G. Gardner
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Terry Bertozzi
- South Australian Museum, Adelaide, SA, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Robert D. Miller
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
2
|
Antonacci R, Giannico F, Moschetti R, Pala A, Jambrenghi AC, Massari S. A Comprehensive Analysis of the Genomic and Expressed Repertoire of the T-Cell Receptor Beta Chain in Equus caballus. Animals (Basel) 2024; 14:2817. [PMID: 39409766 PMCID: PMC11475548 DOI: 10.3390/ani14192817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/04/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
In this paper, we report a comprehensive and consistent annotation of the locus encoding the β-chain of the equine T-cell receptor (TRB), as inferred from recent genome assembly using bioinformatics tools. The horse TRB locus spans approximately 1 Mb, making it the largest locus among the mammalian species studied to date, with a significantly higher number of genes related to extensive duplicative events. In the region, 136 TRBV (belonging to 29 subgroups), 2 TRBD, 13 TRBJ, and 2 TRBC genes, were identified. The general genomic organization resembles that of other mammals, with a V cluster of 135 TRBV genes located upstream of two in-tandem aligned TRBD-J-C clusters and an inverted TRBV gene at the 3' end of the last TRBC gene. However, the horse b-chain repertoire would be affected by a high number of non-functional TRBV genes. Thus, we queried a transcriptomic dataset derived from splenic tissue of a healthy adult horse, using each TRBJ gene as a probe to analyze clonotypes encompassing the V(D)J junction. This analysis provided insights into the usage of the TRBV, TRBD, and TRBJ genes and the variability of the non-germline-encoded CDR3. Our results clearly demonstrated that the horse β-chain constitutes a complex level of variability, broadly like that described in other mammalian species.
Collapse
Affiliation(s)
- Rachele Antonacci
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (R.M.); (A.P.)
| | - Francesco Giannico
- Department of Veterinary Medicine, University of Bari “Aldo Moro”, 70010 Bari, Italy;
| | - Roberta Moschetti
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (R.M.); (A.P.)
| | - Angela Pala
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (R.M.); (A.P.)
| | - Anna Caputi Jambrenghi
- Department of Soil, Plant and Food Science, University of Bari “Aldo Moro”, 70126 Bari, Italy;
| | - Serafina Massari
- Department of Biological and Environmental Science and Technologies, University of Salento, 73100 Lecce, Italy;
| |
Collapse
|
3
|
Edholm ES, Fenton CG, Mondot S, Paulssen RH, Lefranc MP, Boudinot P, Magadan S. Profiling the T Cell Receptor Alpha/Delta Locus in Salmonids. Front Immunol 2021; 12:753960. [PMID: 34733285 PMCID: PMC8559430 DOI: 10.3389/fimmu.2021.753960] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022] Open
Abstract
In jawed vertebrates, two major T cell populations have been characterized. They are defined as α/β or γ/δ T cells, based on the expressed T cell receptor. Salmonids (family Salmonidae) include two key teleost species for aquaculture, rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar) which constitute important models for fish immunology and important targets for vaccine development. The growing interest to decipher the dynamics of adaptive immune responses against pathogens or vaccines has resulted in recent efforts to sequence the immunoglobulin (IG) or antibodies and T cell receptor (TR) repertoire in these species. In this context, establishing a comprehensive and coherent locus annotation is the fundamental basis for the analysis of high-throughput repertoire sequencing data. We therefore decided to revisit the description and annotation of TRA/TRD locus in Atlantic salmon and two strains of rainbow trout (Swanson and Arlee) using the now available high-quality genome assemblies. Phylogenetic analysis of functional TRA/TRD V genes from these three genomes led to the definition of 25 subgroups shared by both species, some with particular feature. A total of 128 TRAJ genes were identified in Salmo, the majority with a close counterpart in Oncorhynchus. Analysis of expressed TRA repertoire indicates that most TRAV gene subgroups are expressed at mucosal and systemic level. The present work on TRA/TRD locus annotation along with the analysis of TRA repertoire sequencing data show the feasibility and advantages of a common salmonid TRA/TRD nomenclature that allows an accurate annotation and analysis of high-throughput sequencing results, across salmonid T cell subsets.
