1
|
Wang L, Xie Y, Chang J, Wang J, Liu H, Shi M, Zhong Y. A novel sucrose-inducible expression system and its application for production of biomass-degrading enzymes in Aspergillus niger. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:23. [PMID: 36782304 PMCID: PMC9926565 DOI: 10.1186/s13068-023-02274-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023]
Abstract
BACKGROUND Filamentous fungi are extensively exploited as important enzyme producers due to the superior secretory capability. However, the complexity of their secretomes greatly impairs the titer and purity of heterologous enzymes. Meanwhile, high-efficient evaluation and production of bulk enzymes, such as biomass-degrading enzymes, necessitate constructing powerful expression systems for bio-refinery applications. RESULTS A novel sucrose-inducible expression system based on the host strain Aspergillus niger ATCC 20611 and the β-fructofuranosidase promoter (PfopA) was constructed. A. niger ATCC 20611 preferentially utilized sucrose for rapid growth and β-fructofuranosidase production. Its secretory background was relatively clean because β-fructofuranosidase, the key enzyme responsible for sucrose utilization, was essentially not secreted into the medium and the extracellular protease activity was low. Furthermore, the PfopA promoter showed a sucrose concentration-dependent induction pattern and was not subject to glucose repression. Moreover, the strength of PfopA was 7.68-fold higher than that of the commonly used glyceraldehyde-3-phosphate dehydrogenase promoter (PgpdA) with enhanced green fluorescence protein (EGFP) as a reporter. Thus, A. niger ATCC 20611 coupled with the PfopA promoter was used as an expression system to express a β-glucosidase gene (bgla) from A. niger C112, allowing the production of β-glucosidase at a titer of 17.84 U/mL. The crude β-glucosidase preparation could remarkably improve glucose yield in the saccharification of pretreated corncob residues when added to the cellulase mixture of Trichoderma reesei QM9414. The efficacy of this expression system was further demonstrated by co-expressing the T. reesei-derived chitinase Chi46 and β-N-acetylglucosaminidase Nag1 to obtain an efficient chitin-degrading enzyme cocktail, which could achieve the production of N-acetyl-D-glucosamine from colloidal chitin with a conversion ratio of 91.83%. Besides, the purity of the above-secreted biomass-degrading enzymes in the crude culture supernatant was over 86%. CONCLUSIONS This PfopA-driven expression system expands the genetic toolbox of A. niger and broadens the application field of the traditional fructo-oligosaccharides-producing strain A. niger ATCC 20611, advancing it to become a high-performing enzyme-producing cell factory. In particular, the sucrose-inducible expression system possessed the capacity to produce biomass-degrading enzymes at a high level and evade endogenous protein interference, providing a potential purification-free enzyme production platform for bio-refinery applications.
Collapse
Affiliation(s)
- Lu Wang
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Yijia Xie
- Qingdao Academy, Qingdao, 266111 People’s Republic of China
| | - Jingjing Chang
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Juan Wang
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Hong Liu
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Mei Shi
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.
| | - Yaohua Zhong
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
2
|
Thakur D, Chauhan A, Jhilta P, Kaushal R, Dipta B. Microbial chitinases and their relevance in various industries. Folia Microbiol (Praha) 2023; 68:29-53. [PMID: 35972681 DOI: 10.1007/s12223-022-00999-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/31/2022] [Indexed: 01/09/2023]
Abstract
Chitin, the second most abundant biopolymer on earth after cellulose, is composed of β-1,4-N-acetylglucosamine (GlcNAc) units. It is widely distributed in nature, especially as a structural polysaccharide in the cell walls of fungi, the exoskeletons of crustaceans, insects, and nematodes. However, the principal commercial source of chitin is the shells of marine or freshwater invertebrates. Microbial chitinases are largely responsible for chitin breakdown in nature, and they play an important role in the ecosystem's carbon and nitrogen balance. Several microbial chitinases have been characterized and are gaining prominence for their applications in various sectors. The current review focuses on chitinases of microbial origin, their diversity, and their characteristics. The applications of chitinases in several industries such as agriculture, food, the environment, and pharmaceutical sectors are also highlighted.
