1
|
Ko S, Hong S. Characterization of IgD and IgT with their expressional analysis following subtype II megalocytivirus vaccination and infection in rock bream (Oplegnathus fasciatus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 161:105248. [PMID: 39216776 DOI: 10.1016/j.dci.2024.105248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
In this study, heavy chain genes of IgD and IgT were sequenced and characterized their gene expression in rock bream (Oplegnathus fasciatus). Rock bream (RB)-IgD cDNA is 3319 bp in length and encodes a leader region, variable domains, a μ1 domain, and seven constant domains (CH1-CH7). A membrane-bound (mIgT) and secretory form (sIgT) of RB-IgT cDNAs are 1902 bp and 1689 bp in length, respectively, and encode a leader region, variable domains, four constant domains (CH1-CH4) and C-terminus. Their predicted 3D-structure and phylogenetic relation were similar to those of other teleost. In healthy fish, RB-IgD and mIgT gene expressions were higher in major lymphoid organs and blood, while RB-sIgT gene was more highly expressed in midgut. IgT expressing cells were detected in melano-macrophage centers (MMC) of head kidney in immunohistochemistry analysis. Under immune stimulation in vitro, RB-IgD and IgT gene expressions were upregulated in head kidney and spleen cells by bovine serum albumin or a rock bream iridovirus (RBIV) vaccine. In vivo, their expressions were significantly upregulated in head kidney, blood, and gill upon vaccination. Especially, RB-mIgT gene expression in head kidney and blood was upregulated at day 3 after vaccination while upregulated at earlier time point of day 1 by challenge with RBIV. This may suggest that memory cells might be produced during the primary response by vaccination and rapidly proliferated by secondary immune response by viral infection. RB-sIgT gene expression was highly upregulated in peripheral blood in vaccinated fish after viral infection, indicating that IgT plays an important role in systemic immune response as well as mucosal immune system. Our findings provide information on the role of RB-IgT in adaptive immunity during vaccination and viral infection in the vaccinated fish.
Collapse
Affiliation(s)
- Sungjae Ko
- Department of Aquatic Life Medicine, Gangneung-Wonju National University, Gangneung, South Korea
| | - Suhee Hong
- Department of Aquatic Life Medicine, Gangneung-Wonju National University, Gangneung, South Korea.
| |
Collapse
|
2
|
Cui Z, Zhao H, Chen X. Molecular and functional characterization of two IgM subclasses in large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2023; 134:108581. [PMID: 36754157 DOI: 10.1016/j.fsi.2023.108581] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
As the predominant immunoglobulin (Ig) isotype, IgM plays a crucial role in the acquired immunity of vertebrates. There is only one Igμ gene in mammals, except cattle, while the number of Igμ gene varies among teleost fish. In the current study, we found two functional Igμ genes (Igμ1 and Igμ2) and a pseudo Cμ gene (ψIgμ) in large yellow croaker (Larimichthys crocea). Both Igμ1 and Igμ2 genes possessed two transcript variants, which encoded the heavy chains of secreted (sIgM1 and sIgM2) and membrane-bound IgM1 and IgM2 (mIgM1 and mIgM2), respectively. Both the heavy chains of sIgM1 and sIgM2 consisted of a variable Ig domain, four constant Ig domains (CH1, CH2, CH3 and CH4) and a secretory tail, while those of mIgM1 and mIgM2 consisted of a variable Ig domain, three constant Ig domains (CH1, CH2 and CH3), a transmembrane domain and a short cytoplasmic tail. Cysteine residues that are necessary for the formation of intrachain and interchain disulfide bonds and tryptophan residues that are important for the folding of the Ig superfamily domain were well conserved in large yellow croaker IgM1 and IgM2. Interestingly, large yellow croaker IgM2 had an extra cysteine (C94) in the CH1 domain compared with IgM1, which may cause the structural difference between IgM1 and IgM2. A liquid chromatography-tandem mass spectrometry analysis revealed that both IgM1 and IgM2 were present at the protein level in large yellow croaker serum. Both the Igμ1 and Igμ2 genes were mainly expressed in systemic immune tissues, such as head kidney and spleen, but the expression level of Igμ2 was much lower than that of Igμ1. After Pseudomonas plecoglossicida infection, the expression levels of Igμ1 and Igμ2 in both the spleen and head kidney were significantly upregulated, with a higher upregulation of Igμ2 than that of Igμ1. These results suggested that Igμ1 and Igμ2 may play a differential role in the immune response of large yellow croaker against bacterial infection.