Collapse
Affiliation(s)
- Eva-Stina Edholm
- Faculty of Biosciences, Fisheries & Economics, Norwegian College of Fishery Science, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Christopher Graham Fenton
- Clinical Bioinformatics Research Group, Genomics Support Centre Tromsø (GSCT), Department of Clinical Medicine, Faculty of Health Sciences, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Stanislas Mondot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.,GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Ruth H Paulssen
- Clinical Bioinformatics Research Group, Genomics Support Centre Tromsø (GSCT), Department of Clinical Medicine, Faculty of Health Sciences, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Marie-Paule Lefranc
- IMGT®, The International ImMunoGeneTics Information System (IMGT), Laboratoire d´ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), CNRS, University of Montpellier, Montpellier Cedex, France
| | - Pierre Boudinot
- Université Paris Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Susana Magadan
- Immunology Laboratory, Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain.,Galicia Sur Health Research Institute (IIS-GS), Hospital Alvaro Cunqueiro, Vigo, Spain
| |
Collapse
|
4
|
Giannico F, Massari S, Caputi Jambrenghi A, Soriano A, Pala A, Linguiti G, Ciccarese S, Antonacci R. The expansion of the TRB and TRG genes in domestic goats (Capra hircus) is characteristic of the ruminant species. BMC Genomics 2020; 21:623. [PMID: 32912163 PMCID: PMC7488459 DOI: 10.1186/s12864-020-07022-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Goats (Capra hircus), one of the first domesticated species, are economically important for milk and meat production, and their broad geographical distribution reflects their successful adaptation to diverse environmental conditions. Despite the relevance of this species, the genetic research on the goat traits is limited compared to other domestic species. Thanks to the latest goat reference genomic sequence (ARS1), which is considered to be one of the most continuous assemblies in livestock, we deduced the genomic structure of the T cell receptor beta (TRB) and gamma (TRG) loci in this ruminant species. RESULTS Our analyses revealed that although the organization of the goat TRB locus is broadly similar to that of the other artiodactyl species, with three in-tandem D-J-C clusters located at the 3' end, a complex and extensive series of duplications have occurred in the V genes at the 5' end, leading to a marked expansion in the number of the TRBV genes. This phenomenon appears to be a feature of the ruminant lineage since similar gene expansions have also occurred in sheep and cattle. Likewise, the general organization of the goat TRG genes is typical of ruminant species studied so far, with two paralogous TRG loci, TRG1 and TRG2, located in two distinct and distant positions on the same chromosome as result of a split in the ancestral locus. Each TRG locus consists of reiterated V-J-J-C cassettes, with the goat TRG2 containing an additional cassette relative to the corresponding sheep and cattle loci. CONCLUSIONS Taken together, these findings demonstrate that strong evolutionary pressures in the ruminant lineage have selected for the development of enlarged sets of TRB and TRG genes that contribute to a diverse T cell receptor repertoire. However, differences observed among the goat, sheep and cattle TRB and TRG genes indicate that distinct evolutionary histories, with independent expansions and/or contractions, have also affected each ruminant species.
Collapse
Affiliation(s)
- Francesco Giannico
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Serafina Massari
- Department of Biological and Environmental Science and Technologies, University of Salento, Lecce, Italy
| | - Anna Caputi Jambrenghi
- Department of Agricultural and Environmental Science, University of Bari "Aldo Moro", Bari, Italy
| | - Adriano Soriano
- Department of Biology, University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Angela Pala
- Department of Biology, University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Giovanna Linguiti
- Department of Biology, University of Bari "Aldo Moro", 70124, Bari, Italy
| | | | - Rachele Antonacci
- Department of Biology, University of Bari "Aldo Moro", 70124, Bari, Italy.
| |
Collapse
|
5
|
Antonacci R, Massari S, Linguiti G, Caputi Jambrenghi A, Giannico F, Lefranc MP, Ciccarese S. Evolution of the T-Cell Receptor (TR) Loci in the Adaptive Immune Response: The Tale of the TRG Locus in Mammals. Genes (Basel) 2020; 11:E624. [PMID: 32517024 PMCID: PMC7349638 DOI: 10.3390/genes11060624] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 12/16/2022] Open
Abstract
T lymphocytes are the principal actors of vertebrates' cell-mediated immunity. Like B cells, they can recognize an unlimited number of foreign molecules through their antigen-specific heterodimer receptors (TRs), which consist of αβ or γδ chains. The diversity of the TRs is mainly due to the unique organization of the genes encoding the α, β, γ, and δ chains. For each chain, multi-gene families are arranged in a TR locus, and their expression is guaranteed by the somatic recombination process. A great plasticity of the gene organization within the TR loci exists among species. Marked structural differences affect the TR γ (TRG) locus. The recent sequencing of multiple whole genome provides an opportunity to examine the TR gene repertoire in a systematic and consistent fashion. In this review, we report the most recent findings on the genomic organization of TRG loci in mammalian species in order to show differences and similarities. The comparison revealed remarkable diversification of both the genomic organization and gene repertoire across species, but also unexpected evolutionary conservation, which highlights the important role of the T cells in the immune response.
Collapse
Affiliation(s)
- Rachele Antonacci
- Department of Biology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.L.); (S.C.)
| | - Serafina Massari
- Department of Biological and Environmental Science and Technologies, University of Salento, 73100 Lecce, Italy;
| | - Giovanna Linguiti
- Department of Biology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.L.); (S.C.)
| | - Anna Caputi Jambrenghi
- Department of Agricultural and Environmental Science, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.C.J.); (F.G.)
| | - Francesco Giannico
- Department of Agricultural and Environmental Science, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.C.J.); (F.G.)
| | - Marie-Paule Lefranc
- IMGT, the International ImMunoGeneTics Information System, Laboratoire d’ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, UMR9002 CNRS, Université de Montpellier, CEDEX 5, 34396 Montpellier, France;
| | - Salvatrice Ciccarese
- Department of Biology, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.L.); (S.C.)