Collapse
Affiliation(s)
- Deepali Thakur
- Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, Himachal Pradesh, India
| | - Anjali Chauhan
- Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, Himachal Pradesh, India
| | - Prakriti Jhilta
- Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, Himachal Pradesh, India
| | - Rajesh Kaushal
- Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, Himachal Pradesh, India
| | - Bhawna Dipta
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India.
| |
Collapse
|
3
|
Panchalingam H, Powell D, Adra C, Foster K, Tomlin R, Quigley BL, Nyari S, Hayes RA, Shapcott A, Kurtböke Dİ. Assessing the Various Antagonistic Mechanisms of Trichoderma Strains against the Brown Root Rot Pathogen Pyrrhoderma noxium Infecting Heritage Fig Trees. J Fungi (Basel) 2022; 8:jof8101105. [PMID: 36294670 PMCID: PMC9605450 DOI: 10.3390/jof8101105] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/09/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
A wide range of phytopathogenic fungi exist causing various plant diseases, which can lead to devastating economic, environmental, and social impacts on a global scale. One such fungus is Pyrrhoderma noxium, causing brown root rot disease in over 200 plant species of a variety of life forms mostly in the tropical and subtropical regions of the globe. The aim of this study was to discover the antagonistic abilities of two Trichoderma strains (#5001 and #5029) found to be closely related to Trichoderma reesei against P. noxium. The mycoparasitic mechanism of these Trichoderma strains against P. noxium involved coiling around the hyphae of the pathogen and producing appressorium like structures. Furthermore, a gene expression study identified an induced expression of the biological control activity associated genes in Trichoderma strains during the interaction with the pathogen. In addition, volatile and diffusible antifungal compounds produced by the Trichoderma strains were also effective in inhibiting the growth of the pathogen. The ability to produce Indole-3-acetic acid (IAA), siderophores and the volatile compounds related to plant growth promotion were also identified as added benefits to the performance of these Trichoderma strains as biological control agents. Overall, these results show promise for the possibility of using the Trichoderma strains as potential biological control agents to protect P. noxium infected trees as well as preventing new infections.
Collapse
Affiliation(s)
- Harrchun Panchalingam
- School of Science, Technology and Engineering, The University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia
| | - Daniel Powell
- School of Science, Technology and Engineering, The University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia
| | - Cherrihan Adra
- School of Science, Technology and Engineering, The University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia
| | - Keith Foster
- Brisbane City Council, Program, Planning and Integration, Brisbane Square, Level 10, 266 George Street, Brisbane, QLD 4000, Australia
| | - Russell Tomlin
- Brisbane City Council, Program, Planning and Integration, Brisbane Square, Level 10, 266 George Street, Brisbane, QLD 4000, Australia
| | - Bonnie L. Quigley
- School of Science, Technology and Engineering, The University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia
| | - Sharon Nyari
- School of Science, Technology and Engineering, The University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia
| | - R. Andrew Hayes
- Forest Industries Research Centre, The University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia
| | - Alison Shapcott
- School of Science, Technology and Engineering, The University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia
| | - D. İpek Kurtböke
- School of Science, Technology and Engineering, The University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia
- Correspondence:
| |
Collapse
|
4
|
Suryawanshi N, Eswari JS. Purification and characterization of chitinase produced by thermophilic fungi Thermomyces lanuginosus. Prep Biochem Biotechnol 2022; 52:1087-1095. [PMID: 35112660 DOI: 10.1080/10826068.2022.2028639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND In the past few years, the production of shrimp shell waste from the seafood processing industries has confronted a significant surge. Furthermore, insignificant dumping of waste has dangerous effects on both nature and human well-being. This marine waste contains a huge quantity of chitin which has several applications in different fields. The chitinase enzyme can achieve degradation of chitin, and the chitin itself can be used as the substrate as well for production of chitinase. In the current study, the chitinase enzyme was produced by Thermomyces lanuginosus. The extracellular chitinase was purified from crude extract using ammonium sulfate precipitation followed by DEAE-cellulose ion-exchange chromatography and Sephadex G-100 gel filtration chromatography. The stability and activity of chitinase with different pH, temperature, different times for a reaction, in the presence of different metal ions, and different concentration of enzyme and substrate were analyzed. RESULT The chitinase activity was found to be highest at pH 6.5, 50 °C, and 60 min after the reaction began. and the chitinase showed the highest activity and stability in the presence of β-mercaptoethanol (ME). The SDS-PAGE of denatured purified chitinase showed a protein band of 18 kDa. CONCLUSION The characterization study concludes that Cu2+, Hg2+, and EDTA have an inhibitory effect on chitinase activity, whereas β-ME acts as an activator for chitinase activity. The utilization of chitin to produce chitinase and the degradation of chitin using that chitinase enzyme would be an opportunity for bioremediation of shrimp shell waste.