Collapse
Affiliation(s)
- Zhengwei Cui
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Han Zhao
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China.
| |
Collapse
|
3
|
Ghorbani A, Khataeipour SJ, Solbakken MH, Huebert DNG, Khoddami M, Eslamloo K, Collins C, Hori T, Jentoft S, Rise ML, Larijani M. Ancestral reconstruction reveals catalytic inactivation of activation-induced cytidine deaminase concomitant with cold water adaption in the Gadiformes bony fish. BMC Biol 2022; 20:293. [PMID: 36575514 PMCID: PMC9795746 DOI: 10.1186/s12915-022-01489-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 11/30/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Antibody affinity maturation in vertebrates requires the enzyme activation-induced cytidine deaminase (AID) which initiates secondary antibody diversification by mutating the immunoglobulin loci. AID-driven antibody diversification is conserved across jawed vertebrates since bony and cartilaginous fish. Two exceptions have recently been reported, the Pipefish and Anglerfish, in which the AID-encoding aicda gene has been lost. Both cases are associated with unusual reproductive behavior, including male pregnancy and sexual parasitism. Several cold water fish in the Atlantic cod (Gadinae) family carry an aicda gene that encodes for a full-length enzyme but lack affinity-matured antibodies and rely on antibodies of broad antigenic specificity. Hence, we examined the functionality of their AID. RESULTS By combining genomics, transcriptomics, immune responsiveness, and functional enzymology of AID from 36 extant species, we demonstrate that AID of that Atlantic cod and related fish have extremely lethargic or no catalytic activity. Through ancestral reconstruction and functional enzymology of 71 AID enzymes, we show that this enzymatic inactivation likely took place relatively recently at the emergence of the true cod family (Gadidae) from their ancestral Gadiformes order. We show that this AID inactivation is not only concordant with the previously shown loss of key adaptive immune genes and expansion of innate and cell-based immune genes in the Gadiformes but is further reflected in the genomes of these fish in the form of loss of AID-favored sequence motifs in their immunoglobulin variable region genes. CONCLUSIONS Recent demonstrations of the loss of the aicda gene in two fish species challenge the paradigm that AID-driven secondary antibody diversification is absolutely conserved in jawed vertebrates. These species have unusual reproductive behaviors forming an evolutionary pressure for a certain loss of immunity to avoid tissue rejection. We report here an instance of catalytic inactivation and functional loss of AID rather than gene loss in a conventionally reproducing vertebrate. Our data suggest that an expanded innate immunity, in addition to lower pathogenic pressures in a cold environment relieved the pressure to maintain robust secondary antibody diversification. We suggest that in this unique scenario, the AID-mediated collateral genome-wide damage would form an evolutionary pressure to lose AID function.
Collapse
Affiliation(s)
- Atefeh Ghorbani
- grid.61971.380000 0004 1936 7494Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada ,grid.25055.370000 0000 9130 6822Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Canada
| | - S. Javad Khataeipour
- grid.25055.370000 0000 9130 6822Department of Computer Science, Faculty of Science, Memorial University of Newfoundland, St. John’s, Canada
| | - Monica H. Solbakken
- grid.5510.10000 0004 1936 8921Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - David N. G. Huebert
- grid.61971.380000 0004 1936 7494Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada ,grid.25055.370000 0000 9130 6822Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Canada
| | - Minasadat Khoddami
- grid.61971.380000 0004 1936 7494Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Khalil Eslamloo
- grid.25055.370000 0000 9130 6822Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, Canada
| | - Cassandra Collins
- grid.61971.380000 0004 1936 7494Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Tiago Hori
- grid.25055.370000 0000 9130 6822Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, Canada
| | - Sissel Jentoft
- grid.5510.10000 0004 1936 8921Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Matthew L. Rise
- grid.25055.370000 0000 9130 6822Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, Canada
| | - Mani Larijani
- grid.61971.380000 0004 1936 7494Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada ,grid.25055.370000 0000 9130 6822Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Canada
| |
Collapse
|
4
|
Han L, Li J, Wang W, Luo K, Chai M, Xiang C, Luo Z, Ren L, Gu Q, Tao M, Zhang C, Wang J, Liu S. Immunoglobulin heavy-chain loci in ancient allotetraploid goldfish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 135:104476. [PMID: 35718131 DOI: 10.1016/j.dci.2022.104476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
As an ancient allotetraploid species, goldfish (Carassius auratus) have two sets of subgenomes. In this study, immunoglobulin heavy-chain (IGH) genes were cloned from the red crucian carp (Carassius auratus red var.), and the corresponding loci were identified in the gynogenetic diploid red crucian carp (GRCC) genome as well as the genomes of three other goldfish strains (Wakin, G-12, and CaTCV-1). Examination showed that each goldfish strain possessed two sets of parallel IGH loci: a complete IGHA locus and a degenerated IGHB locus that was nearly 40 × smaller. In the IGHA locus, multiple τ chain loci were arranged in tandem between the μ&δ chain locus and the variable genes, but no τ-like genes were found in the IGHB locus.