| |
Collapse
|
6
|
Pégorier P, Bertignac M, Chentli I, Nguefack Ngoune V, Folch G, Jabado-Michaloud J, Hadi-Saljoqi S, Giudicelli V, Duroux P, Lefranc MP, Kossida S. IMGT® Biocuration and Comparative Study of the T Cell Receptor Beta Locus of Veterinary Species Based on Homo sapiens TRB. Front Immunol 2020; 11:821. [PMID: 32431713 PMCID: PMC7216736 DOI: 10.3389/fimmu.2020.00821] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/09/2020] [Indexed: 12/14/2022] Open
Abstract
IMGT®, the international ImMunoGeneTics information system® is the global reference in immunogenetics and immunoinformatics. By its creation in 1989 by Marie-Paule Lefranc (Université de Montpellier and CNRS), IMGT® marked the advent of immunoinformatics, which emerged at the interface between immunogenetics and bioinformatics. IMGT® is specialized in the immunoglobulins (IG) or antibodies, T cell receptors (TR), major histocompatibility (MH), and proteins of the IgSF and MhSF superfamilies. T cell receptors are divided into two groups, αβ and γδ TR, which express distinct TR containing either α and β, or γ and δ chains, respectively. The TRβ locus (TRB) was recently described and annotated by IMGT® biocurators for several veterinary species, i.e., cat (Felis catus), dog (Canis lupus familiaris), ferret (Mustela putorius furo), pig (Sus scrofa), rabbit (Oryctolagus cuniculus), rhesus monkey (Macaca mulatta), and sheep (Ovis aries). The aim of the present study is to compare the genes of the TRB locus among these different veterinary species based on Homo sapiens. The results reveal that there are similarities but also differences including the number of genes by subgroup which may demonstrate duplications and/or deletions during evolution.
Collapse
Affiliation(s)
- Perrine Pégorier
- IMGT®, The International ImMunoGeneTics Information System®, Centre National de la Recherche Scientifique (CNRS), Institut de Génétique Humaine (IGH), Université de Montpellier (UM), Montpellier, France
| | - Morgane Bertignac
- IMGT®, The International ImMunoGeneTics Information System®, Centre National de la Recherche Scientifique (CNRS), Institut de Génétique Humaine (IGH), Université de Montpellier (UM), Montpellier, France
| | - Imène Chentli
- IMGT®, The International ImMunoGeneTics Information System®, Centre National de la Recherche Scientifique (CNRS), Institut de Génétique Humaine (IGH), Université de Montpellier (UM), Montpellier, France
| | - Viviane Nguefack Ngoune
- IMGT®, The International ImMunoGeneTics Information System®, Centre National de la Recherche Scientifique (CNRS), Institut de Génétique Humaine (IGH), Université de Montpellier (UM), Montpellier, France
| | - Géraldine Folch
- IMGT®, The International ImMunoGeneTics Information System®, Centre National de la Recherche Scientifique (CNRS), Institut de Génétique Humaine (IGH), Université de Montpellier (UM), Montpellier, France
| | - Joumana Jabado-Michaloud
- IMGT®, The International ImMunoGeneTics Information System®, Centre National de la Recherche Scientifique (CNRS), Institut de Génétique Humaine (IGH), Université de Montpellier (UM), Montpellier, France
| | - Saida Hadi-Saljoqi
- IMGT®, The International ImMunoGeneTics Information System®, Centre National de la Recherche Scientifique (CNRS), Institut de Génétique Humaine (IGH), Université de Montpellier (UM), Montpellier, France
| | - Véronique Giudicelli
- IMGT®, The International ImMunoGeneTics Information System®, Centre National de la Recherche Scientifique (CNRS), Institut de Génétique Humaine (IGH), Université de Montpellier (UM), Montpellier, France
| | - Patrice Duroux
- IMGT®, The International ImMunoGeneTics Information System®, Centre National de la Recherche Scientifique (CNRS), Institut de Génétique Humaine (IGH), Université de Montpellier (UM), Montpellier, France
| | - Marie-Paule Lefranc
- IMGT®, The International ImMunoGeneTics Information System®, Centre National de la Recherche Scientifique (CNRS), Institut de Génétique Humaine (IGH), Université de Montpellier (UM), Montpellier, France
| | - Sofia Kossida
- IMGT®, The International ImMunoGeneTics Information System®, Centre National de la Recherche Scientifique (CNRS), Institut de Génétique Humaine (IGH), Université de Montpellier (UM), Montpellier, France
| |
Collapse
|
7
|
Radtanakatikanon A, Keller SM, Darzentas N, Moore PF, Folch G, Nguefack Ngoune V, Lefranc MP, Vernau W. Topology and expressed repertoire of the Felis catus T cell receptor loci. BMC Genomics 2020; 21:20. [PMID: 31906850 PMCID: PMC6945721 DOI: 10.1186/s12864-019-6431-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 12/24/2019] [Indexed: 01/26/2023] Open
Abstract
Background The domestic cat (Felis catus) is an important companion animal and is used as a large animal model for human disease. However, the comprehensive study of adaptive immunity in this species is hampered by the lack of data on lymphocyte antigen receptor genes and usage. The objectives of this study were to annotate the feline T cell receptor (TR) loci and to characterize the expressed repertoire in lymphoid organs of normal cats using high-throughput sequencing. Results The Felis catus TRG locus contains 30 genes: 12 TRGV, 12 TRGJ and 6 TRGC, the TRB locus contains 48 genes: 33 TRBV, 2 TRBD, 11 TRBJ, 2 TRBC, the TRD locus contains 19 genes: 11 TRDV, 2 TRDD, 5 TRDJ, 1 TRDC, and the TRA locus contains 127 genes: 62 TRAV, 64 TRAJ, 1 TRAC. Functional feline V genes form monophyletic clades with their orthologs, and clustering of multimember subgroups frequently occurs in V genes located at the 5′ end of TR loci. Recombination signal (RS) sequences of the heptamer