Collapse
Affiliation(s)
- Nisha Suryawanshi
- Department of Biotechnology, National Institute of Technology, Raipur, India
| | - J Satya Eswari
- Department of Biotechnology, National Institute of Technology, Raipur, India
| |
Collapse
|
5
|
Industrially Important Genes from Trichoderma. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
|
7
|
Vidhate RP, Bhide AJ, Gaikwad SM, Giri AP. A potent chitin-hydrolyzing enzyme from Myrothecium verrucaria affects growth and development of Helicoverpa armigera and plant fungal pathogens. Int J Biol Macromol 2019; 141:517-528. [PMID: 31494159 DOI: 10.1016/j.ijbiomac.2019.09.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/16/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023]
Abstract
Chitin, a crucial structural and functional component of insects and fungi, serves as a target for pest management by utilizing novel chitinases. Here, we report the biocontrol potential of recombinant Myrothecium verrucaria endochitinase (rMvEChi) against insect pest and fungal pathogens. A complete ORF of MvEChi (1185 bp) was cloned and heterologously expressed in Escherichia coli. Structure based sequence alignment of MvEChi revealed the presence of conserved domains SXGG and DXXDXDXE specific for GH-18 family, involved in substrate binding and catalysis, respectively. rMvEChi (46.6 kDa) showed optimum pH and temperature as 7.0 and 30 °C, respectively. Furthermore, rMvEChi remained stable within the pH range of 6.0 to 8.0 and up to 40 °C. rMvEChi exhibited kcat/Km values of 129.83 × 103 [(g/L)-1 s-1] towards 4MU chitotrioside. Hydrolysis of chitooligosaccharides with various degrees of polymerization (DP) using rMvEChi indicated the release of DP2 as main end product with order of reaction as DP6 > DP5 > DP4 > DP3. Bioassay of rMvEChi against Helicoverpa armigera displayed potent anti-feedant activity and induced mortality. In vitro antifungal activity against plant pathogenic fungi (Ustilago maydis and Bipolaris sorokiniana) exhibited significant inhibition of mycelium growth. These results suggest that MvEChi has significant potential in enzyme-based pest and pathogen management.
Collapse
Affiliation(s)
- Ravindra P Vidhate
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amey J Bhide
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| | - Sushama M Gaikwad
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Ashok P Giri
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
8
|
Deng JJ, Shi D, Mao HH, Li ZW, Liang S, Ke Y, Luo XC. Heterologous expression and characterization of an antifungal chitinase (Chit46) from Trichoderma harzianum GIM 3.442 and its application in colloidal chitin conversion. Int J Biol Macromol 2019; 134:113-121. [DOI: 10.1016/j.ijbiomac.2019.04.177] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 01/21/2023]
|
9
|
Khalid SAL, Ramadan AB. Internal transcribed spacers (ITS) based identification of Trichoderma isolates and biocontrol activity against Macrophomina phaseolina, Aspergillus niger and Meloidogyne incognita. ACTA ACUST UNITED AC 2018. [DOI: 10.5897/ajmr2018.8915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
10
|
Krolicka M, Hinz SWA, Koetsier MJ, Eggink G, van den Broek LAM, Boeriu CG. β-N-Acetylglucosaminidase MthNAG from Myceliophthora thermophila C1, a thermostable enzyme for production of N-acetylglucosamine from chitin. Appl Microbiol Biotechnol 2018; 102:7441-7454. [PMID: 29943052 PMCID: PMC6097783 DOI: 10.1007/s00253-018-9166-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/07/2018] [Accepted: 06/09/2018] [Indexed: 11/30/2022]
Abstract
Thermostable enzymes are a promising alternative for chemical catalysts currently used for the production of N-acetylglucosamine (GlcNAc) from chitin. In this study, a novel thermostable β-N-acetylglucosaminidase MthNAG was cloned and purified from the thermophilic fungus Myceliophthora thermophila C1. MthNAG is a protein with a molecular weight of 71 kDa as determined with MALDI-TOF-MS. MthNAG has the highest activity at 50 °C and pH 4.5. The enzyme shows high thermostability above the optimum temperature: at 55 °C (144 h, 75% activity), 60 °C (48 h, 85% activity; half-life 82 h), and 70 °C (24 h, 33% activity; half-life 18 h). MthNAG releases GlcNAc from chitin oligosaccharides (GlcNAc)2–5, p-nitrophenol derivatives of chitin oligosaccharides (GlcNAc)1–3-pNP, and the polymeric substrates swollen chitin and soluble chitosan. The highest activity was detected towards (GlcNAc)2. MthNAG released GlcNAc from the non-reducing end of the substrate. We found that MthNAG and Chitinase Chi1 from M. thermophila C1 synergistically degraded swollen chitin and released GlcNAc in concentration of approximately 130 times higher than when only MthNAG was used. Therefore, chitinase Chi1 and MthNAG have great potential in the industrial production of GlcNAc.
