1
|
Lang HP, Osum KC, Friedenberg SG. A review of CD4 + T cell differentiation and diversity in dogs. Vet Immunol Immunopathol 2024; 275:110816. [PMID: 39173398 PMCID: PMC11421293 DOI: 10.1016/j.vetimm.2024.110816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
CD4+ T cells are an integral component of the adaptive immune response, carrying out many functions to combat a diverse range of pathogenic challenges. These cells exhibit remarkable plasticity, differentiating into specialized subsets such as T helper type 1 (TH1), TH2, TH9, TH17, TH22, regulatory T cells (Tregs), and follicular T helper (TFH) cells. Each subset is capable of addressing a distinct immunological need ranging from pathogen eradication to regulation of immune homeostasis. As the immune response subsides, CD4+ T cells rest down into long-lived memory phenotypes-including central memory (TCM), effector memory (TEM), resident memory (TRM), and terminally differentiated effector memory cells (TEMRA) that are localized to facilitate a swift and potent response upon antigen re-encounter. This capacity for long-term immunological memory and rapid reactivation upon secondary exposure highlights the role CD4+ T cells play in sustaining both adaptive defense mechanisms and maintenance. Decades of mouse, human, and to a lesser extent, pig T cell research has provided the framework for understanding the role of CD4+ T cells in immune responses, but these model systems do not always mimic each other. Although our understanding of pig immunology is not as extensive as mouse or human research, we have gained valuable insight by studying this model. More akin to pigs, our understanding of CD4+ T cells in dogs is much less complete. This disparity exists in part because canine immunologists depend on paradigms from mouse and human studies to characterize CD4+ T cells in dogs, with a fraction of available lineage-defining antibody markers. Despite this, every major CD4+ T cell subset has been described to some extent in dogs. These subsets have been studied in various contexts, including in vitro stimulation, homeostatic conditions, and across a range of disease states. Canine CD4+ T cells have been categorized according to lineage-defining characteristics, trafficking patterns, and what cytokines they produce upon stimulation. This review addresses our current understanding of canine CD4+ T cells from a comparative perspective by highlighting both the similarities and differences from mouse, human, and pig CD4+ T cell biology. We also discuss knowledge gaps in our current understanding of CD4+ T cells in dogs that could provide direction for future studies in the field.
Collapse
Affiliation(s)
- Haeree P Lang
- Center for Immunology, University of Minnesota, Minneapolis, MN 55414, USA; Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA.
| | - Kevin C Osum
- Center for Immunology, University of Minnesota, Minneapolis, MN 55414, USA.
| | - Steven G Friedenberg
- Center for Immunology, University of Minnesota, Minneapolis, MN 55414, USA; Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA.
| |
Collapse
|
2
|
Rohdin C, Ljungvall I, Jäderlund KH, Svensson A, Lindblad-Toh K, Häggström J. Assessment of glial fibrillary acidic protein and anti-glial fibrillary acidic protein autoantibody concentrations and necrotising meningoencephalitis risk genotype in dogs with pug dog myelopathy. Vet Rec 2024; 194:e3895. [PMID: 38704817 DOI: 10.1002/vetr.3895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 12/16/2023] [Accepted: 01/05/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Pugs commonly present with thoracolumbar myelopathy, also known as pug dog myelopathy (PDM), which is clinically characterised by progressive signs involving the pelvic limbs, no apparent signs of pain and, often, incontinence. In addition to meningeal fibrosis and focal spinal cord destruction, histopathology has confirmed lymphohistiocytic infiltrates in the central nervous system (CNS) in a considerable number of pugs with PDM. Lymphohistiocytic CNS inflammation also characterises necrotising meningoencephalitis (NME) in pugs. This study aimed to investigate the potential contribution of an immunological aetiology to the development of PDM. METHODS The concentrations of glial fibrillary acidic protein (GFAP) in serum and CSF and of anti-GFAP autoantibodies in CSF were measured with an ELISA. In addition, a commercial test was used for genetic characterisation of the dog leukocyte antigen class II haplotype, which is associated with NME susceptibility. RESULTS This study included 87 dogs: 52 PDM pugs, 14 control pugs, four NME pugs and 17 dogs of breeds other than pugs that were investigated for neurological disease (neuro controls). Anti-GFAP autoantibodies were present in 15 of 19 (79%) of the PDM pugs tested versus six of 16 (38%) of the neuro controls tested (p = 0.018). All 18 PDM pugs evaluated had detectable CSF GFAP. Serum GFAP was detected in two of three (67%) of the NME pugs and in two of 11 (18%) of the control pugs but not in any of the 40 tested PDM pugs. Male pugs heterozygous for the NME risk haplotype had an earlier onset of clinical signs (70 months) compared to male pugs without the risk haplotype (78 months) (p = 0.036). LIMITATIONS The study was limited by the lack of healthy dogs of breeds other than pugs and the small numbers of control pugs and pugs with NME. CONCLUSIONS The high proportion of PDM pugs with anti-GFAP autoantibodies and high CSF GFAP concentrations provide support for a potential immunological contribution to the development of PDM.