and nonamer of functional V and J genes are highly conserved. Analysis of the TRG expressed repertoire showed preferential intra-cassette over inter-cassette rearrangements and dominant usage of the TRGV2–1 and TRGJ1–2 genes. The usage of TRBV genes showed minor bias but TRBJ genes of the second J-C-cluster were more commonly rearranged than TRBJ genes of the first cluster. The TRA/TRD V genes almost exclusively rearranged to J genes within their locus. The TRAV/TRAJ gene usage was relatively balanced while the TRD repertoire was dominated by TRDJ3. Conclusions This is the first description of all TR loci in the cat. The genomic organization of feline TR loci was similar to that of previously described jawed vertebrates (gnathostomata) and is compatible with the birth-and-death model of evolution. The large-scale characterization of feline TR genes provides comprehensive baseline data on immune repertoires in healthy cats and will facilitate the development of improved reagents for the diagnosis of lymphoproliferative diseases in cats. In addition, these data might benefit studies using cats as a large animal model for human disease.
Collapse
Affiliation(s)
- Araya Radtanakatikanon
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA.
| | - Stefan M Keller
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Nikos Darzentas
- Department of Internal Medicine II, University Hospital Schleswig-Holstein, Kiel, Germany.,Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Peter F Moore
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Géraldine Folch
- IMGT® the international ImMunoGeneTics information system®, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, UMR 9002 CNRS, Université de Montpellier, Montpellier Cedex 5, France
| | - Viviane Nguefack Ngoune
- IMGT® the international ImMunoGeneTics information system®, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, UMR 9002 CNRS, Université de Montpellier, Montpellier Cedex 5, France
| | - Marie-Paule Lefranc
- IMGT® the international ImMunoGeneTics information system®, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, UMR 9002 CNRS, Université de Montpellier, Montpellier Cedex 5, France
| | - William Vernau
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
8
|
Characterization of the ferret TRB locus guided by V, D, J, and C gene expression analysis. Immunogenetics 2019; 72:101-108. [PMID: 31797007 PMCID: PMC6971162 DOI: 10.1007/s00251-019-01142-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 10/29/2022]
Abstract
The domestic ferret, Mustela putorius furo, is an important mammalian animal model to study human respiratory infection. However, insufficient genomic annotation hampers detailed studies of ferret T cell responses. In this study, we analyzed the published T cell receptor beta (TRB) locus and performed high-throughput sequencing (HTS) of peripheral blood of four healthy adult ferrets to identify expressed V, D, J, and C genes. The HTS data is used as a guide to manually curate the expressed V, D, J, and C genes. The ferret locus appears to be most similar to that of the dog. Like other mammalian TRB loci, the ferret TRB locus contains a library of variable genes located upstream of two D-J-C gene clusters, followed by a (in the ferret non-functional) V gene with an inverted transcriptional orientation. All TRB genes (expressed or not) reported here have been approved by the IMGT/WHO-IUIS nomenclature committee.
Collapse
|
9
|
Zhang T, Liu G, Wei Z, Wang Y, Kang L, Jiang Y, Sun Y. Genomic organization of the chicken TCRβ locus originated by duplication of a Vβ segment combined with a trypsinogen gene. Vet Immunol Immunopathol 2019; 219:109974. [PMID: 31765881 DOI: 10.1016/j.vetimm.2019.109974] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 10/21/2019] [Accepted: 11/07/2019] [Indexed: 01/09/2023]
Abstract
Based on the latest assembly of the red jungle fowl (Gallus gallus) genome sequence, we characterized the detailed genomic organization of the T cell receptor beta (TCRβ) locus of chicken. The chicken TCRβ locus spans approximately 210 kb, and is organized in a typical translocon organization as previously reported. Within this locus, a total of 16 germline Vβ gene segments were classified into three subgroups, containing 11, four, and one members, respectively. Phylogenetic analysis revealed that the chicken Vβ3.1 segment was homologous with the duck Vβ1 subgroup, and further clustered with Vβ segments from reptiles but not amphibians. We also identified nine protease serine 1 (PRSS1) and three protease serine 2 (PRSS2) genes, which were interspersed within the chicken TCRβ locus. Dot-plot analysis of the chicken TCRβ locus against itself revealed that the 5' part of the locus had arisen through a series of tandem duplication events. The homology units were composed of one Vβ1 segment followed by a PRSS1 gene, or one Vβ2 segment followed by a PRSS2 gene. This duplication pattern, in which the Vβ segments and trypsinogen genes form a duplication unit, was unique to TCRβ loci of chicken and duck, but not observed in TCRβ loci of other tetrapods studied thus far. By analyzing the cloned TCRβ cDNA sequences, we found that the usage pattern of Vβ segments was consistent with the results of previous studies. These studies showed that members of the Vβ1 subgroup are preferentially utilized in V-D-J recombination. Furthermore, we found that the Vβ3.1 segment participated into V-D-J recombination, but at a very low frequency. The length distribution of the chicken complementarity-determining region 3β (CDR3β) showed a tendency similar to that observed for the duck.