Collapse
Affiliation(s)
- Malgorzata Krolicka
- Department of Bioprocess Engineering, Wageningen University, Wageningen, The Netherlands
| | | | | | - Gerrit Eggink
- Department of Bioprocess Engineering, Wageningen University, Wageningen, The Netherlands.,Wageningen Food & Biobased Research, Wageningen, The Netherlands
| | | | - Carmen G Boeriu
- Wageningen Food & Biobased Research, Wageningen, The Netherlands.
| |
Collapse
|
11
|
Krolicka M, Hinz SWA, Koetsier MJ, Joosten R, Eggink G, van den Broek LAM, Boeriu CG. Chitinase Chi1 from Myceliophthora thermophila C1, a Thermostable Enzyme for Chitin and Chitosan Depolymerization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1658-1669. [PMID: 29359934 PMCID: PMC5847117 DOI: 10.1021/acs.jafc.7b04032] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
A thermostable Chitinase Chi1 from Myceliophthora thermophila C1 was homologously produced and characterized. Chitinase Chi1 shows high thermostability at 40 °C (>140 h 90% activity), 50 °C (>168 h 90% activity), and 55 °C (half-life 48 h). Chitinase Chi1 has broad substrate specificity and converts chitin, chitosan, modified chitosan, and chitin oligosaccharides. The activity of Chitinase Chi1 is strongly affected by the degree of deacetylation (DDA), molecular weight (Mw), and side chain modification of chitosan. Chitinase Chi1 releases mainly (GlcNAc)2 from insoluble chitin and chito-oligosaccharides with a polymerization degree (DP) ranging from 2 to 12 from chitosan, in a processive way. Chitinase Chi1 shows higher activity toward chitin oligosaccharides (GlcNAc)4-6 than toward (GlcNAc)3 and is inactive for (GlcNAc)2. During hydrolysis, oligosaccharides bind at subsites -2 to +2 in the enzyme's active site. Chitinase Chi1 can be used for chitin valorisation and for production of chitin- and chito-oligosaccharides at industrial scale.
