1
|
Engstrom A, Hannibal TD, Egli J, Gauthier B, Krarup ML, Gallo D, Jensen AE, Van Cruchten S, Bulera S, Cornet M, Hammer SE, Henry D, Jacobsen B, Kendrick J, Madsen LS, Mhedhbi S, Oag S, Pedersen HD, Teti M, Singh P. Considerations for use of humanized IgG1/4 Göttingen minipigs in safety assessment of antibody-based therapeutics. Regul Toxicol Pharmacol 2025; 161:105855. [PMID: 40398719 DOI: 10.1016/j.yrtph.2025.105855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 05/13/2025] [Accepted: 05/18/2025] [Indexed: 05/23/2025]
Abstract
At the 16th Minipig Research Forum (MRF) held on May 22-24th, 2024 in Amsterdam, The Netherlands, a breakout session was organized to discuss perspectives on the utility and limitations of humanized IgG1/4 Göttingen Minipigs (hGMPs) for safety assessment of therapeutic antibodies. The session was attended by representatives from pharmaceutical and biotech companies, contract research organizations and academia with shared interest in research models suitable for use with novel biotherapeutics. hGMPs have been genetically modified to carry a mini repertoire of human genes encoding the soluble forms of immunoglobulin heavy chains γ1 and γ4 and immunoglobulin light chain κ. An initial characterization of hGMPs for the toxicological testing of IgG1/4-based antibody therapeutics was published in 2022 and found that these animals reflected human clinical immunogenicity of four therapeutic antibodies, suggesting they could be a potential alternative to non-human primates for safety assessment of such antibodies. However, additional background data and experience with a broader range of therapeutics is needed to understand how hGMPs can be integrated into the toxicological testing of antibody therapeutics. This commentary aims to highlight key discussion points from the breakout session, including identification of data gaps, ongoing characterization efforts, and considerations for the use of hGMPs for the safety assessment of antibody-based therapeutics.
Collapse
Affiliation(s)
- Anna Engstrom
- Genentech Inc, Translational Safety, South San Francisco, CA, USA.
| | | | - Jerome Egli
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| | | | | | - Daniela Gallo
- European Research Biology Center, Pomezia, Rome, Italy.
| | | | | | | | - Miranda Cornet
- UCB Biopharma, Chemin du Foriest, Braine-l'Alleud, Belgium.
| | | | - David Henry
- Astrazeneca R&D, Clinical Pharmacology and Safety Sciences, Cambridge Biomedical Campus, Cambridge, UK.
| | - Bjoern Jacobsen
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| | - John Kendrick
- Labcorp Early Development Laboratories Limited, Otley Road, Harrogate, HG31PY, UK.
| | - Lars Siim Madsen
- Ellegaard Göttingen Minipigs A/S, Soroe Landevej 302, 4261, Dalmose, Denmark.
| | | | - Steven Oag
- Clinical Pharmacology & Safety Sciences, Animal Science & Technology, AstraZeneca. Sweden.
| | | | - Manuela Teti
- Labcorp Early Development Laboratories Limited, Otley Road, Harrogate, HG31PY, UK.
| | | |
Collapse
|
2
|
Hrabal I, Aliabadi E, Reiche S, Weber S, Holicki CM, Schmid L, Fast C, Schröder C, Gutjahr B, Behrendt P, Groschup MH, Eiden M. Therapeutic treatment of hepatitis E virus infection in pigs with a neutralizing monoclonal antibody. Sci Rep 2025; 15:10795. [PMID: 40155491 PMCID: PMC11953370 DOI: 10.1038/s41598-025-95992-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/25/2025] [Indexed: 04/01/2025] Open
Abstract
Hepatitis E virus (HEV) poses a significant risk to human health. In Europe, the majority of HEV infection are caused by the zoonotic genotype 3 (HEV-3), which can cause chronic hepatitis E in immunocompromised patients and those with pre-existing liver disease, and may eventually develop into fatal liver cirrhosis. In this study, we examined the effectiveness of a monoclonal antibody (MAb) treatment strategy using a well established HEV-3 pig model with intravenous infection. For this purpose, nine MAbs raised against the viral capsid protein were generated and the neutralizing activities were compared using in vitro assays. The antibody with the highest neutralizing activity, MAb 5F6A1, was selected for an in vivo study in pigs infected with HEV-3. Following the initial infection of pigs with HEV-3, MAb 5F6A1 was administered intravenously one and seven days post-infection. The results suggest MAb 5F6A1 significantly reduced viremia and virus shedding in pigs infected with HEV-3. This study provides significant insight into the dynamics of HEV infection in pigs and highlights the efficacy of MAb based therapy as an option for treating HEV in porcine hosts and, potentially, humans.
