1
|
Pawar VA, Tyagi A, Verma C, Sharma KP, Ansari S, Mani I, Srivastva SK, Shukla PK, Kumar A, Kumar V. Unlocking therapeutic potential: integration of drug repurposing and immunotherapy for various disease targeting. Am J Transl Res 2023; 15:4984-5006. [PMID: 37692967 PMCID: PMC10492070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023]
Abstract
Drug repurposing, also known as drug repositioning, entails the application of pre-approved or formerly assessed drugs having potentially functional therapeutic amalgams for curing various disorders or disease conditions distinctive from their original remedial indication. It has surfaced as a substitute for the development of drugs for treating cancer, cardiovascular diseases, neurodegenerative disorders, and various infectious diseases like Covid-19. Although the earlier lines of findings in this area were serendipitous, recent advancements are based on patient centered approaches following systematic, translational, drug targeting practices that explore pathophysiological ailment mechanisms. The presence of definite information and numerous records with respect to beneficial properties, harmfulness, and pharmacologic characteristics of repurposed drugs increase the chances of approval in the clinical trial stages. The last few years have showcased the successful emergence of repurposed drug immunotherapy in treating various diseases. In this light, the present review emphasises on incorporation of drug repositioning with Immunotherapy targeted for several disorders.
Collapse
Affiliation(s)
| | - Anuradha Tyagi
- Department of cBRN, Institute of Nuclear Medicine and Allied ScienceDelhi 110054, India
| | - Chaitenya Verma
- Department of Pathology, Wexner Medical Center, Ohio State UniversityColumbus, Ohio 43201, USA
| | - Kanti Prakash Sharma
- Department of Nutrition Biology, Central University of HaryanaMahendragarh 123029, India
| | - Sekhu Ansari
- Division of Pathology, Cincinnati Children’s Hospital Medical CenterCincinnati, Ohio 45229, USA
| | - Indra Mani
- Department of Microbiology, Gargi College, University of DelhiNew Delhi 110049, India
| | | | - Pradeep Kumar Shukla
- Department of Biological Sciences, Faculty of Science, Sam Higginbottom University of Agriculture, Technology of SciencePrayagraj 211007, UP, India
| | - Antresh Kumar
- Department of Biochemistry, Central University of HaryanaMahendergarh 123031, Haryana, India
| | - Vinay Kumar
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical CenterColumbus, Ohio 43210, USA
| |
Collapse
|
2
|
Gaudet M, Kaufmann E, Jalaleddine N, Mogas A, Hachim M, Senok A, Divangahi M, Hamid Q, Al Heialy S. Lung Epithelial Cells from Obese Patients Have Impaired Control of SARS-CoV-2 Infection. Int J Mol Sci 2023; 24:ijms24076729. [PMID: 37047702 PMCID: PMC10095048 DOI: 10.3390/ijms24076729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/27/2023] [Accepted: 03/05/2023] [Indexed: 04/08/2023] Open
Abstract
Obesity is known to increase the complications of the COVID-19 coronavirus disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the exact mechanisms of SARS-CoV-2 infection in obese patients have not been clearly elucidated. This study aims to better understand the effect of obesity on the course of SARS-CoV-2 infection and identify candidate molecular pathways involved in the progression of the disease, using an in vitro live infection model and RNA sequencing. Results from this study revealed the enhancement of viral load and replication in bronchial epithelial cells (NHBE) from obese subjects at 24 h of infection (MOI = 0.5) as compared to non-obese subjects. Transcriptomic profiling via RNA-Seq highlighted the enrichment of lipid metabolism-related pathways along with LPIN2, an inflammasome regulator, as a unique differentially expressed gene (DEG) in infected bronchial epithelial cells from obese subjects. Such findings correlated with altered cytokine and angiotensin-converting enzyme-2 (ACE2) expression during infection of bronchial cells. These findings provide a novel insight on the molecular interplay between obesity and SARS-CoV-2 infection. In conclusion, this study demonstrates the increased SARS-CoV-2 infection of bronchial epithelial cells from obese subjects and highlights the impaired immunity which may explain the increased severity among obese COVID-19 patients.
