1
|
Zhang W, Zhang L, Fu S, Yan R, Zhang X, Song J, Lu Y. Roles of NLRC4 inflammasome in neurological disorders: Mechanisms, implications, and therapeutic potential. Pharmacol Ther 2025; 267:108803. [PMID: 39855275 DOI: 10.1016/j.pharmthera.2025.108803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 01/01/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
The nucleotide-binding oligomerization domain-like receptor family caspase recruitment domain containing 4 (NLRC4) inflammasome, a vital component of the innate immune system, is known for defending against bacterial infections. However, recent insights have revealed its significant impact on neurological disorders. This comprehensive review discussed the mechanisms underlying the activation and regulation of the NLRC4 inflammasome, highlighting the complexity of its response to cellular stress and damage signals. The biological functions of NLRC4 were explored, particularly its influence on cytokine production and the induction of pyroptosis, a form of inflammatory cell death. This review further emphasized the role of the NLRC4 inflammasome in brain injuries and neurodegenerative disorders. In the realm of brain injuries such as stroke and traumatic brain injury, as well as in neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis, the NLRC4 inflammasome played a pivotal role in modulating neuroinflammatory responses, which was crucial for understanding the progression and potential therapeutic targeting of these conditions. The emerging role of NLRC4 in psychiatric disorders and its potential impact on glioma progression were also examined. Additionally, this review presented a thorough summary of the latest research on inhibitors that impeded the assembly and activation of the NLRC4 inflammasome, pointing to new therapeutic possibilities in neurological disorders. In conclusion, by integrating current knowledge on the activation and regulation of NLRC4 with its biological functions and clinical implications, this article underscored the importance of NLRC4 inflammasome in neurological pathologies, which opened new possibilities for the treatment of challenging neurological conditions.
Collapse
Affiliation(s)
- Wen Zhang
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Li Zhang
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Shuo Fu
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Rong Yan
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xue Zhang
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Junke Song
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| | - Yang Lu
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
2
|
Zhang MJ, Yang L, Li ZY, Zhou LY, Wang YJ, Wang HS, Cui XJ, Yao M. NLRP1 inflammasome in neurodegenerative disorders: From pathology to therapies. Cytokine Growth Factor Rev 2024; 80:138-155. [PMID: 39443194 DOI: 10.1016/j.cytogfr.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/06/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024]
Abstract
Neuroinflammation is a critical component in neurodegenerative disorders. The inflammasome, facilitates the cleavage of caspase-1, leading to the maturation and subsequent secretion of inflammatory factors interleukin (IL)-1β and IL-18. Consequently, pyroptosis mediated by gasdermin D, exacerbates neuroinflammation. Among the inflammasomes, NLRP1/3 are predominant in the central nervous system (CNS), Although NLRP1 was the earliest discovered inflammasome, the specific involvement of NLRP1 in neurodegenerative diseases remains to be fully elucidated. Recently, the discovery of an endogenous inhibitor of NLRP1, dipeptidyl peptidase 9, suggests the feasibility of producing of small-molecule drugs targeting NLRP1. This review describes the latest findings on the role of the NLRP1 inflammasome in the pathology of neurodegenerative disorders, including Alzheimer's disease, and summarises the regulatory mechanisms of NLRP1 inflammasome activation in the CNS. Furthermore, we highlight the recent progress in developing small-molecule and biological inhibitors that modulate the NLRP1 infammasome for the treatment of neurodegenerative disorders, some of which are advancing to preclinical testing. SIGNIFICANCE STATEMENT: The objective of this review is to synthesise the research on the structure, activation, and regulatory mechanisms of the NLRP1 inflammasome, along with its potential impact on both acute and chronic neurodegenerative conditions. The discovery of endogenous inhibitors, such as dipeptidyl peptidase 9 and thioredoxin, and their interaction with NLRP1 suggest the possibility of developing NLRP1-targeted small-molecule drugs for the treatment of neurodegenerative disorders. This review also discusses the use of both direct and indirect NLRP1 inhibitors as prospective therapeutic strategies for these conditions.