Collapse
Affiliation(s)
- Isabella Hrabal
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Elmira Aliabadi
- Institute for Experimental Virology, Centre for Experimental and Clinical Infection Research, TWINCORE, Hannover, Germany
- Helmholz Center for Infection Research GmbH, Braunschweig, Germany
| | - Sven Reiche
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Saskia Weber
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Cora M Holicki
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Laura Schmid
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Christine Fast
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Charlotte Schröder
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Benjamin Gutjahr
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Patrick Behrendt
- Institute for Experimental Virology, Centre for Experimental and Clinical Infection Research, TWINCORE, Hannover, Germany
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Partner site Braunschweig-Hannover, Braunschweig, Germany
| | - Martin H Groschup
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
- German Centre for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Greifswald - Insel Riems, Germany
| | - Martin Eiden
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany.
| |
Collapse
|
3
|
Clarke DO, Datta K, French K, Leach MW, Olaharski D, Mohr S, Strein D, Bussiere J, Feyen B, Gauthier BE, Graziano M, Harding J, Hershman K, Jacob B, Ji S, Lange R, Salian-Mehta S, Sayers B, Thomas N, Flandre T. Opportunities and challenges for use of minipigs in nonclinical pharmaceutical development: Results of a follow-up IQ DruSafe survey. Regul Toxicol Pharmacol 2024; 154:105729. [PMID: 39481797 DOI: 10.1016/j.yrtph.2024.105729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/07/2024] [Accepted: 10/19/2024] [Indexed: 11/02/2024]
Abstract
Minipigs are valid nonrodent species infrequently utilized for pharmaceutical research and development (R&D) compared with dogs or nonhuman primates (NHPs). A 2022 IQ DruSafe survey revealed a modest increase in minipig use by pharmaceutical companies compared with a prior 2014 survey, primarily in the development of oral small molecules and parenteral protein molecules. Some companies considered using minipigs more often due to NHP shortages and regional ethical concerns with using NHPs and dogs. However, for most pharmaceutical companies, minipigs still represent ≤5% of their nonrodent animal use. Key challenges noted by companies to wider adoption of minipigs were high test article requirement, limited historical control data, and lack of relevant reagents or assays. Additionally, some companies expressed uncertainties about contract research organization (CRO) capabilities and experience, a perception not shared by respondent CROs. These latest survey results indicate persistence of many concerns previously identified in 2014. Several case studies are included to illustrate areas of expanded minipig use as well as the challenges that hinder broader adoption. Ongoing, focused, and industry-wide initiatives to address the identified or perceived challenges may lead to more frequent or routine consideration of minipigs as a test species in pharmaceutical R&D.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Bianca Feyen
- Johnson & Johnson Innovative Medicine, Beerse, Belgium
| | | | | | - Joanna Harding
- Exscientia (formerly represented Astra Zeneca), Oxford, UK
| | | | | | - Shaofei Ji
- Johnson & Johnson Innovative Medicine, Springhouse, PA, USA
| | | | | | | | | | | |
Collapse
|
4
|
Álvarez B, Revilla C, Poderoso T, Ezquerra A, Domínguez J. Porcine Macrophage Markers and Populations: An Update. Cells 2023; 12:2103. [PMID: 37626913 PMCID: PMC10453229 DOI: 10.3390/cells12162103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/04/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Besides its importance as a livestock species, pig is increasingly being used as an animal model for biomedical research. Macrophages play critical roles in immunity to pathogens, tissue development, homeostasis and tissue repair. These cells are also primary targets for replication of viruses such as African swine fever virus, classical swine fever virus, and porcine respiratory and reproductive syndrome virus, which can cause huge economic losses to the pig industry. In this article, we review the current status of knowledge on porcine macrophages, starting by reviewing the markers available for their phenotypical characterization and following with the characteristics of the main macrophage populations described in different organs, as well as the effect of polarization conditions on their phenotype and function. We will also review available cell lines suitable for studies on the biology of porcine macrophages and their interaction with pathogens.