Collapse
Affiliation(s)
- Cecilia Rohdin
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Anicura, Albano Small Animal Hospital, Danderyd, Sweden
| | - Ingrid Ljungvall
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Karin Hultin Jäderlund
- Department of Companion Animal Clinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Anna Svensson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Kerstin Lindblad-Toh
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Broad Institute, Cambridge, Massachusetts, USA
| | - Jens Häggström
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
3
|
OSHIMA A, ITO D, KATAKURA F, MIYAMAE J, OKANO M, NAKAZAWA M, KANAZONO S, MORITOMO T, KITAGAWA M. Dog leukocyte antigen class II alleles and haplotypes associated with meningoencephalomyelitis of unknown origin in Chihuahuas. J Vet Med Sci 2023; 85:62-70. [PMID: 36418080 PMCID: PMC9887217 DOI: 10.1292/jvms.22-0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Idiopathic non-infectious meningoencephalomyelitis (NIME), which is thought to be an immune-mediated disease, is a common inflammatory disease in dogs. Meningoencephalomyelitis of unknown origin (MUO), a subgroup of NIME, consists of necrotizing meningoencephalitis (NME), necrotizing leukoencephalitis, and granulomatous meningoencephalomyelitis. Recent studies have shown associations between disease development and dog leukocyte antigen (DLA) class II genes in NME in Pugs and in NIME in Greyhounds. This study focused on Chihuahuas, which have a high incidence of MUO and are one of the most common dog breeds in Japan. Because the development of MUO seems to be associated with DLA class II genes, we aimed to evaluate the association between DLA class II genes and MUO development in Chihuahuas. Blood samples were obtained from 22 Chihuahuas with MUO (MUO group) and 46 without neurological diseases (control). The allele sequences of three DLA class II loci were determined, and haplotypes were estimated from these data. In total, 23 haplotypes were detected. The frequency of one haplotype (DLA-DRB1*015:01--DQA1*006:01--DQB1*023:01) was significantly higher in the MUO group than in the control group (odds ratio, 7.11; 95% confidence interval, 1.37-36.81; P=0.0141). The results suggest that the development of MUO in Chihuahuas may be associated with DLA class II genes. Because the identified risk haplotypes differed from those of other breeds, the pathogenesis of NIME-related diseases may differ among dog breeds.
Collapse
Affiliation(s)
- Ayaka OSHIMA
- Laboratory of Veterinary Neurology, Department of Veterinary Medicine, College of Bioresource Science, Nihon University, Kanagawa, Japan
| | - Daisuke ITO
- Laboratory of Veterinary Neurology, Department of Veterinary Medicine, College of Bioresource Science, Nihon University, Kanagawa, Japan,Correspondence to: Ito D: , Laboratory of Veterinary Neurology, Department
of Veterinary Medicine, College of Bioresource Science, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Fumihiko KATAKURA
- Laboratory of Comparative Immunology, Department of Veterinary Medicine, College of Bioresource Science, Nihon University, Kanagawa, Japan
| | - Jiro MIYAMAE
- Faculty of Medicine, Okayama University of Science, Ehime, Japan
| | - Masaharu OKANO
- Department of Legal Medicine, Nihon University School of Dentistry, Tokyo, Japan
| | - Megu NAKAZAWA
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Medicine, College of Bioresource Science, Nihon University, Kanagawa, Japan
| | - Shinichi KANAZONO
- Neurology and Neurosurgery Service, Veterinary Specialists and Emergency Center, Saitama, Japan
| | - Tadaaki MORITOMO
- Laboratory of Comparative Immunology, Department of Veterinary Medicine, College of Bioresource Science, Nihon University, Kanagawa, Japan
| | - Masato KITAGAWA
- Laboratory of Veterinary Neurology, Department of Veterinary Medicine, College of Bioresource Science, Nihon University, Kanagawa, Japan
| |
Collapse
|
4
|
Røyrvik EC, Husebye ES. The genetics of autoimmune Addison disease: past, present and future. Nat Rev Endocrinol 2022; 18:399-412. [PMID: 35411072 DOI: 10.1038/s41574-022-00653-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 12/23/2022]
Abstract
Autoimmune Addison disease is an endocrinopathy that is fatal if not diagnosed and treated in a timely manner. Its rarity has hampered unbiased studies of the predisposing genetic factors. A 2021 genome-wide association study, explaining up to 40% of the genetic susceptibility, has revealed new disease loci and reproduced some of the previously reported associations, while failing to reproduce others. Credible risk loci from both candidate gene and genome-wide studies indicate that, like one of its most common comorbidities, type 1 diabetes mellitus, Addison disease is primarily caused by aberrant T cell behaviour. Here, we review the current understanding of the genetics of autoimmune Addison disease and its position in the wider field of autoimmune disorders. The mechanisms that could underlie the effects on the adrenal cortex are also discussed.