Collapse
Affiliation(s)
- Meng-Jie Zhang
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Long Yang
- Rehabilitation Medicine Department, Shanghai Eighth People's Hospital, Shanghai 200235, China
| | - Zhuo-Yao Li
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Long-Yun Zhou
- Rehabilitation Medicine Center, Jiangsu Provincial People's Hospital, Jiangsu 210029, China
| | - Yong-Jun Wang
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Hong-Shen Wang
- Orthopedics Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Xue-Jun Cui
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Min Yao
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
3
|
Ye T, Tao WY, Chen XY, Jiang C, Di B, Xu LL. Mechanisms of NLRP3 inflammasome activation and the development of peptide inhibitors. Cytokine Growth Factor Rev 2023; 74:1-13. [PMID: 37821254 DOI: 10.1016/j.cytogfr.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023]
Abstract
The Nucleotide-binding domain leucine-rich repeat and pyrin domain containing receptor 3 (NLRP3), a member of the nucleotide-binding oligomerization domain (NOD) like receptors (NLRs) family, plays an important role in the innate immune response against pathogen invasions. NLRP3 inflammasome consisting of NLRP3 protein, the adapter protein apoptosis-associated speck-like protein containing a caspase recruitment domain (CARD) (ASC), and the effector protein pro-caspase-1, is central to this process. Upon activation, NLRP3 inflammasome initiates the release of inflammatory cytokines and triggers a form of cell death known as pyroptosis. Dysregulation or inappropriate activation of NLRP3 has been implicated in various human diseases, including type 2 diabetes, colitis, depression, and gout. Consequently, understanding the mechanism underlying NLRP3 inflammasome activation is critical for the development of therapeutic drugs. In the pursuit of potential therapeutic agents, peptides present several advantages over small molecules. They offer higher selectivity, increased potency, reduced toxicity, and fewer off-target effects. The advancements in molecular biology have expanded the opportunities for applying peptides in medicine, unlocking their vast medical potential. This review begins by providing a comprehensive summary of recent research progress regarding the mechanisms governing NLRP3 inflammasome activation. Subsequently, we offer an overview of current peptide inhibitors capable of modulating the NLRP3 inflammasome activation pathway.
Collapse
Affiliation(s)
- Tao Ye
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Wei-Yan Tao
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Yi Chen
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Cheng Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| | - Bin Di
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| | - Li-Li Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
4
|
Alexeeva E, Shingarova M, Dvoryakovskaya T, Lomakina O, Fetisova A, Isaeva K, Chomakhidze A, Chibisova K, Krekhova E, Kozodaeva A, Savostyanov K, Pushkov A, Zhanin I, Demyanov D, Suspitsin E, Belozerov K, Kostik M. Safety and efficacy of canakinumab treatment for undifferentiated autoinflammatory diseases: the data of a retrospective cohort two-centered study. Front Med (Lausanne) 2023; 10:1257045. [PMID: 38034538 PMCID: PMC10685903 DOI: 10.3389/fmed.2023.1257045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/13/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction The blockade of interleukine-1 (anakinra and canakinumab) is a well-known highly effective tool for monogenic autoinflammatory diseases (AIDs), such as familial Mediterranean fever, tumor necrosis factor receptor-associated periodic syndrome, hyperimmunoglobulinaemia D syndrome, and cryopyrin-associated periodic syndrome, but this treatment has not been assessed for patients with undifferentiated AIDs (uAIDs). Our study aimed to assess the safety and efficacy of canakinumab for patients with uAIDs. Methods Information on 32 patients with uAIDs was retrospectively collected and analyzed. Next-generation sequencing and Federici criteria were used for the exclusion of the known monogenic AID. Results The median age of the first episode was 2.5 years (IQR: 1.3; 5.5), that of the disease diagnosis was 5.7 years (IQR: 2.5;12.7), and that of diagnostic delay was 1.1 years (IQR: 0.4; 6.1). Patients had variations in the following genes: IL10, NLRP12, STAT2, C8B, LPIN2, NLRC4, PSMB8, PRF1, CARD14, IFIH1, LYST, NFAT5, PLCG2, COPA, IL23R, STXBP2, IL36RN, JAK1, DDX58, LACC1, LRBA, TNFRSF11A, PTHR1, STAT4, TNFRSF1B, TNFAIP3, TREX1, and SLC7A7. The main clinical features were fever (100%), rash (91%; maculopapular predominantly), joint involvement (72%), splenomegaly (66%), hepatomegaly (59%), lymphadenopathy (50%), myalgia (28%), heart involvement (31%), intestinal involvement (19%); eye involvement (9%), pleuritis (16%), ascites (6%), deafness, hydrocephalia (3%), and failure to thrive (25%). Initial treatment before canakinumab consisted of non-biologic therapies: non-steroidal anti-inflammatory drugs (NSAID) (91%), corticosteroids (88%), methotrexate (38%), intravenous immunoglobulin (IVIG) (34%), cyclosporine A (25%), colchicine (6%) cyclophosphamide (6%), sulfasalazine (3%), mycophenolate mofetil (3%), hydroxychloroquine (3%), and biologic drugs: tocilizumab (62%), sarilumab, etanercept, adalimumab, rituximab, and infliximab (all 3%). Canakinumab induced complete remission in 27 patients (84%) and partial remission in one patient (3%). Two patients (6%) were primary non-responders, and two patients (6%) further developed secondary inefficacy. All patients with partial efficacy or inefficacy were switched to tocilizumab (n = 4) and sarilumab (n = 1). The total duration of canakinumab treatment was 3.6 (0.1; 8.7) years. During the study, there were no reported Serious Adverse Events (SAEs). The patients experienced non-frequent mild respiratory infections at a rate that is similar as before canakinumab is administered. Additionally, one patient developed leucopenia, but it was not necessary to stop canakinumab for this patient. Conclusion The treatment of patients with uAIDs using canakinumab was safe and effective. Further randomized clinical trials are required to confirm the efficacy and safety.