Collapse
Affiliation(s)
- Tongtong Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, PR China
| | - Gen Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, PR China
| | - Zhiguo Wei
- College of Animal Science and Technology, Henan University of Science and Technology, 263 Kaiyuan Road, Luoyang City, Henan Province 471023, PR China
| | - Yanchao Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, PR China
| | - Li Kang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, PR China
| | - Yunliang Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, PR China.
| | - Yi Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, Shandong Province 271018, PR China.
| |
Collapse
|
10
|
Ciccarese S, Burger PA, Ciani E, Castelli V, Linguiti G, Plasil M, Massari S, Horin P, Antonacci R. The Camel Adaptive Immune Receptors Repertoire as a Singular Example of Structural and Functional Genomics. Front Genet 2019; 10:997. [PMID: 31681428 PMCID: PMC6812646 DOI: 10.3389/fgene.2019.00997] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 09/18/2019] [Indexed: 01/08/2023] Open
Abstract
The adaptive immune receptors repertoire is highly plastic, with its ability to produce antigen-binding molecules and select those with high affinity for their antigen. Species have developed diverse genetic and structural strategies to create their respective repertoires required for their survival in the different environments. Camelids, until now, considered as a case of evolutionary innovation because of their only heavy-chain antibodies, represent a new mammalian model particularly useful for understanding the role of diversity in the immune system function. Here, we review the structural and functional characteristics and the current status of the genomic organization of camel immunoglobulins (IG) or antibodies, α/ß and γ/δ T cell receptors (TR), and major histocompatibility complex (MHC). In camelid humoral response, in addition to the conventional antibodies, there are IG with “only-heavy-chain” (no light chain, and two identical heavy gamma chains lacking CH1 and with a VH domain designated as VHH). The unique features of these VHH offer advantages in biotechnology and for clinical applications. The TRG and TRD rearranged variable domains of Camelus dromedarius (Arabian camel) display somatic hypermutation (SHM), increasing the intrinsic structural stability in the γ/δ heterodimer and influencing the affinity maturation to a given antigen similar to immunoglobulin genes. The SHM increases the dromedary γ/δ repertoire diversity. In Camelus genus, the general structural organization of the TRB locus is similar to that of the other artiodactyl species, with a pool of TRBV genes positioned at the 5’ end of three in tandem D-J-C clusters, followed by a single TRBV gene with an inverted transcriptional orientation located at the 3’ end. At the difference of TRG and TRD, the diversity of the TRB variable domains is not shaped by SHM and depends from the classical combinatorial and junctional diversity. The MHC locus is located on chromosome 20 in Camelus dromedarius. Cytogenetic and comparative whole genome analyses revealed the order of the three major regions “Centromere-ClassII-ClassIII-ClassI”. Unexpectedly low extent of polymorphisms and haplotypes was observed in all Old World camels despite different geographic origins.
Collapse
Affiliation(s)
| | - Pamela A Burger
- Research Institute of Wildlife Ecology, Vetmeduni Vienna, Vienna, Austria
| | - Elena Ciani
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro," Bari, Italy
| | - Vito Castelli
- Department of Biology, University of Bari "Aldo Moro," Bari, Italy
| | | | - Martin Plasil
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia.,CEITEC-VFU, University of Veterinary and Pharmaceutical Sciences, RG Animal Immunogenomics, Brno, Czechia
| | - Serafina Massari
- Department of Biological and Environmental Science and Technologies, University of Salento, Lecce, Italy
| | - Petr Horin
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia.,CEITEC-VFU, University of Veterinary and Pharmaceutical Sciences, RG Animal Immunogenomics, Brno, Czechia
| | | |
Collapse
|
11
|
Mondot S, Lantz O, Lefranc MP, Boudinot P. The T cell receptor (TRA) locus in the rabbit (Oryctolagus cuniculus): Genomic features and consequences for invariant T cells. Eur J Immunol 2019; 49:2146-2158. [PMID: 31355919 DOI: 10.1002/eji.201948228] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/14/2019] [Indexed: 11/07/2022]
Abstract
The rabbit has been widely used in immunology and infectiology. Rabbit immunoglobulins have been extensively studied, leading to the discovery of their idiotypes, allotypic diversity, and of the diversification of the primary repertoire by hyperconversion. Much less is known about rabbit T cell receptors (TR), especially TRA. This isotype is particularly important for innate-like T cells, which typically express invariant TRA (iTRA). The presence of such cells in the rabbit remains an enigma. Rabbit NKT cells seem to be very rare, and lagomorphs lack MAIT cells. TRAV1, the variable gene expressed in the iTRA of these cells across most mammals, and MR1, the MH1-like receptor that present riboflavin derivatives to MAIT cells, are missing in rabbit. An alternative iTRA has been identified, that may be expressed by new innate-like T cells. To facilitate TRA repertoire analyses in rabbit, we report here a full description of TRA and TRD loci and a subgroup definition based on IMGT® classification. Rabbit TRA rearrangements follow the same temporal pattern that is observed in mouse and human. Rare transcripts expressing TRDV/TRDD/TRDJ rearrangements spliced to TRAC were detected. TRA and TRD genes have been made available in IMGT and IMGT/HighV-QUEST, allowing easy analysis of TRA/TRD RepSeq.