Collapse
Affiliation(s)
- Ellen C Røyrvik
- Department of Clinical Science, University of Bergen, Bergen, Norway.
- K.G. Jebsen Center for Autoimmune Diseases, University of Bergen, Bergen, Norway.
| | - Eystein S Husebye
- Department of Clinical Science, University of Bergen, Bergen, Norway
- K.G. Jebsen Center for Autoimmune Diseases, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
5
|
Gershony LC, Belanger JM, Hytönen MK, Lohi H, Famula TR, Oberbauer AM. Genetic characterization of Addison's disease in Bearded Collies. BMC Genomics 2020; 21:833. [PMID: 33243158 PMCID: PMC7690126 DOI: 10.1186/s12864-020-07243-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Primary hypoadrenocorticism (or Addison's disease, AD) is an autoimmune disease that results in destruction of the adrenal cortex and consequent adrenal insufficiency. The disease has been described in purebred and mixed breed dogs, although some breeds, including the Bearded Collie, are at increased risk for AD. Candidate gene approaches have yielded few associations that appear to be breed-specific. A single other genome-wide association study reported no significant regions of association for AD in Standard Poodles. The present study aimed to identify genomic regions of association for canine AD in Bearded Collies. RESULTS Our study consists of the first genome-wide association analysis to identify a genome-wide significant region of association with canine AD (CFA18). Peaks of suggestive association were also noted on chromosomes 11, 16 and 29. Logistic regression analysis supported an additive effect of risk genotypes at these smaller effect loci on the probability of disease associated with carrying a risk genotype on CFA18. Potential candidate genes involved in adrenal steroidogenesis, regulation of immune responses and/or inflammation were identified within the associated regions of chromosomes 11 and 16. The gene-poor regions of chromosomes 18 and 29 may, however, harbor regulatory sequences that can modulate gene expression and contribute to disease susceptibility. CONCLUSION Our findings support the polygenic and complex nature of canine AD and identified a strongly associated locus on CFA18 that, when combined with three other smaller effect loci, was predictive of disease. The results offer progress in the identification of susceptibility loci for canine AD in the Bearded Collie. Further studies are needed to confirm association with the suggested candidate genes and identify actual causative mutations involved with AD susceptibility in this breed.
Collapse
Affiliation(s)
- Liza C Gershony
- Department of Animal Science, University of California-Davis, Davis, CA, 95616, USA
- Brazilian National Council for Scientific and Technological Development (CNPq) fellow, Brasilia, DF, 71605, Brazil
| | - Janelle M Belanger
- Department of Animal Science, University of California-Davis, Davis, CA, 95616, USA
| | - Marjo K Hytönen
- Department of Medical and Clinical Genetics, and Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland; Folkhälsan Research Center, Helsinki, 00290, Finland
| | - Hannes Lohi
- Department of Medical and Clinical Genetics, and Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland; Folkhälsan Research Center, Helsinki, 00290, Finland
| | - Thomas R Famula
- Department of Animal Science, University of California-Davis, Davis, CA, 95616, USA
| | - Anita M Oberbauer
- Department of Animal Science, University of California-Davis, Davis, CA, 95616, USA.
| |
Collapse
|