Collapse
Affiliation(s)
- Mellissa Gaudet
- Meakins-Christie Laboratories, Research Institute of the McGill University Healthy Center, Montreal, QC H4A 3J1, Canada
| | - Eva Kaufmann
- Meakins-Christie Laboratories, Research Institute of the McGill University Healthy Center, Montreal, QC H4A 3J1, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Nour Jalaleddine
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Andrea Mogas
- Meakins-Christie Laboratories, Research Institute of the McGill University Healthy Center, Montreal, QC H4A 3J1, Canada
| | - Mahmood Hachim
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Abiola Senok
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Maziar Divangahi
- Meakins-Christie Laboratories, Research Institute of the McGill University Healthy Center, Montreal, QC H4A 3J1, Canada
| | - Qutayba Hamid
- Meakins-Christie Laboratories, Research Institute of the McGill University Healthy Center, Montreal, QC H4A 3J1, Canada
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Saba Al Heialy
- Meakins-Christie Laboratories, Research Institute of the McGill University Healthy Center, Montreal, QC H4A 3J1, Canada
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| |
Collapse
|
3
|
Muñiz-Banciella MG, Albaiceta GM, Amado-Rodríguez L, Del Riego ES, Alonso IL, López-Martínez C, Martín-Vicente P, García-Clemente M, Hermida-Valverde T, Enríquez-Rodriguez AI, Hernández-González C, Cuesta-Llavona E, Alvarez V, Gómez J, Coto E. Age-dependent effect of the IFIH1/MDA5 gene variants on the risk of critical COVID-19. Immunogenetics 2023; 75:91-98. [PMID: 36434151 PMCID: PMC9702716 DOI: 10.1007/s00251-022-01281-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/20/2022] [Indexed: 11/27/2022]
Abstract
MDA5, encoded by the IFIH1gene, is a cytoplasmic sensor of viral RNAs that triggers interferon (IFN) antiviral responses. Common and rare IFIH1 variants have been associated with the risk of type 1 diabetes and other immune-mediated disorders, and with the outcome of viral diseases. Variants associated with reduced IFN expression would increase the risk for severe viral disease. The MDA5/IFN pathway would play a critical role in the response to SARS-CoV-2 infection mediating the extent and severity of COVID-19. Here, we genotyped a cohort of 477 patients with critical ICU COVID-19 (109 death) for three IFIH1 functional variants: rs1990760 (p.Ala946Thr), rs35337543 (splicing variant, intron 8 + 1G > C), and rs35744605 (p.Glu627Stop). The main finding of our study was a significant increased frequency of rs1990760 C-carriers in early-onset patients (< 65 years) (p = 0.01; OR = 1.64, 95%CI = 1.18-2.43). This variant was also increased in critical vs. no-ICU patients and in critical vs. asymptomatic controls. The rs35744605 C variant was associated with increased blood IL6 levels at ICU admission. The rare rs35337543 splicing variant showed a trend toward protection from early-onset critical COVID-19. In conclusion, IFIH1 variants associated with reduced gene expression and lower IFN response might contribute to develop critical COVID-19 with an age-dependent effect.
Collapse
Affiliation(s)
| | - Guillermo M Albaiceta
- Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central Asturias, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
- Universidad de Oviedo, Oviedo, Spain
- CIBER-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Laura Amado-Rodríguez
- Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central Asturias, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
- Universidad de Oviedo, Oviedo, Spain
- CIBER-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | | | - Inés López Alonso
- Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
- CIBER-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Cecilia López-Martínez
- Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
- CIBER-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Paula Martín-Vicente
- Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
- CIBER-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Marta García-Clemente
- Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
- Universidad de Oviedo, Oviedo, Spain
- Neumología, Hospital Universitario Central Asturias, Oviedo, Spain
| | | | | | | | - Elías Cuesta-Llavona
- Genética Molecular, Hospital Universitario Central Asturias, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
| | - Victoria Alvarez
- Genética Molecular, Hospital Universitario Central Asturias, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
| | - Juan Gómez
- Genética Molecular, Hospital Universitario Central Asturias, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
| | - Eliecer Coto
- Genética Molecular, Hospital Universitario Central Asturias, Oviedo, Spain.
- Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain.