Collapse
Affiliation(s)
- Malgorzata Krolicka
- Department
of Bioprocess Engineering, Wageningen University, Wageningen, The Netherlands
| | | | | | - Rob Joosten
- DuPont
Industrial Biosciences, Wageningen, The Netherlands
| | - Gerrit Eggink
- Department
of Bioprocess Engineering, Wageningen University, Wageningen, The Netherlands
- Wageningen
Food & Biobased Research, Wageningen, The Netherlands
| | | | - Carmen G. Boeriu
- Wageningen
Food & Biobased Research, Wageningen, The Netherlands
- E-mail: . Phone: +31 317 480168
| |
Collapse
|
12
|
Sharma V, Salwan R, Sharma PN, Gulati A. Integrated Translatome and Proteome: Approach for Accurate Portraying of Widespread Multifunctional Aspects of Trichoderma. Front Microbiol 2017; 8:1602. [PMID: 28900417 PMCID: PMC5581810 DOI: 10.3389/fmicb.2017.01602] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/07/2017] [Indexed: 12/31/2022] Open
Abstract
Genome-wide studies of transcripts expression help in systematic monitoring of genes and allow targeting of candidate genes for future research. In contrast to relatively stable genomic data, the expression of genes is dynamic and regulated both at time and space level at different level in. The variation in the rate of translation is specific for each protein. Both the inherent nature of an mRNA molecule to be translated and the external environmental stimuli can affect the efficiency of the translation process. In biocontrol agents (BCAs), the molecular response at translational level may represents noise-like response of absolute transcript level and an adaptive response to physiological and pathological situations representing subset of mRNAs population actively translated in a cell. The molecular responses of biocontrol are complex and involve multistage regulation of number of genes. The use of high-throughput techniques has led to rapid increase in volume of transcriptomics data of Trichoderma. In general, almost half of the variations of transcriptome and protein level are due to translational control. Thus, studies are required to integrate raw information from different “omics” approaches for accurate depiction of translational response of BCAs in interaction with plants and plant pathogens. The studies on translational status of only active mRNAs bridging with proteome data will help in accurate characterization of only a subset of mRNAs actively engaged in translation. This review highlights the associated bottlenecks and use of state-of-the-art procedures in addressing the gap to accelerate future accomplishment of biocontrol mechanisms.
Collapse
Affiliation(s)
- Vivek Sharma
- Department of Plant Pathology, Choudhary Sarwan Kumar Himachal Pradesh Agricultural UniversityPalampur, India
| | - Richa Salwan
- Department of Veterinary Microbiology, Choudhary Sarwan Kumar Himachal Pradesh Agricultural UniversityPalampur, India
| | - P N Sharma
- Department of Plant Pathology, Choudhary Sarwan Kumar Himachal Pradesh Agricultural UniversityPalampur, India
| | - Arvind Gulati
- Institute of Himalayan Bioresource TechnologyPalampur, India
| |
Collapse
|
13
|
A novel proteomics sample preparation method for secretome analysis of Hypocrea jecorina growing on insoluble substrates. J Proteomics 2016; 131:104-112. [DOI: 10.1016/j.jprot.2015.10.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/21/2015] [Accepted: 10/12/2015] [Indexed: 11/23/2022]
|
14
|
Effects of domains modification on the catalytic potential of chitinase from Pseudomonas aeruginosa. Int J Biol Macromol 2015; 78:266-72. [PMID: 25895958 DOI: 10.1016/j.ijbiomac.2015.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/07/2015] [Accepted: 04/09/2015] [Indexed: 11/21/2022]
Abstract
Chitinase, an important enzyme in chitin-degrading, have extensive biophysiological functions and immense potential applications. Here, a chitinase gene pachi was cloned from Pseudomonas aeruginosa and overexpressed in E. coli (DE3). The structural analysis showed that chitinase pachi consists of catalytic domain (CHC), chitin binding domain (CBD) and both of these are linked by connective domain (FN3). In this study, Pachi displayed optimal activity at temperature 65 °C and pH 6.5. To understand the structural and functional relationship of chitin-binding domain with catalytic domain, two mutants, CHA (without CBD) and CBD+FN3-pachi with additional CBD have been constructed. Though the results showed that the two mutants have similar characteristics with Pachi, it is interesting to note that the deficiency of CBD caused an increase in expression level as well as solubility of the CHA. Moreover, the catalytic efficiency of CHA was increased 1.26-fold and substrate affinity in the absence of CBD was decreased 1.85-fold. Thus, the improved solubility and activity of CHA by domain deficiency is an interesting pathway to study the relationship of structure and function of chitinase and support its potential use in commercial applications.