Collapse
Affiliation(s)
- Linmei Han
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Jihong Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Wen Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Kaikun Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Mingli Chai
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Caixia Xiang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Ziye Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Li Ren
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Qianhong Gu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Min Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Chun Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Jing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.
| |
Collapse
|
5
|
Zhang F, Li M, Lv C, Wei G, Wang C, Wang Y, An L, Yang G. Molecular characterization of a new IgZ3 subclass in common carp (Cyprinus carpio) and comparative expression analysis of IgH transcripts during larvae development. BMC Vet Res 2021; 17:159. [PMID: 33853603 PMCID: PMC8045280 DOI: 10.1186/s12917-021-02844-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/16/2021] [Indexed: 12/29/2022] Open
Abstract
Background Immunoglobulins (Igs) distributed among systemic immune tissues and mucosal immune tissues play important roles in protecting teleosts from infections in the pathogen-rich aquatic environment. Teleost IgZ/IgT subclasses with different tissue expression patterns may have different immune functions. Results In the present study, a novel secreted IgZ heavy chain gene was cloned and characterized in common carp (Cyprinus carpio). This gene exhibited a different tissue-specific expression profile than the reported genes IgZ1 and IgZ2. The obtained IgZ-like subclass gene designated CcIgZ3, had a complete open reading frame contained 1650 bp encoding a protein of 549 amino acid residues. Phylogenetic analysis revealed that CcIgZ3 was grouped with carp IgZ2 and was in the same branch as IgZ/IgT genes of other teleosts. Basal expression detection of the immunoglobulin heavy chain (IgH) in healthy adult common carp showed that CcIgZ3 transcripts were widely expressed in systemic immune tissues and mucosal-associated lymphoid tissues. CcIgZ3 was expressed at the highest levels in the head kidneys, gills, and gonads, followed by the spleen, hindgut, oral epithelium, liver, brain, muscle, foregut, and blood; it was expressed at a very low level in the skin. The transcript expression of CcIgZ3 in leukocytes isolated from peripheral blood cells was significantly higher than that in leukocytes isolated from the spleen. Different groups of common carp were infected with Aeromonas hydrophila via intraperitoneal injection or immersion. RT-qPCR analysis demonstrated that significant differences in CcIgZ3 mRNA levels existed between the immersion and injection groups in all the examined tissues, including the head kidney, spleen, liver, and hindgut; in particular, the CcIgZ3 mRNA level in the hindgut was higher in the immersion group than in the injection group. The different routes of A. hydrophila exposure in common carp had milder effects on the IgM response than on the CcIgZ3 response. Further study of the relative expression of the IgH gene during the development of common carp showed that the tissue-specific expression profile of CcIgZ3 was very different from those of other genes. RT-qPCR analysis demonstrated that the CcIgZ3 mRNA level increased gradually in common carp during the early larval development stage from 1 day post fertilization (dpf) to 31 dpf with a dynamic tendency similar to those of IgZ1 and IgZ2, and IgM was the dominant Ig with obviously elevated abundance. Analyses of the tissue-specific expression of IgHs in common carp at 65 dpf showed that CcIgZ3 was expressed at mucosal sites, including both the hindgut and gill; in contrast, IgZ1 was preferentially expressed in the hindgut, and IgZ2 was preferentially expressed in the gill. In addition to RT-qPCR analysis, in situ hybridization was performed to detect CcIgZ3-expressing cells and IgM-expressing cells. The results showed that CcIgZ3 and IgM transcripts were detectable in the spleens, gills, and hindguts of common carp at 65 dpf. Conclusions These results reveal that CcIgZ3 gene transcripts are expressed in common carp during developmental stage not only in systemic tissues but also in mucosal tissues. CcIgZ3 expression can be induced in immune tissues by A. hydrophila challenge via immersion and intraperitoneal injection with significantly different expression profiles, which indicates that CcIgZ3 is involved in the antimicrobial immune response and might play an important role in gut mucosal immunity.