Collapse
Affiliation(s)
| | | | | | - Angel Ezquerra
- Departamento de Biotecnología, CSIC INIA, Ctra. De La Coruña, km7.5, 28040 Madrid, Spain; (B.Á.); (C.R.); (T.P.); (J.D.)
| | | |
Collapse
|
5
|
Ackley D, Birkebak J, Blumel J, Bourcier T, de Zafra C, Goodwin A, Halpern W, Herzyk D, Kronenberg S, Mauthe R, Shenton J, Shuey D, Wange RL. FDA and industry collaboration: Identifying opportunities to further reduce reliance on nonhuman primates for nonclinical safety evaluations. Regul Toxicol Pharmacol 2023; 138:105327. [PMID: 36586472 DOI: 10.1016/j.yrtph.2022.105327] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/05/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
The nonhuman primate (NHP) has always been a limited resource for pharmaceutical research with ongoing efforts to conserve. This is due to their inherent biological properties, the growth in biotherapeutics and other modalities, and their use in small molecule drug development. The SARS-CoV-2 pandemic has significantly impacted the availability of NHPs due to the immediate need for NHPs to develop COVID-19 vaccines and treatments and the China NHP export ban; thus, accelerating the need to further replace, reduce and refine (3Rs) NHP use. The impact of the NHP shortage on drug development led DruSafe, BioSafe, and the United States (U.S.) Food and Drug Administration (FDA) Center for Drug Evaluation and Research (CDER) to discuss this issue at their 2021 annual meeting. This meeting identified areas to further the 3Rs in NHP use within the current nonclinical safety evaluation regulatory framework and highlighted the need to continue advancing alternative methods towards the aspirational goal to replace use of NHPs in the long term. Alignment across global health authorities is necessary for implementation of approaches that fall outside existing guidelines. This article captures the proceedings from this meeting highlighting current best practices and areas for 3Rs in NHP use.
Collapse
Affiliation(s)
- David Ackley
- Eli Lilly and Co. Inc., Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Joanne Birkebak
- Gilead Sciences Inc., 333 Lakeside Dr, Foster City, CA, 94404, USA.
| | - Jorg Blumel
- Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Todd Bourcier
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | | | - Andrew Goodwin
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Wendy Halpern
- Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | | | - Sven Kronenberg
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center, Basel, Switzerland
| | - Robert Mauthe
- Pfizer Inc., 445 Eastern Point Road, Groton, CT, 06340, USA
| | - Jacintha Shenton
- Amgen Inc., Translational Safety & Bioanalytical Sciences, Thousand Oaks, CA, USA
| | - Dana Shuey
- Incyte Corporation, 1801 Augustine Cut-off, Wilmington, DE, USA
| | - Ronald L Wange
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| |
Collapse
|
6
|
Paudyal B, Mwangi W, Rijal P, Schwartz JC, Noble A, Shaw A, Sealy JE, Bonnet-Di Placido M, Graham SP, Townsend A, Hammond JA, Tchilian E. Fc-Mediated Functions of Porcine IgG Subclasses. Front Immunol 2022; 13:903755. [PMID: 35757698 PMCID: PMC9218351 DOI: 10.3389/fimmu.2022.903755] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
The pig is an important agricultural species and powerful biomedical model. We have established the pig, a large natural host animal for influenza with many physiological similarities to humans, as a robust model for testing the therapeutic potential of monoclonal antibodies. Antibodies provide protection through neutralization and recruitment of innate effector functions through the Fc domain. However very little is known about the Fc-mediated functions of porcine IgG subclasses. We have generated 8 subclasses of two porcine monoclonal anti influenza hemagglutinin antibodies. We characterized their ability to activate complement, trigger cytotoxicity and phagocytosis by immune cells and assayed their binding to monocytes, macrophages, and natural killer cells. We show that IgG1, IgG2a, IgG2b, IgG2c and IgG4 bind well to targeted cell types and mediate complement mediated cellular cytotoxicity (CDCC), antibody dependent cellular cytotoxicity (ADCC) and antibody mediated cell phagocytosis (ADCP). IgG5b and IgG5c exhibited weak binding and variable and poor functional activity. Immune complexes of porcine IgG3 did not show any Fc-mediated functions except for binding to monocytes and macrophages and weak binding to NK cells. Interestingly, functionally similar porcine IgG subclasses clustered together in the genome. These novel findings will enhance the utility of the pig model for investigation of therapeutic antibodies.
