1
|
A multicomponent THF hydroxylase initiates tetrahydrofuran degradation in Cupriavidus metallidurans ZM02. Appl Environ Microbiol 2022; 88:e0188021. [PMID: 35108100 DOI: 10.1128/aem.01880-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tetrahydrofuran (THF) has been recognized as a water contaminant because of its human carcinogenicity, extensive use, and widespread distribution. Previously reported multicomponent monooxygenases (MOs) involved in THF degradation were highly conserved, and all of them were from Gram-positive bacteria. In this study, a novel THF-degrading gene cluster (dmpKLMNOP) encoding THF hydroxylase was identified on the chromosome of a newly isolated Gram-negative THF-degrading bacterium, Cupriavidus metallidurans ZM02, and functionally characterized. Transcriptome sequencing and RT-qPCR demonstrated that the expression of dmpKLMNOP was upregulated during the growth of strain ZM02 on THF or phenol. The deletion of oxygenase alpha or beta subunit or the reductase component disrupted the degradation of THF but did not affect the utilization of its hydroxylated product 2-hydroxytetrahydrofuran. Cupriavidus pinatubonensis JMP134 heterologously expressing dmpKLMNOP from strain ZM02 could grow on THF, indicating that the THF hydroxylase DmpZM02KLMNOP is responsible for the initial degradation of THF. Furthermore, the THF and phenol oxidation activities of crude enzyme extracts were detected, and the highest THF and phenol catalytic activities were 1.38±0.24 μmol min-1 mg-1 and 1.77±0.37 μmol min-1 mg-1, respectively, with the addition of NADPH and Fe2+. The characterization of THF hydroxylase associated with THF degradation enriches our understanding of THF-degrading gene diversity and provides a novel potential enzyme for the bioremediation of THF-containing pollutants. IMPORTANCE Multicomponent MOs catalyzing the initial hydroxylation of THF are vital rate-limiting enzymes in the THF degradation pathway. Previous studies of THF degradation gene clusters have focused on Gram-positive bacteria, and the molecular mechanism of THF degradation in Gram-negative bacteria has rarely been reported. In this study, a novel THF hydroxylase encoded by dmpKLMNOP in strain ZM02 was identified to be involved in both THF and phenol degradation. Our findings provide new insights into the THF-degrading gene cluster and enzymes in Gram-negative bacteria.
Collapse
|
2
|
Huang H, Qi M, Liu Y, Wang H, Wang X, Qiu Y, Lu Z. Thiamine-Mediated Cooperation Between Auxotrophic Rhodococcus ruber ZM07 and Escherichia coli K12 Drives Efficient Tetrahydrofuran Degradation. Front Microbiol 2020; 11:594052. [PMID: 33362743 PMCID: PMC7758286 DOI: 10.3389/fmicb.2020.594052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
Tetrahydrofuran (THF) is a universal solvent widely used in the synthesis of chemicals and pharmaceuticals. As a refractory organic contaminant, it can only be degraded by a small group of microbes. In this study, a thiamine auxotrophic THF-degrading bacterium, Rhodococcus ruber ZM07, was isolated from an enrichment culture H-1. It was cocultured with Escherichia coli K12 (which cannot degrade THF but can produce thiamine) and/or Escherichia coli K12ΔthiE (which can neither degrade THF nor produce thiamine) with or without exogenous thiamine. This study aims to understand the interaction mechanisms between ZM07 and K12. We found that K12 accounted for 30% of the total when cocultured and transferred with ZM07 in thiamine-free systems; in addition, in the three-strain (ZM07, K12, and K12ΔthiE) cocultured system without thiamine, K12ΔthiE disappeared in the 8th transfer, while K12 could still stably exist (the relative abundance remained at approximately 30%). The growth of K12 was significantly inhibited in the thiamine-rich system. Its proportion was almost below 4% after the fourth transfer in both the two-strain (ZM07 and K12) and three-strain (ZM07, K12, and K12ΔthiE) systems; K12ΔthiE’s percentage was higher than K12’s in the three-strain (ZM07, K12, and K12ΔthiE) cocultured system with exogenous thiamine, and both represented only a small proportion (less than 1% by the fourth transfer). The results of the coculture of K12 and K12ΔthiE in thiamine-free medium indicated that intraspecific competition between them may be one of the main reasons for the extinction of K12ΔthiE in the three-strain (ZM07, K12, and K12ΔthiE) system without exogenous thiamine. Furthermore, we found that ZM07 could cooperate with K12 through extracellular metabolites exchanges without physical contact. This study provides novel insight into how microbes cooperate and compete with one another during THF degradation.