- Universidad de Oviedo, Oviedo, Spain.
| |
Collapse
|
4
|
Baltan E, Serin E, Avci BY, Akilli IK, Çinar AS. The relationship between plasminogen activator inhibitor-1 levels and the course of disease in COVID-19 patients. TURKISH JOURNAL OF BIOCHEMISTRY 2022; 47:672-679. [DOI: 10.1515/tjb-2022-0044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Abstract
Objectives
Studies have shown that fibrinolysis activity is insufficient in COVID-19 patients. Plasminogen activator inhibitor-1 (PAI-1) is an important antifibrinolytic molecule that plays a key role in the fibrinolytic system. In our study; we aimed to evaluate serum PAI-1 and other biochemical parameters of COVID-19 patients in terms of disease course and mortality.
Methods
A total of 40 COVID-19 patients were hospitalized in the service and intensive care unit (ICU) of our hospital from October to December 2020 and 20 healthy volunteers were included in our study. The patients were grouped as those who transferred to the ICU from the service and transferred to service from the ICU. The first and second values of the same patients in both the service and the ICU were analyzed by SPSS.
Results
The PAI-1 levels of the patients in the ICU were significantly higher than the levels of the same patients in the service and the healthy control group (p<0.001). IL-6, ferritin, and D-dimer levels in the ICU of the same patients were significantly higher than the levels of service and healthy control group (p<0.001). A positive correlation was found between initial serum PAI-1 and D-dimer levels in patients hospitalized in the service (p=0.039) and initial serum ferritin and IL-6 levels in the ICU (p=0.031).
Conclusions
In our study, we found that PAI-1 levels increased significantly with the increase in mortality in COVID-19 patients.
Collapse
Affiliation(s)
- Ecem Baltan
- Medical Biochemistry , Istanbul Şişli Hamidiye Etfal Training and Research Hospital , Sisli , Turkey
| | - Erdinç Serin
- Medical Biochemistry , Istanbul Şişli Hamidiye Etfal Training and Research Hospital , Sisli , Turkey
| | | | - Işil Kibar Akilli
- Department of Chest Diseases , Istanbul Şişli Hamidiye Etfal Training and Research Hospital , Sisli , Turkey
| | - Ayşe Sürhan Çinar
- Deparment of Anesthesiology and Reanimation , Istanbul Şişli Hamidiye Etfal Training and Research Hospital , Sisli , Turkey
| |
Collapse
|
5
|
Sabbatinelli J, Matacchione G, Giuliani A, Ramini D, Rippo MR, Procopio AD, Bonafè M, Olivieri F. Circulating biomarkers of inflammaging as potential predictors of COVID-19 severe outcomes. Mech Ageing Dev 2022; 204:111667. [PMID: 35341896 PMCID: PMC8949647 DOI: 10.1016/j.mad.2022.111667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 01/10/2023]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 infection has been of unprecedented clinical and socio-economic worldwide relevance. The case fatality rate for COVID-19 grows exponentially with age and the presence of comorbidities. In the older patients, COVID-19 manifests predominantly as a systemic disease associated with immunological, inflammatory, and procoagulant responses. Timely diagnosis and risk stratification are crucial steps to define appropriate therapies and reduce mortality, especially in the older patients. Chronically and systemically activated innate immune responses and impaired antiviral responses have been recognized as the results of a progressive remodeling of the immune system during aging, which can be described by the words 'immunosenescence' and 'inflammaging'. These age-related features of the immune system were highlighted in patients affected by COVID-19 with the poorest clinical outcomes, suggesting that the mechanisms underpinning immunosenescence and inflammaging could be relevant for COVID-19 pathogenesis and progression. Increasing evidence suggests that senescent myeloid and endothelial cells are characterized by the acquisition of a senescence-associated pro-inflammatory phenotype (SASP), which is considered as the main culprit of both immunosenescence and inflammaging. Here, we reviewed this evidence and highlighted several circulating biomarkers of inflammaging that could provide additional prognostic information to stratify COVID-19 patients based on the risk of severe outcomes.