Collapse
Affiliation(s)
- Stanislas Mondot
- MICALIS, Institut National de la Recherche Agronomique (INRA), Université Paris-Saclay, Jouy-en-Josas, France
| | - Olivier Lantz
- INSERM U932, Institut Curie, Paris Sciences et Lettres Research University, Paris, France.,Center of Clinical Investigation in Biotherapy 1428, Gustave-Roussy/Curie, Paris, France.,Laboratoire d'Immunologie Clinique, Institut Curie, Paris, France
| | - Marie-Paule Lefranc
- IMGT®, the International ImMunoGeneTics Information System® (IMGT), Institut de Génétique Humaine, CNRS, Université de Montpellier, Montpellier Cedex 5, France
| | - Pierre Boudinot
- Virologie et Immunologie Moléculaires (VIM), Institut National de la Recherche Agronomique (INRA), Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
12
|
Antonacci R, Bellini M, Linguiti G, Ciccarese S, Massari S. Comparative Analysis of the TRB Locus in the Camelus Genus. Front Genet 2019; 10:482. [PMID: 31231418 PMCID: PMC6558370 DOI: 10.3389/fgene.2019.00482] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 05/06/2019] [Indexed: 11/26/2022] Open
Abstract
T cells can be separated into two major subsets based on the heterodimer that forms their T cell receptors. αβ T cells have receptors consisting of α and β chains, while γδ T cells are composed of γ and δ chains. αβ T cells play an essential role within the adaptive immune responses against pathogens. The recent genomic characterization of the Camelus dromedarius T cell receptor β (TRB) locus has allowed us to infer the structure of this locus from the draft genome sequences of its wild and domestic Bactrian congeners, Camelus ferus and Camelus bactrianus. The general structural organization of the wild and domestic Bactrian TRB locus is similar to that of the dromedary, with a pool of TRBV genes positioned at the 5′ end of D-J-C clusters, followed by a single TRBV gene located at the 3′ end with an inverted transcriptional orientation. Despite the fragmented nature of the assemblies, comparative genomics reveals the existence of a perfect co-linearity between the three Old World camel TRB genomic sequences, which enables the transfer of information from one sequence to another and the filling of gaps in the genomic sequences. A virtual camelid TRB locus is hypothesized with the presence of 33 TRBV genes distributed in 26 subgroups. Likewise, in the artiodactyl species, three in-tandem D-J-C clusters, each composed of one TRBD gene, six or seven TRBJ genes, and one TRBC gene, are placed at the 3′ end of the locus. As reported in the ruminant species, a group of four functional TRY genes at the 5′ end and only one gene at the 3′ end, complete the camelid TRB locus. Although the gene content is similar, differences are observed in the TRBV functional repertoire, and genes that are functional in one species are pseudogenes in the other species. Hence, variations in the functional repertoire between dromedary, wild and domestic Bactrian camels, rather than differences in the gene content, may represent the molecular basis explaining the disparity in the TRB repertoire between the Camelus species. Finally, our data contribute to the knowledge about the evolutionary history of Old World camelids.