Collapse
|
15
|
Chen F, Chen XZ, Qin LN, Tao Y, Dong ZY. Characterization and homologous overexpression of an N-acetylglucosaminidase Nag1 from Trichoderma reesei. Biochem Biophys Res Commun 2014; 459:184-188. [PMID: 25534854 DOI: 10.1016/j.bbrc.2014.12.066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 12/14/2014] [Indexed: 01/30/2023]
Abstract
Trichoderma reesei is thought to be a promising recombinant host for the production and secretion of complex proteins due to its ability to secrete large amounts of proteins. In this study we identified a functional N-acetyl-β-glucosaminidase (NAGase) gene Nag1 in T. reesei. Nag1, a putative gene encoding a GH 20 family NAGase in T. reesei, was cloned and homologous overexpressed in the T. reesei RutC30ΔU3 with a strong cellobiohydrolase1 gene (cbh1) promoter. Nag1 was secreted in its active form and the highest expression level was around 499.85IU/ml. Nag1 has a molecular mass of 80kDa. The optimum pH and temperature were 4.0 and 60°C, respectively.
Collapse
Affiliation(s)
- Fei Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiu-Zhen Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Li-Na Qin
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Yong Tao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Zhi-Yang Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China.
| |
Collapse
|
16
|
Daguerre Y, Siegel K, Edel-Hermann V, Steinberg C. Fungal proteins and genes associated with biocontrol mechanisms of soil-borne pathogens: a review. FUNGAL BIOL REV 2014. [DOI: 10.1016/j.fbr.2014.11.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Vincenzi S, Bierma J, Wickramasekara S, Curioni A, Gazzola D, Bakalinsky AT. Characterization of a grape class IV chitinase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:5660-5668. [PMID: 24845689 PMCID: PMC4216234 DOI: 10.1021/jf501225g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/20/2014] [Accepted: 05/20/2014] [Indexed: 06/03/2023]
Abstract
A chitinase was purified from Vitis vinifera Manzoni Bianco grape juice and characterized. On the basis of proteomic analysis of tryptic peptides, a significant match identified the enzyme as a type IV grape chitinase previously found in juices of other V. vinifera varieties. The optimal pH and temperature for activity toward colloidal chitin were found to be 6 and 30 °C, respectively. The enzyme was found to hydrolyze chitin and oligomers of N-acetylglucosamine, generating N,N'-diacetylchitobiose and N-acetylglucosamine as products, but was inactive toward N,N'-diacetylchitobiose. The enzyme exhibited both endo- and exochitinase activities. Because yeast contains a small amount of chitin in the cell wall, the possibility of growth inhibition was tested. At a concentration and pH expected in ripe grapes, no inhibition of wine yeast growth by the chitinase was observed.
Collapse
Affiliation(s)
- Simone Vincenzi
- Department
of Agronomy, Food, Natural Resources, Animals and the Environment, Padova University, 35020 Legnaro, Italy
| | - Jan Bierma
- Cellular
and Molecular Bioscience, University of
California at Irvine, Irvine, California 92697, United States
| | - Samanthi
I. Wickramasekara
- Department of Chemistry,
Environmental Health Sciences Center and Department of
Food Science and Technology, Oregon State
University, Corvallis, Oregon 97331, United
States
| | - Andrea Curioni
- Department
of Agronomy, Food, Natural Resources, Animals and the Environment, Padova University, 35020 Legnaro, Italy
| | - Diana Gazzola
- Department
of Agronomy, Food, Natural Resources, Animals and the Environment, Padova University, 35020 Legnaro, Italy
| | - Alan T. Bakalinsky
- Department of Chemistry,
Environmental Health Sciences Center and Department of
Food Science and Technology, Oregon State
University, Corvallis, Oregon 97331, United
States
| |
Collapse
|
18
|