Collapse
Affiliation(s)
- Hui Huang
- MOE Laboratory of Biosystem Homeostasis and Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Minbo Qi
- MOE Laboratory of Biosystem Homeostasis and Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yiming Liu
- MOE Laboratory of Biosystem Homeostasis and Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Haixia Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xuejun Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yiyang Qiu
- MOE Laboratory of Biosystem Homeostasis and Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Ren H, Li H, Wang H, Huang H, Lu Z. Biodegradation of Tetrahydrofuran by the Newly Isolated Filamentous Fungus Pseudallescheria boydii ZM01. Microorganisms 2020; 8:microorganisms8081190. [PMID: 32764240 PMCID: PMC7464125 DOI: 10.3390/microorganisms8081190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 11/16/2022] Open
Abstract
Tetrahydrofuran (THF) is widely used as a precursor for polymer syntheses and a versatile solvent in industries. THF is an environmental hazard and carcinogenic to humans. In the present study, a new THF-degrading filamentous fungus, Pseudallescheria boydii ZM01, was isolated and characterized. Strain ZM01 can tolerate a maximum THF concentration of 260 mM and can completely degrade 5 mM THF in 48 h, with a maximum THF degradation rate of 133.40 mg THF h−1 g−1 dry weight. Growth inhibition was not observed when the initial THF concentration was below 150 mM, and the maximum THF degradation rate was still maintained at 118.21 mg THF h−1 g−1 dry weight at 50 mM THF, indicating the great potential of this strain to degrade THF at high concentrations. The initial key metabolic intermediate 2-hydroxytetrahydrofuran was detected and identified by gas chromatography (GC) analyses for the first time during the THF degradation process. Analyses of the effects of initial pH, incubation temperature, and heavy metal ions on THF degradation revealed that strain ZM01 can degrade THF under a relatively wide range of conditions and has good degradation ability under low pH and Cu2+ stress, suggesting its adaptability and applicability for industrial wastewater treatment.
Collapse
|
4
|
Woiski C, Dobslaw D, Engesser KH. Isolation and characterization of 2-butoxyethanol degrading bacterial strains. Biodegradation 2020; 31:153-169. [PMID: 32356147 PMCID: PMC7299911 DOI: 10.1007/s10532-020-09900-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/10/2020] [Indexed: 10/26/2022]
Abstract
A total of 11 bacterial strains capable of completely degrading 2-butoxyethanol (2-BE) were isolated from forest soil, a biotrickling filter, a bioscrubber, and activated sludge, and identified by 16S rRNA gene sequence analysis. Eight of these strains belong to the genus Pseudomonas; the remaining three strains are Hydrogenophaga pseudoflava BOE3, Gordonia terrae BOE5, and Cupriavidus oxalaticus BOE300. In addition to 2-BE, all isolated strains were able to grow on 2-ethoxyethanol and 2-propoxyethanol, ethanol, n-hexanol, ethyl acetate, 2-butoxyacetic acid (2-BAA), glyoxylic acid, and n-butanol. Apart from the only gram-positive strain isolated, BOE5, none of the strains were able to grow on the nonpolar ethers diethyl ether, di-n-butyl ether, n-butyl vinyl ether, and dibenzyl ether, as well as on 1-butoxy-2-propanol. Strains H. pseudoflava BOE3 and two of the isolated pseudomonads, Pseudomonas putida BOE100 and P. vancouverensis BOE200, were studied in more detail. The maximum growth rates of strains BOE3, BOE100, and BOE200 at 30 °C were 0.204 h-1 at 4 mM, 0.645 h-1 at 5 mM, and 0.395 h-1 at 6 mM 2-BE, respectively. 2-BAA, n-butanol, and butanoic acid were detected as potential metabolites during the degradation of 2-BE. These findings indicate that the degradation of 2-BE by the isolated gram-negative strains proceeds via oxidation to 2-BAA with subsequent cleavage of the ether bond yielding glyoxylate and n-butanol. Since Gordonia terrae BOE5 was the only strain able to degrade nonpolar ethers like diethyl ether, the degradation pathway of 2-BE may be different for this strain.