Collapse
Affiliation(s)
| | | | | | | | - Serafina Massari
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| |
Collapse
|
13
|
Massari S, Bellini M, Ciccarese S, Antonacci R. Overview of the Germline and Expressed Repertoires of the TRB Genes in Sus scrofa. Front Immunol 2018; 9:2526. [PMID: 30455691 PMCID: PMC6230588 DOI: 10.3389/fimmu.2018.02526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/12/2018] [Indexed: 11/19/2022] Open
Abstract
The α/β T cell receptor (TR) is a complex heterodimer that recognizes antigenic peptides and binds to major histocompatibility complex (MH) molecules. Both α and β chains are encoded by different genes localized on two distinct chromosomal loci: TRA and TRB. The present study employed the recent release of the swine genome assembly to define the genomic organization of the TRB locus. According to the sequencing data, the pig TRB locus spans approximately 400 kb of genomic DNA and consists of 38 TRBV genes belonging to 24 subgroups located upstream of three in tandem TRBD-J-C clusters, which are followed by a TRBV gene in an inverted transcriptional orientation. Comparative analysis confirms that the general organization of the TRB locus is similar among mammalian species, but the number of germline TRBV genes varies greatly even between species belonging to the same order, determining the diversity and specificity of the immune response. However, sequence analysis of the TRB locus also suggests the presence of blocks of conserved homology in the genomic region across mammals. Furthermore, by analysing a public cDNA collection, we identified the usage pattern of the TRBV, TRBD, and TRBJ genes in the adult pig TRB repertoire, and we noted that the expressed TRBV repertoire seems to be broader and more diverse than the germline repertoire, in line with the presence of a high level of TRBV gene polymorphisms. Because the nucleotide differences seems to be principally concentrated in the CDR2 region, it is reasonable to presume that most T cell β-chain diversity can be related to polymorphisms in pig MH molecules. Domestic pigs represent a valuable animal model as they are even more anatomically, genetically and physiologically similar to humans than are mice. Therefore, present knowledge on the genomic organization of the pig TRB locus allows the collection of increased information on the basic aspects of the porcine immune system and contributes to filling the gaps left by rodent models.
Collapse
Affiliation(s)
- Serafina Massari
- Department of Biological and Environmental Science and Technologies, University of Salento, Lecce, Italy
| | | | | | | |
Collapse
|
14
|
Wang X, Wang P, Wang R, Wang C, Bai J, Ke C, Yu D, Li K, Ma Y, Han H, Zhao Y, Zhou X, Ren L. Analysis of TCRβ and TCRγ genes in Chinese alligator provides insights into the evolution of TCR genes in jawed vertebrates. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 85:31-43. [PMID: 29574022 DOI: 10.1016/j.dci.2018.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/12/2018] [Accepted: 01/12/2018] [Indexed: 06/08/2023]
Abstract
All jawed vertebrates have four T cell receptor (TCR) chains that are expressed by thymus-derived lymphocytes and play a major role in animal immune defence. However, few studies have investigated the TCR chains of crocodilians compared with those of birds and mammals, despite their key evolutionary position linking amphibians, reptiles, birds and mammals. Here, employing an Alligator sinensis genomic bacterial artificial chromosome (BAC) library and available genome data, we characterized the genomic organization, evolution and expression of TRB and TRG loci in Alligator sinensis. According to the sequencing data, the Alligator sinensis TRB locus spans approximately 500 Kb of genomic DNA containing two D-J-C clusters and 43 V gene segments and is organized as Vβ(39)-pJβ1-pCβ1-pDβ1-Dβ2- Jβ2(12)-Cβ2-Vβ(4), whereas the TRG locus spans 115 Kb of DNA genomic sequence consisting of 18 V gene segments, nine J gene segments and one C gene segment and is organized in a classical translocon pattern as Vγ(18)-Jγ(9)-Cγ. Moreover, syntenic analysis of TRB and TRG chain loci suggested a high degree of conserved synteny in the genomic regions across mammals, birds and Alligator sinensis. By analysing the cloned TRB/TRG cDNA, we identified the usage pattern of V families in the expressed TRB and TRG. An analysis of the junctions of the recombined VJ revealed the presence of N and P nucleotides in both expressed TRB and TRG sequences. Phylogenetic analysis revealed that TRB and TRG loci possess distinct evolutionary patterns. Most Alligator sinensis V subgroups have closely related orthologues in chicken and duck, and a small number of Alligator sinensis V subgroups have orthologues in mammals, which supports the hypothesis that crocodiles are the closest relatives of birds and mammals. Collectively, these data provide insights into TCR gene evolution in vertebrates and improve our understanding of the Alligator sinensis immune system.
Collapse
Affiliation(s)
- Xifeng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Peng Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Renping Wang
- Administration Bureau of Chinese Alligator National Nature Reserve Protection, Anhui, People's Republic of China
| | - Chaolin Wang
- Administration Bureau of Chinese Alligator National Nature Reserve Protection, Anhui, People's Republic of China
| | - Jianhui Bai
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Cuncun Ke
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Di Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Kongpan Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Yonghe Ma
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Haitang Han
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Xin Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100193, People's Republic of China; College of Plant Protection, China Agricultural University, Beijing, People's Republic of China.
| | - Liming Ren
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China.
| |
Collapse
|
15
|
Antonacci R, Bellini M, Pala A, Mineccia M, Hassanane MS, Ciccarese S, Massari S. The occurrence of three D-J-C clusters within the dromedary TRB locus highlights a shared evolution in Tylopoda, Ruminantia and Suina. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:105-119. [PMID: 28577760 DOI: 10.1016/j.dci.2017.05.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/26/2017] [Accepted: 05/26/2017] [Indexed: 06/07/2023]
Abstract
The αβ T cells are important components of the adaptive immune system and can recognize a vast array of peptides presented by MHC molecules. The ability of these T cells to recognize the complex depends on the diversity of the αβ TR, which is generated by a recombination of specific Variable, Diversity and Joining genes for the β chain, and Variable and Joining genes for the α chain. In this study, we analysed the genomic structure and the gene content of the TRB locus in Camelus dromedarius, which is a species belonging to the Tylopoda suborder. The most noteworthy result is the presence of three in tandem TRBD-J-C clusters in the dromedary TRB locus, which is similar to clusters found in sheep, cattle and pigs and suggests a common duplication event occurred prior to the Tylopoda/Ruminantia/Suina divergence. Conversely, a significant contraction of the dromedary TRBV genes, which was previously found in the TRG and TRD loci, was observed with respect to the other artiodactyl species.