Collapse
Affiliation(s)
- Basudev Paudyal
- Host Responses, The Pirbright Institute, Woking, United Kingdom
| | - William Mwangi
- Host Responses, The Pirbright Institute, Woking, United Kingdom
| | - Pramila Rijal
- Medical Research Council (MRC) Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - John C Schwartz
- Host Responses, The Pirbright Institute, Woking, United Kingdom
| | - Alistair Noble
- Host Responses, The Pirbright Institute, Woking, United Kingdom
| | - Andrew Shaw
- Host Responses, The Pirbright Institute, Woking, United Kingdom
| | - Joshua E Sealy
- Host Responses, The Pirbright Institute, Woking, United Kingdom
| | | | - Simon P Graham
- Host Responses, The Pirbright Institute, Woking, United Kingdom
| | - Alain Townsend
- Medical Research Council (MRC) Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - John A Hammond
- Host Responses, The Pirbright Institute, Woking, United Kingdom
| | - Elma Tchilian
- Host Responses, The Pirbright Institute, Woking, United Kingdom
| |
Collapse
|
7
|
Ayuso M, Buyssens L, Stroe M, Valenzuela A, Allegaert K, Smits A, Annaert P, Mulder A, Carpentier S, Van Ginneken C, Van Cruchten S. The Neonatal and Juvenile Pig in Pediatric Drug Discovery and Development. Pharmaceutics 2020; 13:44. [PMID: 33396805 PMCID: PMC7823749 DOI: 10.3390/pharmaceutics13010044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Pharmacotherapy in pediatric patients is challenging in view of the maturation of organ systems and processes that affect pharmacokinetics and pharmacodynamics. Especially for the youngest age groups and for pediatric-only indications, neonatal and juvenile animal models can be useful to assess drug safety and to better understand the mechanisms of diseases or conditions. In this respect, the use of neonatal and juvenile pigs in the field of pediatric drug discovery and development is promising, although still limited at this point. This review summarizes the comparative postnatal development of pigs and humans and discusses the advantages of the juvenile pig in view of developmental pharmacology, pediatric diseases, drug discovery and drug safety testing. Furthermore, limitations and unexplored aspects of this large animal model are covered. At this point in time, the potential of the neonatal and juvenile pig as nonclinical safety models for pediatric drug development is underexplored.
Collapse
Affiliation(s)
- Miriam Ayuso
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (M.S.); (A.V.); (C.V.G.)
| | - Laura Buyssens
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (M.S.); (A.V.); (C.V.G.)
| | - Marina Stroe
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (M.S.); (A.V.); (C.V.G.)
| | - Allan Valenzuela
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (M.S.); (A.V.); (C.V.G.)
| | - Karel Allegaert
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium; (K.A.); (P.A.)
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium;
- Department of Hospital Pharmacy, Erasmus MC Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Anne Smits
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium;
- Neonatal Intensive Care Unit, University Hospitals UZ Leuven, 3000 Leuven, Belgium
| | - Pieter Annaert
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium; (K.A.); (P.A.)
| | - Antonius Mulder
- Department of Neonatology, University Hospital Antwerp, 2650 Edegem, Belgium;
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, 2610 Wilrijk, Belgium
| | | | - Chris Van Ginneken
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (M.S.); (A.V.); (C.V.G.)
| | - Steven Van Cruchten
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (L.B.); (M.S.); (A.V.); (C.V.G.)
| |
Collapse
|
8
|
The Binding of Human IgG to Minipig FcγRs - Implications for Preclinical Assessment of Therapeutic Antibodies. Pharm Res 2019; 36:47. [PMID: 30721414 PMCID: PMC6373530 DOI: 10.1007/s11095-019-2574-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/16/2019] [Indexed: 12/26/2022]
Abstract
Purpose The Göttingen minipig is a relevant non-rodent species for regulatory toxicological studies. Yet, its use with therapeutic antibodies has been limited by the unknown binding properties of human immunoglobulins (huIgG) to porcine Fc gamma receptors (poFcγR) influencing safety and efficacy readouts. Therefore, knowing IgG-FcγR interactions in the animal model is a prerequisite for the use of minipigs in preclinical safety and efficacy studies with therapeutic antibodies. Methods Here, we describe the cloning and expression of poFcγRs and their interactions with free and complexed human therapeutic IgG1 by surface plasmon resonance and flow cytometry. Results We show here that poFcγRIa, poFcγRIIa, and poFcγRIIb bind huIgG1 antibodies with comparable affinities as corresponding huFcγRs. Importantly, poFcγRs bind huIgG immune complexes with high avidity, thus probably allowing human-like effector functions. However, poFcγRIIIa binds poIgG1a but not to huIgG1. Conclusions The lack of binding of poFcγRIIIa to huIgG1 might cause underestimation of FcγRIIIa-mediated efficacy or toxicity as mediated by porcine natural killer cells. Therefore, the suitability of minipigs in preclinical studies with human therapeutic antibodies has to be assessed case by case. Our results facilitate the use of Göttingen minipigs for assessment of human therapeutic antibodies in preclinical studies. Electronic supplementary material The online version of this article (10.1007/s11095-019-2574-y) contains supplementary material, which is available to authorized users.
Collapse
|