Collapse
Affiliation(s)
- Fumiao Zhang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Shandong, 250014, Jinan, China.
| | - Mojin Li
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Shandong, 250014, Jinan, China
| | - Cui Lv
- Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), 250014, Jinan, China
| | - Guangcai Wei
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Shandong, 250014, Jinan, China
| | - Chang Wang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Shandong, 250014, Jinan, China
| | - Yimeng Wang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Shandong, 250014, Jinan, China
| | - Liguo An
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Shandong, 250014, Jinan, China.
| | - Guiwen Yang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Shandong, 250014, Jinan, China.
| |
Collapse
|
6
|
Tang X, Du Y, Sheng X, Xing J, Zhan W. Molecular cloning and expression analyses of immunoglobulin tau heavy chain (IgT) in turbot, Scophthalmus maximus. Vet Immunol Immunopathol 2018; 203:1-12. [DOI: 10.1016/j.vetimm.2018.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 07/15/2018] [Accepted: 07/29/2018] [Indexed: 11/25/2022]
|
7
|
Fu X, Sun J, Tan E, Shimizu K, Reza MS, Watabe S, Asakawa S. High-Throughput Sequencing of the Expressed Torafugu ( Takifugu rubripes) Antibody Sequences Distinguishes IgM and IgT Repertoires and Reveals Evidence of Convergent Evolution. Front Immunol 2018. [PMID: 29515575 PMCID: PMC5826340 DOI: 10.3389/fimmu.2018.00251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
B-cell antigen receptor (BCR) or antibody diversity arises from somatic recombination of immunoglobulin (Ig) gene segments and is concentrated within the Ig heavy (H) chain complementarity-determining region 3 (CDR-H3). We performed high-throughput sequencing of the expressed antibody heavy-chain repertoire from adult torafugu. We found that torafugu use between 70 and 82% of all possible V (variable), D (diversity), and J (joining) gene segment combinations and that they share a similar frequency distribution of these VDJ combinations. The CDR-H3 sequence repertoire observed in individuals is biased with the preferential use of a small number of VDJ, dominated by sequences containing inserted nucleotides. We uncovered the common CDR-H3 amino-acid (aa) sequences shared by individuals. Common CDR-H3 sequences feature highly convergent nucleic-acid recombination compared with private ones. Finally, we observed differences in repertoires between IgM and IgT, including the unequal usage frequencies of V gene segment and the biased number of nucleotide insertion/deletion at VDJ junction regions that leads to distinct distributions of CDR-H3 lengths.
Collapse
Affiliation(s)
- Xi Fu
- State Key Laboratory of Biotherapy, West China Hospital, Collaborative Innovation Center and Sichuan University, Chengdu, China.,Laboratory of Aquatic Molecular Biology and Biotechnology, Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Jianqiang Sun
- Bioinformational Engineering Laboratory, Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Engkong Tan
- Laboratory of Aquatic Molecular Biology and Biotechnology, Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kentaro Shimizu
- Bioinformational Engineering Laboratory, Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Md Shaheed Reza
- School of Marine Biosciences, Kitasato University, Kanagawa, Japan.,Department of Fisheries Technology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Shugo Watabe
- School of Marine Biosciences, Kitasato University, Kanagawa, Japan
| | - Shuichi Asakawa
- Laboratory of Aquatic Molecular Biology and Biotechnology, Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Mashoof S, Criscitiello MF. Fish Immunoglobulins. BIOLOGY 2016; 5:E45. [PMID: 27879632 PMCID: PMC5192425 DOI: 10.3390/biology5040045] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/03/2016] [Accepted: 11/09/2016] [Indexed: 01/19/2023]
Abstract
The B cell receptor and secreted antibody are at the nexus of humoral adaptive immunity. In this review, we summarize what is known of the immunoglobulin genes of jawed cartilaginous and bony fishes. We focus on what has been learned from genomic or cDNA sequence data, but where appropriate draw upon protein, immunization, affinity and structural studies. Work from major aquatic model organisms and less studied comparative species are both included to define what is the rule for an immunoglobulin isotype or taxonomic group and what exemplifies an exception.