Collapse
Affiliation(s)
- Christine Woiski
- Department of Biological Waste Air Purification, Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtaele 2, 70569, Stuttgart, Germany.
| | - Daniel Dobslaw
- Department of Biological Waste Air Purification, Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtaele 2, 70569, Stuttgart, Germany
| | - Karl-Heinrich Engesser
- Department of Biological Waste Air Purification, Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtaele 2, 70569, Stuttgart, Germany
| |
Collapse
|
5
|
Martinez-Rojas E, Olejniczak T, Neumann K, Garbe LA, Boratyñski F. Simple Preparation of Rhodococcus erythropolis DSM 44534 as Biocatalyst to Oxidize Diols into the Optically Active Lactones. Chirality 2016; 28:623-7. [PMID: 27496202 DOI: 10.1002/chir.22623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 05/30/2016] [Accepted: 06/24/2016] [Indexed: 11/09/2022]
Abstract
In the current study, we present a green toolbox to produce ecological compounds like lactone moiety. Rhodococcus erythropolis DSM 44534 cells have been used to oxidize both decane-1,4-diol () and decane-1,5-diol () into the corresponding γ- () and δ-decalactones () with yield of 80% and enantiomeric excess (ee) = 75% and ee = 90%, respectively. Among oxidation of meso diols, (-)-(1S,5R)-cis-3-oxabicyclo[4.3.0]non-7-en-2-one (5a) with 56% yield and ee = 76% as well as (-)-(2R,3S)-cis-endo-3-oxabicyclo[2.2.1]dec-7-en-2-one (6a) with 100% yield and ee = 90% were formed. It is worth mentioning that R. erythropolis DSM 44534 grew in a mineral medium containing ethanol as the sole source of energy and carbon Chirality 28:623-627, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Teresa Olejniczak
- Department of Chemistry, University of Environmental and Life Sciences, Wrocław, Poland
| | - Konrad Neumann
- Department of Biotechnology, TU Berlin, Bioanalytics GG6, Berlin, Germany
| | - Leif-Alexander Garbe
- Neubrandenburg University of Applied Sciences, Neubrandenburg, Germany.,Department of Biotechnology, TU Berlin, Bioanalytics GG6, Berlin, Germany
| | - Filip Boratyñski
- Department of Chemistry, University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
6
|
A bifunctional enzyme from Rhodococcus erythropolis exhibiting secondary alcohol dehydrogenase-catalase activities. Appl Microbiol Biotechnol 2014; 98:9249-58. [PMID: 24846734 DOI: 10.1007/s00253-014-5808-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 04/29/2014] [Accepted: 04/30/2014] [Indexed: 10/25/2022]
Abstract
Alcohol dehydrogenases have long been recognized as potential biocatalyst for production of chiral fine and bulk chemicals. They are relevant for industry in enantiospecific production of chiral compounds. In this study, we identified and purified a nicotinamide adenine dinucleotide (NAD)-dependent secondary alcohol dehydrogenase (SdcA) from Rhodococcus erythropolis oxidizing γ-lactols into γ-lactones. SdcA showed broad substrate specificity on γ-lactols; secondary aliphatic alcohols with 8 and 10 carbon atoms were also substrates and oxidized with (2S)-stereospecificity. The enzyme exhibited moderate stability with a half-life of 5 h at 40 °C and 20 days at 4 °C. Mass spectrometric identification revealed high sequence coverage of SdcA amino acid sequence to a highly conserved catalase from R. erythropolis. The corresponding encoding gene was isolated from genomic DNA and subsequently overexpressed in Escherichia coli BL21 DE3 cells. In addition, the recombinant SdcA was purified and characterized in order to confirm that the secondary alcohol dehydrogenase and catalase activity correspond to the same enzyme.