Collapse
Affiliation(s)
- Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Laboratory Medicine, AOU Ospedali Riuniti, Ancona, Italy
| | - Giulia Matacchione
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Angelica Giuliani
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Deborah Ramini
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - Massimiliano Bonafè
- Department of Experimental, Diagnostic and Specialty Medicine, Università di Bologna, Bologna, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy.
| |
Collapse
|
6
|
Atallah J, Archambault D, Randall JD, Shepro A, Styskal LE, Glenn DR, Connolly CB, Katsis K, Gallagher K, Ghebremichael M, Mansour MK. Rapid Quantum Magnetic IL-6 Point-of-Care Assay in Patients Hospitalized with COVID-19. Diagnostics (Basel) 2022; 12:1164. [PMID: 35626318 PMCID: PMC9139897 DOI: 10.3390/diagnostics12051164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 11/21/2022] Open
Abstract
Interleukin-6 (IL-6) has been linked to several life-threatening disease processes. Developing a point-of-care testing platform for the immediate and accurate detection of IL-6 concentrations could present a valuable tool for improving clinical management in patients with IL-6-mediated diseases. Drawing on an available biobank of samples from 35 patients hospitalized with COVID-19, a novel quantum-magnetic sensing platform is used to determine plasma IL-6 concentrations. A strong correlation was observed between IL-6 levels measured by QDTI10x and the Luminex assay (r = 0.70, p-value < 0.001) and between QDTI80x and Luminex (r = 0.82, p-value < 0.001). To validate the non-inferiority of QDTI to Luminex in terms of the accuracy of IL-6 measurement, two clinical parameters—the need for intensive care unit admission and the need for mechanical intubation—were chosen. IL-6 concentrations measured by the two assays were compared with respect to these clinical outcomes. Results demonstrated a comparative predictive performance between the two assays with a significant correlation coefficient. Conclusion: In short, the QDTI assay holds promise for implementation as a potential tool for rapid clinical decision in patients with IL-6-mediated diseases. It could also reduce healthcare costs and enable the development of future various biomolecule point-of-care tests for different clinical scenarios.
Collapse
Affiliation(s)
- Johnny Atallah
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA; (J.A.); (D.A.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; (K.K.); (K.G.); (M.G.)
| | - Dakota Archambault
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA; (J.A.); (D.A.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; (K.K.); (K.G.); (M.G.)
| | - Jeffrey D. Randall
- Quantum Diamond Technologies Inc., Somerville, MA 02143, USA; (J.D.R.); (A.S.); (L.E.S.); (D.R.G.); (C.B.C.)
| | - Adam Shepro
- Quantum Diamond Technologies Inc., Somerville, MA 02143, USA; (J.D.R.); (A.S.); (L.E.S.); (D.R.G.); (C.B.C.)
| | - Lauren E. Styskal
- Quantum Diamond Technologies Inc., Somerville, MA 02143, USA; (J.D.R.); (A.S.); (L.E.S.); (D.R.G.); (C.B.C.)
| | - David R. Glenn
- Quantum Diamond Technologies Inc., Somerville, MA 02143, USA; (J.D.R.); (A.S.); (L.E.S.); (D.R.G.); (C.B.C.)
| | - Colin B. Connolly
- Quantum Diamond Technologies Inc., Somerville, MA 02143, USA; (J.D.R.); (A.S.); (L.E.S.); (D.R.G.); (C.B.C.)
| | - Katelin Katsis
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; (K.K.); (K.G.); (M.G.)
| | - Kathleen Gallagher
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; (K.K.); (K.G.); (M.G.)
| | - Musie Ghebremichael
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; (K.K.); (K.G.); (M.G.)
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02138, USA
| | - Michael K. Mansour
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA; (J.A.); (D.A.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; (K.K.); (K.G.); (M.G.)