Azad MAK, Amin L, Sidik NM. Genetically engineered organisms for bioremediation of pollutants in contaminated sites. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s11434-013-0058-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Häkkinen M, Arvas M, Oja M, Aro N, Penttilä M, Saloheimo M, Pakula TM. Re-annotation of the CAZy genes of Trichoderma reesei and transcription in the presence of lignocellulosic substrates. Microb Cell Fact 2012; 11:134. [PMID: 23035824 PMCID: PMC3526510 DOI: 10.1186/1475-2859-11-134] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 09/22/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trichoderma reesei is a soft rot Ascomycota fungus utilised for industrial production of secreted enzymes, especially lignocellulose degrading enzymes. About 30 carbohydrate active enzymes (CAZymes) of T. reesei have been biochemically characterised. Genome sequencing has revealed a large number of novel candidates for CAZymes, thus increasing the potential for identification of enzymes with novel activities and properties. Plenty of data exists on the carbon source dependent regulation of the characterised hydrolytic genes. However, information on the expression of the novel CAZyme genes, especially on complex biomass material, is very limited. RESULTS In this study, the CAZyme gene content of the T. reesei genome was updated and the annotations of the genes refined using both computational and manual approaches. Phylogenetic analysis was done to assist the annotation and to identify functionally diversified CAZymes. The analyses identified 201 glycoside hydrolase genes, 22 carbohydrate esterase genes and five polysaccharide lyase genes. Updated or novel functional predictions were assigned to 44 genes, and the phylogenetic analysis indicated further functional diversification within enzyme families or groups of enzymes. GH3 β-glucosidases, GH27 α-galactosidases and GH18 chitinases were especially functionally diverse. The expression of the lignocellulose degrading enzyme system of T. reesei was studied by cultivating the fungus in the presence of different inducing substrates and by subjecting the cultures to transcriptional profiling. The substrates included both defined and complex lignocellulose related materials, such as pretreated bagasse, wheat straw, spruce, xylan, Avicel cellulose and sophorose. The analysis revealed co-regulated groups of CAZyme genes, such as genes induced in all the conditions studied and also genes induced preferentially by a certain set of substrates. CONCLUSIONS In this study, the CAZyme content of the T. reesei genome was updated, the discrepancies between the different genome versions and published literature were removed and the annotation of many of the genes was refined. Expression analysis of the genes gave information on the enzyme activities potentially induced by the presence of the different substrates. Comparison of the expression profiles of the CAZyme genes under the different conditions identified co-regulated groups of genes, suggesting common regulatory mechanisms for the gene groups.
Collapse
Affiliation(s)
- Mari Häkkinen
- VTT Technical Research Centre of Finland, Tietotie 2, Espoo, FI-02044, VTT, Finland.
| | | | | | | | | | | | | |
Collapse
|
20
|
Kopparapu NK, Zhou P, Zhang S, Yan Q, Liu Z, Jiang Z. Purification and characterization of a novel chitinase gene from Paecilomyces thermophila expressed in Escherichia coli. Carbohydr Res 2012; 347:155-60. [DOI: 10.1016/j.carres.2011.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 11/02/2011] [Accepted: 11/03/2011] [Indexed: 10/15/2022]
|
21
|
Loc NH, Quang HT, Hung NB, Huy ND, Phuong TTB, Ha TTT. Trichoderma asperellumChi42 Genes Encode Chitinase. MYCOBIOLOGY 2011; 39:182-6. [PMID: 22783101 PMCID: PMC3385114 DOI: 10.5941/myco.2011.39.3.182] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 08/09/2011] [Indexed: 05/03/2023]
Abstract
Four Trichoderma strains (CH2, SH16, PQ34, and TN42) were isolated from soil samples collected from Quang Tri and Thua Thien Hue provinces in Vietnam. The strains exhibited high chitinolytic secretion. Strain PQ34 formed the largest zone of chitinase-mediated clearance (> 4 cm in diameter) in agar containing 1% (w/v) colloidal chitin. Analysis of the internal transcribed spacer regions of these strains indicated that they were Trichoderma asperellum. The molecular weights of the chitinases were approximately 42 kDa. Chitinase genes (chi42) of T. asperellum strains TN42, CH2, SH16, and PQ34 were 98~99% homologous to the ech42 gene of T. harzianum CB-Pin-01 (accession No. DQ166036). The deduced amino acid sequences of both T. asperellum strains SH16 and TN42 shared 100% similarity.