Collapse
|
7
|
Tajima T, Hayashida N, Matsumura R, Omura A, Nakashimada Y, Kato J. Isolation and characterization of tetrahydrofuran-degrading Rhodococcus aetherivorans strain M8. Process Biochem 2012. [DOI: 10.1016/j.procbio.2011.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
8
|
Domínguez de María P, van Gemert RW, Straathof AJJ, Hanefeld U. Biosynthesis of ethers: unusual or common natural events? Nat Prod Rep 2010; 27:370-92. [PMID: 20179877 DOI: 10.1039/b809416k] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ether bonds are found in a wide variety of natural products--mainly secondary metabolites--including lipids, oxiranes, terpenoids, flavonoids, polyketides, and carbohydrate derivatives, to name some representative examples. To furnish such a biodiversity of structures, a large number of different enzymes are involved in several different biosynthetic pathways. Depending on the compound and on the (micro) environment in which the reaction is performed, ethers are produced by very different (enzymatic) reactions, thus providing an impressive display of how Nature has combined evolution and thermodynamics to be able to produce a vast number of compounds. In addition, many of these compounds possess different biological activities of pharmacological interest. Moreover, some of these ethers (i.e., epoxides) have high chemical reactivity, and can be useful starting materials for further synthetic processes. This review aims to provide an overview of the different strategies that are found in Nature for the formation of these "bioethers". Both fundamental and practical insights of the biosynthetic processes will be discussed.
Collapse
|
9
|
Metabolism and cometabolism of cyclic ethers by a filamentous fungus, a Graphium sp. Appl Environ Microbiol 2009; 75:5514-22. [PMID: 19581469 DOI: 10.1128/aem.00078-09] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The filamentous fungus Graphium sp. (ATCC 58400) grows on gaseous n-alkanes and diethyl ether. n-Alkane-grown mycelia of this strain also cometabolically oxidize the gasoline oxygenate methyl tert-butyl ether (MTBE). In this study, we characterized the ability of this fungus to metabolize and cometabolize a range of cyclic ethers, including tetrahydrofuran (THF) and 1,4-dioxane (14D). This strain grew on THF and other cyclic ethers, including tetrahydropyran and hexamethylene oxide. However, more vigorous growth was consistently observed on the lactones and terminal diols potentially derived from these ethers. Unlike the case in all previous studies of microbial THF oxidation, a metabolite, gamma-butyrolactone, was observed during growth of this fungus on THF. Growth on THF was inhibited by the same n-alkenes and n-alkynes that inhibit growth of this fungus on n-alkanes, while growth on gamma-butyrolactone or succinate was unaffected by these inhibitors. Propane and THF also behaved as mutually competitive substrates, and propane-grown mycelia immediately oxidized THF, without a lag phase. Mycelia grown on propane or THF exhibited comparable high levels of hemiacetal-oxidizing activity that generated methyl formate from mixtures of formaldehyde and methanol. Collectively, these observations suggest that THF and n-alkanes may initially be oxidized by the same monooxygenase and that further transformation of THF-derived metabolites involves the activity of one or more alcohol dehydrogenases. Both propane- and THF-grown mycelia also slowly cometabolically oxidized 14D, although unlike THF oxidation, this reaction was not sustainable. Specific rates of THF, 14D, and MTBE degradation were very similar in THF- and propane-grown mycelia.