| |
Collapse
|
7
|
Saed Aldien A, Ganesan GS, Wahbeh F, Al-Nassr N, Altarawneh H, Al Theyab L, Saed Aldien S, Tomerak S, Naveed H, Elshazly MB, Zakaria D. Systemic Inflammation May Induce Cardiac Injury in COVID-19 Patients Including Children and Adolescents Without Underlying Cardiovascular Diseases: A Systematic Review. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2022; 35:169-178. [PMID: 33952432 PMCID: PMC8046745 DOI: 10.1016/j.carrev.2021.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019(COVID-19) is an ongoing global pandemic with a daily increasing number of affected individuals and a relatively high mortality rate. COVID-19 patients that develop cardiac injury are at increased risk of a worse clinical course with higher rates of mortality. Increasing amounts of evidence suggest that a system-wide inflammatory response and a cytokine storm mediated type syndrome plays a crucial role in disease progression. This systematic review investigates the possible role of hyperinflammation in inducing cardiac injury as one of the severe complications of COVID-19. A systematic literature search was performed using PubMed, Embase and Scopus databases to identify relevant clinical studies that investigated cardiovascular injury manifestations and reported inflammatory and cardiac biomarkers in COVID-19 patients. Only 29 studies met our inclusion criteria and the majority of these studies demonstrated significantly elevated inflammatory and cardiac blood markers. It was evident that underlying cardiovascular diseases may increase the risk of developing cardiac injury. However, many COVID-19 patients included in this review, developed different types of cardiac injury without having any underlying cardiovascular diseases. Furthermore, many of these patients were either children or adolescents. Therefore, age and comorbidities may not always be the two main risk factors that dictate the severity and outcome of COVID-19. Further investigations are required to understand the underlying mechanisms of pathogenicity as an urgent requirement to develop the appropriate treatment and prevention strategies. These strategies may specifically target hyperinflammation as a suspected driving factor for some of the severe complications of COVID-19.
Collapse
Affiliation(s)
- Arwa Saed Aldien
- Weill Cornell Medicine Qatar, Qatar Foundation, Education City, Al, Luqta St. Ar-Rayyan, P.O. Box 24144, Doha, Qatar
| | - Gowrii S Ganesan
- Weill Cornell Medicine Qatar, Qatar Foundation, Education City, Al, Luqta St. Ar-Rayyan, P.O. Box 24144, Doha, Qatar
| | - Farah Wahbeh
- Weill Cornell Medicine Qatar, Qatar Foundation, Education City, Al, Luqta St. Ar-Rayyan, P.O. Box 24144, Doha, Qatar
| | - Noor Al-Nassr
- Weill Cornell Medicine Qatar, Qatar Foundation, Education City, Al, Luqta St. Ar-Rayyan, P.O. Box 24144, Doha, Qatar
| | - Heba Altarawneh
- Weill Cornell Medicine Qatar, Qatar Foundation, Education City, Al, Luqta St. Ar-Rayyan, P.O. Box 24144, Doha, Qatar
| | - Lolwa Al Theyab
- Weill Cornell Medicine Qatar, Qatar Foundation, Education City, Al, Luqta St. Ar-Rayyan, P.O. Box 24144, Doha, Qatar
| | | | - Sara Tomerak
- Weill Cornell Medicine Qatar, Qatar Foundation, Education City, Al, Luqta St. Ar-Rayyan, P.O. Box 24144, Doha, Qatar
| | - Hiba Naveed
- Weill Cornell Medicine Qatar, Qatar Foundation, Education City, Al, Luqta St. Ar-Rayyan, P.O. Box 24144, Doha, Qatar
| | - Mohamed B Elshazly
- Weill Cornell Medicine Qatar, Qatar Foundation, Education City, Al, Luqta St. Ar-Rayyan, P.O. Box 24144, Doha, Qatar
| | - Dalia Zakaria
- Weill Cornell Medicine Qatar, Qatar Foundation, Education City, Al, Luqta St. Ar-Rayyan, P.O. Box 24144, Doha, Qatar.
| |
Collapse
|
8
|
Iovino L, Thur LA, Gnjatic S, Chapuis A, Milano F, Hill JA. Shared inflammatory pathways and therapeutic strategies in COVID-19 and cancer immunotherapy. J Immunother Cancer 2021; 9:e002392. [PMID: 33986127 PMCID: PMC8126446 DOI: 10.1136/jitc-2021-002392] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 01/28/2023] Open
Abstract
COVID-19, the syndrome caused by the infection with SARS-CoV-2 coronavirus, is characterized, in its severe form, by interstitial diffuse pneumonitis and acute respiratory distress syndrome (ARDS). ARDS and systemic manifestations of COVID-19 are mainly due to an exaggerated immune response triggered by the viral infection. Cytokine release syndrome (CRS), an inflammatory syndrome characterized by elevated levels of circulating cytokines, and endothelial dysfunction are systemic manifestations of COVID-19. CRS is also an adverse event of immunotherapy (IMTX), the treatment of diseases using drugs, cells, and antibodies to stimulate or suppress the immune system. Graft-versus-host disease complications after an allogeneic stem cell transplant, toxicity after the infusion of chimeric antigen receptor-T cell therapy and monoclonal antibodies can all lead to CRS. It is hypothesized that anti-inflammatory drugs used for treatment of CRS in IMTX may be useful in reducing the mortality in COVID-19, whereas IMTX itself may help in ameliorating effects of SARS-CoV-2 infection. In this paper, we focused on the potential shared mechanisms and differences between COVID-19 and IMTX-related toxicities. We performed a systematic review of the clinical trials testing anti-inflammatory therapies and of the data published from prospective trials. Preliminary evidence suggests there might be a benefit in targeting the cytokines involved in the pathogenesis of COVID-19, especially by inhibiting the interleukin-6 pathway. Many other approaches based on novel drugs and cell therapies are currently under investigation and may lead to a reduction in hospitalization and mortality due to COVID-19.