Collapse
Affiliation(s)
- Ekaterina Alexeeva
- Department of Pediatric Rheumatology, National Medical Research Center of Children's Health, Moscow, Russia
- Clinical Institute of Children's Health named after N.F. Filatov, Chair of Pediatrics and Pediatric Rheumatology of the Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia
| | - Meiri Shingarova
- Department of Pediatric Rheumatology, National Medical Research Center of Children's Health, Moscow, Russia
- Clinical Institute of Children's Health named after N.F. Filatov, Chair of Pediatrics and Pediatric Rheumatology of the Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia
| | - Tatyana Dvoryakovskaya
- Department of Pediatric Rheumatology, National Medical Research Center of Children's Health, Moscow, Russia
- Clinical Institute of Children's Health named after N.F. Filatov, Chair of Pediatrics and Pediatric Rheumatology of the Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia
| | - Olga Lomakina
- Department of Pediatric Rheumatology, National Medical Research Center of Children's Health, Moscow, Russia
| | - Anna Fetisova
- Department of Pediatric Rheumatology, National Medical Research Center of Children's Health, Moscow, Russia
| | - Ksenia Isaeva
- Department of Pediatric Rheumatology, National Medical Research Center of Children's Health, Moscow, Russia
| | - Aleksandra Chomakhidze
- Department of Pediatric Rheumatology, National Medical Research Center of Children's Health, Moscow, Russia
| | - Kristina Chibisova
- Department of Pediatric Rheumatology, National Medical Research Center of Children's Health, Moscow, Russia
| | - Elizaveta Krekhova
- Department of Pediatric Rheumatology, National Medical Research Center of Children's Health, Moscow, Russia
| | - Aleksandra Kozodaeva
- Clinical Institute of Children's Health named after N.F. Filatov, Chair of Pediatrics and Pediatric Rheumatology of the Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia
| | - Kirill Savostyanov
- Department of Medical Genetics of the Medical and Genetic Center, National Medical Research Center of Children's Health, Moscow, Russia
| | - Aleksandr Pushkov
- Department of Medical Genetics of the Medical and Genetic Center, National Medical Research Center of Children's Health, Moscow, Russia
| | - Ilya Zhanin
- Department of Medical Genetics of the Medical and Genetic Center, National Medical Research Center of Children's Health, Moscow, Russia
| | - Dmitry Demyanov
- Department of Medical Genetics of the Medical and Genetic Center, National Medical Research Center of Children's Health, Moscow, Russia
| | - Evgeny Suspitsin
- Department of Medical Genetics, Saint-Petersburg State Pediatric Medical University, Saint-Petersburg, Russia
- Department of Tumor Growth Biology, N.N. Petrov National Research Center of Oncology, Saint-Petersburg, Russia
| | - Konstantin Belozerov
- Hospital Pediatry, Saint-Petersburg State Pediatric Medical University, Saint-Petersburg, Russia
| | - Mikhail Kostik
- Hospital Pediatry, Saint-Petersburg State Pediatric Medical University, Saint-Petersburg, Russia
| |
Collapse
|
5
|
Ke Q, Greenawalt AN, Manukonda V, Ji X, Tisch RM. The regulation of self-tolerance and the role of inflammasome molecules. Front Immunol 2023; 14:1154552. [PMID: 37081890 PMCID: PMC10110889 DOI: 10.3389/fimmu.2023.1154552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/17/2023] [Indexed: 04/07/2023] Open
Abstract
Inflammasome molecules make up a family of receptors that typically function to initiate a proinflammatory response upon infection by microbial pathogens. Dysregulation of inflammasome activity has been linked to unwanted chronic inflammation, which has also been implicated in certain autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, type 1 diabetes, systemic lupus erythematosus, and related animal models. Classical inflammasome activation-dependent events have intrinsic and extrinsic effects on both innate and adaptive immune effectors, as well as resident cells in the target tissue, which all can contribute to an autoimmune response. Recently, inflammasome molecules have also been found to regulate the differentiation and function of immune effector cells independent of classical inflammasome-activated inflammation. These alternative functions for inflammasome molecules shape the nature of the adaptive immune response, that in turn can either promote or suppress the progression of autoimmunity. In this review we will summarize the roles of inflammasome molecules in regulating self-tolerance and the development of autoimmunity.