Collapse
|
10
|
Kim YH, Cha CJ, Engesser KH, Kim SJ. Degradation of various alkyl ethers by alkyl ether-degrading Actinobacteria isolated from activated sludge of a mixed wastewater treatment. CHEMOSPHERE 2008; 73:1442-1447. [PMID: 18783815 DOI: 10.1016/j.chemosphere.2008.07.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 07/27/2008] [Accepted: 07/28/2008] [Indexed: 05/26/2023]
Abstract
Various substrate specificity groups of alkyl ether (AE)-degrading Actinobacteria coexisted in activated sewage sludge of a mixed wastewater treatment. There were substrate niche overlaps including diethyl ether between linear AE- and cyclic AE-degrading strains and phenetole between monoalkoxybenzene- and linear AE-degrading strains. Representatives of each group showed different substrate specificities and degradation pathways for the preferred substrates. Determining the rates of initial reactions and the initial metabolite(s) from whole cell biotransformation helped us to get information about the degradation pathways. Rhodococcus sp. strain DEE5311 and Rhodococcus rhodochrous strain 117 both were able to degrade anisole and phenetole through aromatic 2-monooxygenation to form 2-alkoxyphenols. In contrast, diethyl ether-oxidizing strain DEE5311 capable of degrading a broad range of linear AE, dibenzyl ether and monoalkoxybenzenes initially transformed anisole and phenetole to phenol via direct O-dealkylation. Compared to this, cyclic AE-degrading Rhodococcus sp. strain THF100 preferred tetrahydrofuran (265 ± 35 nmol min(-1)mg(-1) protein) to diethyl ether (<30), but it cannot oxidize bulkier AE than diethyl ether. Otherwise, 1,4-diethoxybenzene-degrading Rhodococcus sp. strain DEOB100 and Gordonia sp. strain DEOB200 transformed 1,3-/1,4-dialkoxybenzenes to 3-/4-alkoxyphenols by similar manners in the order of rates (nmol min(-1) mg(-1) protein): 1,4-diethoxybenzene (11.1 vs. 3.9)>1,4-dimethoxybenzene (1.6 vs. 2.6)>1,3-dimethoxybenzene (0.6 vs. 0.6). This study suggests that the AE-degrading Actinobacteria can orchestrate various substrate specificity responses to the degradation of various categories of AE pollutants in activated sludge communities.
Collapse
Affiliation(s)
- Yong-Hak Kim
- School of Biological Sciences, Seoul National University, San 56-1 Shinrim, Kwanak, Seoul 151-747, Republic of Korea
| | | | | | | |
Collapse
|
11
|
Moreno-Horn M, Martinez-Rojas E, Görisch H, Tressl R, Garbe LA. Oxidation of 1,4-alkanediols into γ-lactones via γ-lactols using Rhodococcus erythropolis as biocatalyst. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.molcatb.2007.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Kim YH, Engesser KH, Kim SJ. Physiological, numerical and molecular characterization of alkyl ether-utilizing rhodococci. Environ Microbiol 2007; 9:1497-510. [PMID: 17504487 DOI: 10.1111/j.1462-2920.2007.01269.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Twenty-seven Gram-positive strains were characterized physiologically and numerically and classified them into four groups according to their specific activities for utilization of linear alkyl ethers (AEs), cyclic AEs, monoalkoxybenzenes and 1,4-diethoxybenzene. The comparative analysis of the 16S ribosomal RNA gene and 16S-23S intergenic spacer region showed that they belonged to the genera Rhodococcus and Gordonia. Alkyl ether-utilizing rhodococci appeared to involve various and diverse cytochromes P450 of the families CYP116 (25 positive strains from 27), CYP153 (5/27), CYP249 (1/27) and a new family P450RR1 (27/27). The presence of P450RR1 was strongly related to the specific activity for utilization of 2-methoxyphenol and 2-ethoxyphenol. In addition, 26 of 27 strains contained multiple alkB genes coding for probable non-haem iron containing alkane monooxygenases and hydroxylases. Similar DNA fragments coding for a tetrahydrofuran monooxygenase A subunit (ThmA) were found in all cyclic AE-utilizing strains and nearly identical DNA fragments coding for likely orthologues of a propane monooxygenase A subunit (PrmA) in all linear AE-utilizing strains. The substrate availability in the degradation of aryl AEs, cyclic AEs and linear AEs agreed with the molecular probing of the respective genes encoding cytochrome P450RR1, ThmA and PrmA.
Collapse
Affiliation(s)
- Yong-Hak Kim
- School of Biological Sciences, Seoul National University, San 56-1 Shinrim, Kwanak, Seoul 151-747, Korea.
| | | | | |
Collapse
|
13
|
Larkin MJ, Kulakov LA, Allen CCR. Biodegradation by members of the genus Rhodococcus: biochemistry, physiology, and genetic adaptation. ADVANCES IN APPLIED MICROBIOLOGY 2006; 59:1-29. [PMID: 16829254 DOI: 10.1016/s0065-2164(06)59001-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Michael J Larkin
- The QUESTOR Centre, The Queen's University of Belfast, Belfast BT9 5AG, Northern Ireland, United Kingdom
| | | | | |
Collapse
|