Collapse
Affiliation(s)
- Sara Mashoof
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Michael F Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, College Station, TX 77807, USA.
| |
Collapse
|
9
|
Montalban-Arques A, De Schryver P, Bossier P, Gorkiewicz G, Mulero V, Gatlin DM, Galindo-Villegas J. Selective Manipulation of the Gut Microbiota Improves Immune Status in Vertebrates. Front Immunol 2015; 6:512. [PMID: 26500650 PMCID: PMC4598590 DOI: 10.3389/fimmu.2015.00512] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/20/2015] [Indexed: 12/12/2022] Open
Abstract
All animals develop in association with complex microbial communities. It is now well established that commensal microbiota is essential for the correct functionality of each organ in the host. Particularly, the commensal gastro-intestinal microbiota (CGIM) is a key factor for development, immunity and nutrient conversion, rendering them bio-available for various uses. Thus, nutritional inputs generate a positive loop in maintaining host health and are essential in shaping the composition of the CGIM communities. Probiotics, which are live exogenous microorganisms, selectively provided to the host, are a promising concept for manipulating the microbiota and thus for increasing the host health status. Nevertheless, most mechanisms induced by probiotics to fortify the immune system are still a matter of debate. Alternatively, prebiotics, which are non-digestible food ingredients, can favor the growth of specific target groups of CGIM. Several metabolites are produced by the CGIM, one of the most important are the short-chain fatty acids (SCFAs), which emerge from the fermentation of complex carbohydrates. SCFAs have been recognized as key players in triggering beneficial effects elicited by simple diffusion and by specific receptors present, thus, far only in epithelial cells of higher vertebrates at different gastro-intestinal locations. However, both strategies have shown to provide resistance against pathogens during periods of high stress. In fish, knowledge about the action of pro- and prebiotics and SCFAs is still limited. Thus, in this review, we briefly summarize the mechanisms described on this topic for higher vertebrates and discuss why many of them may operate in the fish gut representing a model for different mucosal tissues
Collapse
Affiliation(s)
| | - Peter De Schryver
- Laboratory of Aquaculture & Artemia Reference Center, Ghent University , Ghent , Belgium
| | - Peter Bossier
- Laboratory of Aquaculture & Artemia Reference Center, Ghent University , Ghent , Belgium
| | | | - Victoriano Mulero
- Department of Cell Biology and Histology, Faculty of Biology, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, University of Murcia , Murcia , Spain
| | - Delbert Monroe Gatlin
- Department of Wildlife and Fisheries Sciences, College of Agriculture and Life Sciences, Texas A&M University , College Station, TX , USA
| | - Jorge Galindo-Villegas
- Department of Cell Biology and Histology, Faculty of Biology, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, University of Murcia , Murcia , Spain
| |
Collapse
|
10
|
Abstract
As in mammals, cartilaginous and teleost fishes possess adaptive immune systems based on antigen recognition by immunoglobulins (Ig), T cell receptors (TCR), and major histocompatibility complex molecules (MHC) I and MHC II molecules. Also it is well established that fish B cells and mammalian B cells share many similarities, including Ig gene rearrangements, and production of membrane Ig and secreted Ig forms. This chapter provides an overview of the IgH and IgL chains in cartilaginous and bony fish, including their gene organizations, expression, diversity of their isotypes, and development of the primary repertoire. Furthermore, when possible, we have included summaries of key studies on immune mechanisms such as allelic exclusion, somatic hypermutation, affinity maturation, class switching, and mucosal immune responses.
Collapse
Affiliation(s)
- Eva Bengtén
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, 39216-4505, USA.
| | - Melanie Wilson
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, 39216-4505, USA.
| |
Collapse
|