Collapse
Affiliation(s)
- Qi Ke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ashley Nicole Greenawalt
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Veera Manukonda
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Xingqi Ji
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Roland Michael Tisch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
6
|
Trifiletti R, Lachman HM, Manusama O, Zheng D, Spalice A, Chiurazzi P, Schornagel A, Serban AM, van Wijck R, Cunningham JL, Swagemakers S, van der Spek PJ. Identification of ultra-rare genetic variants in pediatric acute onset neuropsychiatric syndrome (PANS) by exome and whole genome sequencing. Sci Rep 2022; 12:11106. [PMID: 35773312 PMCID: PMC9246359 DOI: 10.1038/s41598-022-15279-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 06/21/2022] [Indexed: 12/13/2022] Open
Abstract
Abrupt onset of severe neuropsychiatric symptoms including obsessive-compulsive disorder, tics, anxiety, mood swings, irritability, and restricted eating is described in children with Pediatric Acute-Onset Neuropsychiatric Syndrome (PANS). Symptom onset is often temporally associated with infections, suggesting an underlying autoimmune/autoinflammatory etiology, although direct evidence is often lacking. The pathological mechanisms are likely heterogeneous, but we hypothesize convergence on one or more biological pathways. Consequently, we conducted whole exome sequencing (WES) on a U.S. cohort of 386 cases, and whole genome sequencing (WGS) on ten cases from the European Union who were selected because of severe PANS. We focused on identifying potentially deleterious genetic variants that were de novo or ultra-rare (MAF) < 0.001. Candidate mutations were found in 11 genes (PPM1D, SGCE, PLCG2, NLRC4, CACNA1B, SHANK3, CHK2, GRIN2A, RAG1, GABRG2, and SYNGAP1) in 21 cases, which included two or more unrelated subjects with ultra-rare variants in four genes. These genes converge into two broad functional categories. One regulates peripheral immune responses and microglia (PPM1D, CHK2, NLRC4, RAG1, PLCG2). The other is expressed primarily at neuronal synapses (SHANK3, SYNGAP1, GRIN2A, GABRG2, CACNA1B, SGCE). Mutations in these neuronal genes are also described in autism spectrum disorder and myoclonus-dystonia. In fact, 12/21 cases developed PANS superimposed on a preexisting neurodevelopmental disorder. Genes in both categories are also highly expressed in the enteric nervous system and the choroid plexus. Thus, genetic variation in PANS candidate genes may function by disrupting peripheral and central immune functions, neurotransmission, and/or the blood-CSF/brain barriers following stressors such as infection.
Collapse
Affiliation(s)
| | - Herbert M Lachman
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Olivia Manusama
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands
| | - Deyou Zheng
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alberto Spalice
- Department of Pediatrics, Pediatric Neurology, Sapienza University of Rome, Rome, Italy
| | - Pietro Chiurazzi
- Sezione di Medicina Genomica, Dipartimento Scienze della Vita e Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento Scienze di Laboratorio e Infettivologiche, UOC Genetica Medica, Rome, Italy
| | - Allan Schornagel
- GGZ-Delfland, Kinderpraktijk Zoetermeer, Zoetermeer, The Netherlands
| | - Andreea M Serban
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| | - Rogier van Wijck
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| | - Janet L Cunningham
- Department of Neuroscience, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Sigrid Swagemakers
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| | - Peter J van der Spek
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|