Collapse
Affiliation(s)
| | | | - Angela Pala
- Department of Biology, University "Aldo Moro" of Bari, Bari, Italy.
| | - Micaela Mineccia
- Department of Biology, University "Aldo Moro" of Bari, Bari, Italy.
| | | | | | - Serafina Massari
- Department of Biological and Environmental Science e Technologies, University of Salento, Lecce, Italy.
| |
Collapse
|
16
|
A comprehensive analysis of the germline and expressed TCR repertoire in White Peking duck. Sci Rep 2017; 7:41426. [PMID: 28134319 PMCID: PMC5278385 DOI: 10.1038/srep41426] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/19/2016] [Indexed: 12/15/2022] Open
Abstract
Recently, many immune-related genes have been extensively studied in ducks, but relatively little is known about their TCR genes. Here, we determined the germline and expressed repertoire of TCR genes in White Peking duck. The genomic organization of the duck TCRα/δ, TCRγ and unconventional TCRδ2 loci are highly conserved with their counterparts in mammals or chickens. By contrast, the duck TCRβ locus is organized in an unusual pattern, (Vβ)n-Dβ-(Jβ)2-Cβ1-(Jβ)4-Cβ2, which differs from the tandem-aligned clusters in mammals or the translocon organization in some teleosts. Excluding the first exon encoding the immunoglobulin domain, the subsequent exons of the two Cβ show significant diversity in nucleotide sequence and exon structure. Based on the nucleotide sequence identity, 49 Vα, 30 Vδ, 13 Vβ and 15 Vγ unique gene segments are classified into 3 Vα, 5 Vδ, 4 Vβ and 6 Vγ subgroups, respectively. Phylogenetic analyses revealed that most duck V subgroups, excluding Vβ1, Vγ5 and Vγ6, have closely related orthologues in chicken. The coding joints of all cDNA clones demonstrate conserved mechanisms that are used to increase junctional diversity. Collectively, these data provide insight into the evolution of TCRs in vertebrates and improve our understanding of the avian immune system.
Collapse
|
17
|
Pinheiro A, Neves F, Lemos de Matos A, Abrantes J, van der Loo W, Mage R, Esteves PJ. An overview of the lagomorph immune system and its genetic diversity. Immunogenetics 2016; 68:83-107. [PMID: 26399242 DOI: 10.1007/s00251-015-0868-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 08/31/2015] [Indexed: 01/11/2023]
Abstract
Our knowledge of the lagomorph immune system remains largely based upon studies of the European rabbit (Oryctolagus cuniculus), a major model for studies of immunology. Two important and devastating viral diseases, rabbit hemorrhagic disease and myxomatosis, are affecting European rabbit populations. In this context, we discuss the genetic diversity of the European rabbit immune system and extend to available information about other lagomorphs. Regarding innate immunity, we review the most recent advances in identifying interleukins, chemokines and chemokine receptors, Toll-like receptors, antiviral proteins (RIG-I and Trim5), and the genes encoding fucosyltransferases that are utilized by rabbit hemorrhagic disease virus as a portal for invading host respiratory and gut epithelial cells. Evolutionary studies showed that several genes of innate immunity are evolving by strong natural selection. Studies of the leporid CCR5 gene revealed a very dramatic change unique in mammals at the second extracellular loop of CCR5 resulting from a gene conversion event with the paralogous CCR2. For the adaptive immune system, we review genetic diversity at the loci encoding antibody variable and constant regions, the major histocompatibility complex (RLA) and T cells. Studies of IGHV and IGKC genes expressed in leporids are two of the few examples of trans-species polymorphism observed outside of the major histocompatibility complex. In addition, we review some endogenous viruses of lagomorph genomes, the importance of the European rabbit as a model for human disease studies, and the anticipated role of next-generation sequencing in extending knowledge of lagomorph immune systems and their evolution.
Collapse
Affiliation(s)
- Ana Pinheiro
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal
- SaBio-IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13071, Ciudad Real, Spain
| | - Fabiana Neves
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal
- UMIB/UP-Unidade Multidisciplinar de Investigação Biomédica, Universidade do Porto, Porto, Portugal
| | - Ana Lemos de Matos
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Joana Abrantes
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal
| | - Wessel van der Loo
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal
| | - Rose Mage
- NIAID, NIH, Bethesda, MD, 20892, USA
| | - Pedro José Esteves
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal.
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal.
- CITS-Centro de Investigação em Tecnologias de Saúde, CESPU, Gandra, Portugal.
| |
Collapse
|