Collapse
Affiliation(s)
- Nguyen Hoang Loc
- Institute of Resources, Environment and Biotechnology, Hue University, 27 Phan Dinh Phung St., Hue, Vietnam
| | | | | | | | | | | |
Collapse
|
22
|
Rajan L, Dharini J, Singh K, Sivvaswaam S, Sheela J, Sundar N. Identification, Cloning and Sequence Analysis of Chitinase Gene in Bacillus halodurans Isolated from Salted Fish. ACTA ACUST UNITED AC 2010. [DOI: 10.3923/biotech.2010.229.233] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Expression and characterization of Trichoderma virens UKM-1 endochitinase in Escherichia coli. World J Microbiol Biotechnol 2008. [DOI: 10.1007/s11274-008-9924-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Ahmadian G, Degrassi G, Venturi V, Zeigler DR, Soudi M, Zanguinejad P. Bacillus pumilusSG2 isolated from saline conditions produces and secretes two chitinases. J Appl Microbiol 2007; 103:1081-9. [PMID: 17897213 DOI: 10.1111/j.1365-2672.2007.03340.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS Isolation and characterization of chitinases from a halotolerant Bacillus pumilus. METHODS AND RESULTS Bacillus pumilus strain SG2 was isolated from saline conditions. It is able to produce chitinase activity at high salt concentration. SDS-PAGE analysis of the B. pumilus SG2 culture supernatant showed two major bands that were induced by chitin. The amino acid sequence of the two proteins, designated ChiS and ChiL, showed a high homology with the chitinase of B. subtilis CHU26, and chitinase A of B. licheniformis, respectively. N-terminal signal peptide of both proteins was also determined. The molecular weight and isoelectric point of the chitinases were determined to be 63 and 74 kDa, and 4.5 and 5.1, for ChiS and ChiL respectively. The genes encoding for both chitinases were isolated and their sequence determined. The regulation of the chitinase genes is under the control of the catabolite repression system. CONCLUSIONS Secreted chitinase genes and their flanking region on the genome of B. pumilus SG2 have been identified and sequenced. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report of a multiple chitinases-producing B. pumilus halotolerant strain. We have identified two chitinases by using a reverse genetics approach. The chitinases show resistance to salt.
Collapse
Affiliation(s)
- G Ahmadian
- Department of Molecular Genetic, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran.
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Chitin is the second most abundant organic and renewable source in nature, after cellulose. Chitinases are chitin-degrading enzymes. Chitinases have important biophysiological functions and immense potential applications. In recent years, researches on fungal chitinases have made fast progress, especially in molecular levels. Therefore, the present review will focus on recent advances of fungal chitinases, containing their nomenclature and assays, purification and characterization, molecular cloning and expression, family and structure, regulation, and function and application.
Collapse
Affiliation(s)
- Li Duo-Chuan
- Department of Plant Pathology, Shandong Agricultural University, Taian, Shandong, China.
| |
Collapse
|
26
|
Ike M, Isami K, Tanabe Y, Nogawa M, Ogasawara W, Okada H, Morikawa Y. Cloning and heterologous expression of the exo-β-d-glucosaminidase-encoding gene (gls93) from a filamentous fungus, Trichoderma reesei PC-3-7. Appl Microbiol Biotechnol 2006; 72:687-95. [PMID: 16636831 DOI: 10.1007/s00253-006-0320-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Revised: 12/25/2005] [Accepted: 12/29/2005] [Indexed: 11/26/2022]
Abstract
We have previously reported on purification and characterization of an exo-beta-D-glucosaminidase (Gls93) from culture filtrate of Trichoderma reesei PC-3-7 grown on N-acetyl-D-glucosamine (GlcNAc). The corresponding gene of Gls93 was cloned and characterized in this work. To our knowledge, this is the first report on cloning of the gene encoding fungal exo-beta-D-glucosaminidase. This gene has no introns and encodes a polypeptide of 892 amino acids (aa) containing a secretion signal of 28 amino acids. Comparison of the amino acid sequence to known proteins and phylogenetic analysis indicated that gls93 belongs to the glycoside hydrolase family (GHF) 2 and should be further classified into a new subgroup, exo-beta-D-glucosaminidase subgroup. The gls93 transcription was biphasic when T. reesei was grown on GlcNAc, suggesting that the expression of this gene may be regulated by a complex mechanism, in which multiple regulatory proteins are involved. Furthermore, gls93 could be expressed in Pichia pastoris (ca. 0.49-mg/ml culture). The recombinant Gls93 had the two molecular forms, ca. 105 and 100 kDa, whose difference is caused by N-glycosylation. Both of them had the same properties such as specific activity and substrate specificity and showed only the activity of exo-beta-D-glucosaminidase but not those of beta-galactosidase, beta-glucuronidase, and beta-mannosidase belonging to GHF2.
Collapse
Affiliation(s)
- Masakazu Ike
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | | | | | | | | | | | | |
Collapse
|