Collapse
Affiliation(s)
- Lorenzo Iovino
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Laurel A Thur
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Sacha Gnjatic
- Medicine-Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Aude Chapuis
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Filippo Milano
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Joshua A Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
9
|
Verhoef PA, Kannan S, Sturgill JL, Tucker EW, Morris PE, Miller AC, Sexton TR, Koyner JL, Hejal R, Brakenridge SC, Moldawer LL, Hotchkiss RS, Blood TM, Mazer MB, Bolesta S, Alexander SA, Armaignac DL, Shein SL, Jones C, Hoemann CD, Doctor A, Friess SH, Parker RI, Rotta AT, Remy KE. Severe Acute Respiratory Syndrome-Associated Coronavirus 2 Infection and Organ Dysfunction in the ICU: Opportunities for Translational Research. Crit Care Explor 2021; 3:e0374. [PMID: 33786450 PMCID: PMC7994036 DOI: 10.1097/cce.0000000000000374] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES Since the beginning of the coronavirus disease 2019 pandemic, hundreds of thousands of patients have been treated in ICUs across the globe. The severe acute respiratory syndrome-associated coronavirus 2 virus enters cells via the angiotensin-converting enzyme 2 receptor and activates several distinct inflammatory pathways, resulting in hematologic abnormalities and dysfunction in respiratory, cardiac, gastrointestinal renal, endocrine, dermatologic, and neurologic systems. This review summarizes the current state of research in coronavirus disease 2019 pathophysiology within the context of potential organ-based disease mechanisms and opportunities for translational research. DATA SOURCES Investigators from the Research Section of the Society of Critical Care Medicine were selected based on expertise in specific organ systems and research focus. Data were obtained from searches conducted in Medline via the PubMed portal, Directory of Open Access Journals, Excerpta Medica database, Latin American and Caribbean Health Sciences Literature, and Web of Science from an initial search from December 2019 to October 15, 2020, with a revised search to February 3, 2021. The medRxiv, Research Square, and clinical trial registries preprint servers also were searched to limit publication bias. STUDY SELECTION Content experts selected studies that included mechanism-based relevance to the severe acute respiratory syndrome-associated coronavirus 2 virus or coronavirus disease 2019 disease. DATA EXTRACTION Not applicable. DATA SYNTHESIS Not applicable. CONCLUSIONS Efforts to improve the care of critically ill coronavirus disease 2019 patients should be centered on understanding how severe acute respiratory syndrome-associated coronavirus 2 infection affects organ function. This review articulates specific targets for further research.
Collapse
Affiliation(s)
- Philip A Verhoef
- Department of Medicine, University of Hawaii-Manoa, Honolulu, HI
- Kaiser Permanente Hawaii, Honolulu, HI
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care Medicine, Division of Pediatric Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jamie L Sturgill
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kentucky, Lexington, KY
| | - Elizabeth W Tucker
- Department of Anesthesiology and Critical Care Medicine, Division of Pediatric Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Peter E Morris
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kentucky, Lexington, KY
| | - Andrew C Miller
- Department of Emergency Medicine, Nazareth Hospital, Philadelphia, PA
| | - Travis R Sexton
- Department of Internal Medicine, The University of Kentucky-Lexington School of Medicine, The Gill Heart and Vascular Institute, Lexington, KY
| | - Jay L Koyner
- Section of Nephrology, University of Chicago, Chicago, IL
| | - Rana Hejal
- Department of Internal Medicine, Division of Pulmonary Critical Care, Case Western School of Medicine, Cleveland, OH
| | - Scott C Brakenridge
- Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL
| | - Lyle L Moldawer
- Department of Surgery, Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, FL
| | - Richard S Hotchkiss
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
- Department of Anesthesiology, Division of Critical Care Medicine, Washington University School of Medicine, St. Louis, MO
- Department of Surgery, St. Louis, Washington University School of Medicine, MO
| | - Teresa M Blood
- Department of Anesthesiology, Division of Critical Care Medicine, Washington University School of Medicine, St. Louis, MO
| | - Monty B Mazer
- Department of Anesthesiology, Division of Critical Care Medicine, Washington University School of Medicine, St. Louis, MO
| | - Scott Bolesta
- Department of Pharmacy Practice, Nesbitt School of Pharmacy, Wilkes University, Wilkes-Barre, PA
| | | | | | - Steven L Shein
- Department of Pediatrics, Division of Critical Care, Rainbow Babies and Children's Hospital, Cleveland, OH
| | - Christopher Jones
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | | | - Allan Doctor
- Department of Pediatrics, Division of Critical Care Medicine, The University of Maryland School of Medicine, Baltimore, MD
| | - Stuart H Friess
- Department of Pediatrics, Division of Critical Care Medicine, Washington University School of Medicine, St. Louis, MO
| | - Robert I Parker
- Department of Pediatrics, Hematology Hematology/Oncology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY
| | - Alexandre T Rotta
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, Duke University Medical Center, Durham, NC
| | - Kenneth E Remy
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
- Department of Anesthesiology, Division of Critical Care Medicine, Washington University School of Medicine, St. Louis, MO
- Department of Pediatrics, Division of Critical Care Medicine, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
10
|
Patel S, Saxena B, Mehta P. Recent updates in the clinical trials of therapeutic monoclonal antibodies targeting cytokine storm for the management of COVID-19. Heliyon 2021; 7:e06158. [PMID: 33553708 PMCID: PMC7846241 DOI: 10.1016/j.heliyon.2021.e06158] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/23/2020] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Clinical studies have identified a cytokine storm in the third stage of disease progression in critical ill patients with coronavirus disease 2019 (COVID-19). Hence, effectively suppressing the uncontrolled immune response of the host towards the invaded viruses in a cytokine storm is a critical step to prevent the deterioration of patient conditions and decrease the rate of mortality. Therapeutic monoclonal antibodies (mAbs) are found to be effective for the management of acute respiratory distress syndrome in patients with COVID-19. In this review, we compiled all therapeutic mAbs targeting cytokine storm, which are in clinical trials for its repurposing in the management of COVID-19. Compilation of clinical trial data indicated that therapeutic monoclonal antibodies targeting interleukins (IL-6, IL-1ra, IL-8, IL-1β, IL-17A, IL-33), interferon-gamma, tumor necrosis factor-alpha, P-selectin, connective tissue growth factor, plasma kallikrein, tumor necrosis factor superfamily 14, granulocyte macrophage colony stimulating factor, colony stimulating factor 1 receptor, C-C chemokine receptor type 5, cluster of differentiation 14 and 147, vascular endothelial growth factor, programmed cell death protein-1, Angiopoietin - 2, human factor XIIa, complementary protein 5, natural killer cell receptor G2A, human epidermal growth factor receptor 2, immunoglobulin-like transcript 7 receptor, complement component fragment 5a receptor and viral attachment to the human cell were under investigation for management of severely ill patients with COVID-19. Among these, about 65 clinical trials are targeting IL-6 inhibition as the most promising one and Tocilizumab, an IL-6 inhibitor is considered to be the potential candidate to treat cytokine storm associated with the COVID-19.
Collapse
Affiliation(s)
- Shikha Patel
- Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, S.G. Highway, Ahmedabad, 382481, India
| | - Bhagawati Saxena
- Department of Pharmacology, Institute of Pharmacy, Nirma University, S.G. Highway, Ahmedabad, 382481, India
| | - Priti Mehta
- Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, S.G. Highway, Ahmedabad, 382481, India
| |
Collapse
|