1
|
Ahmad TA, Eweida AE, Sheweita SA. B-cell epitope mapping for the design of vaccines and effective diagnostics. TRIALS IN VACCINOLOGY 2016; 5:71-83. [DOI: 10.1016/j.trivac.2016.04.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
2
|
Yeh HY, Klesius PH. Construction, expression and characterization of 11 putative flagellar apparatus genes of Aeromonas hydrophila AL09-73. JOURNAL OF FISH DISEASES 2012; 35:853-860. [PMID: 22924657 DOI: 10.1111/j.1365-2761.2012.01438.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/27/2011] [Accepted: 09/05/2011] [Indexed: 06/01/2023]
Affiliation(s)
- H-Y Yeh
- Aquatic Animal Health Research Unit, Agricultural Research Service, United States Department of Agriculture, Auburn, AL, USA.
| | | |
Collapse
|
3
|
Yeh HY, Klesius PH. Over-expression, purification and immune responses to Aeromonas hydrophila AL09-73 flagellar proteins. FISH & SHELLFISH IMMUNOLOGY 2011; 31:1278-1283. [PMID: 21963857 DOI: 10.1016/j.fsi.2011.09.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 09/17/2011] [Accepted: 09/18/2011] [Indexed: 05/31/2023]
Abstract
Aeromonas hydrophila is ubiquitous in aquatic environments worldwide and causes many diseases in fish as well as human. Recent outbreaks of aeromonad diseases in channel catfish prompted us to investigate catfish immune responses during infection of A. hydrophila. In this communication, we report to amplify, over-express, purify and characterize 19 A. hydrophila flagellar proteins. All recombinant proteins were confirmed by nucleotide sequencing of expression plasmids, SDS-PAGE analysis and His tag Western blot of induced proteins. Our preliminary result also showed that the purified recombinant FlgK protein reacted strongly to sera from experimentally infected catfish, suggesting that this protein has potential for a novel target for vaccine development. It is also anticipated that these recombinant proteins will provide us with very useful tools to investigate host immune response to this microorganism.
Collapse
Affiliation(s)
- Hung-Yueh Yeh
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, 990 Wire Road, Auburn, AL 36832-4352, USA.
| | | |
Collapse
|
4
|
Rapid probing of biological surfaces with a sparse-matrix peptide library. PLoS One 2011; 6:e23551. [PMID: 21858167 PMCID: PMC3156232 DOI: 10.1371/journal.pone.0023551] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 07/20/2011] [Indexed: 02/02/2023] Open
Abstract
Finding unique peptides to target specific biological surfaces is crucial to basic research and technology development, though methods based on biological arrays or large libraries limit the speed and ease with which these necessary compounds can be found. We reasoned that because biological surfaces, such as cell surfaces, mineralized tissues, and various extracellular matrices have unique molecular compositions, they present unique physicochemical signatures to the surrounding medium which could be probed by peptides with appropriately corresponding physicochemical properties. To test this hypothesis, a naïve pilot library of 36 peptides, varying in their hydrophobicity and charge, was arranged in a two-dimensional matrix and screened against various biological surfaces. While the number of peptides in the matrix library was very small, we obtained “hits” against all biological surfaces probed. Sequence refinement of the “hits” led to peptides with markedly higher specificity and binding activity against screened biological surfaces. Genetic studies revealed that peptide binding to bacteria was mediated, at least in some cases, by specific cell-surface molecules, while examination of human tooth sections showed that this method can be used to derive peptides with highly specific binding to human tissue.
Collapse
|
5
|
Abstract
Transfusion safety relating to blood-transmissible agents is a major public health concern, particularly when faced with the continuing emergence of new infectious agents. These include new viruses appearing alongside other known reemerging viruses (West Nile virus, Chikungunya) as well as new strains of bacteria and parasites (Plasmodium falciparum, Trypanosoma cruzi) and finally pathologic prion protein (variant Creutzfeldt-Jakob disease). Genomic mutations of known viruses (hepatitis B virus, hepatitis C virus, human immunodeficiency virus) can also be at the origin of variants susceptible to escaping detection by diagnostic tests. New technologies that would allow the simultaneous detection of several blood-transmissible agents are now needed for the development and improvement of screening strategies. DNA microarrays have been developed for use in immunohematology laboratories for blood group genotyping. Their application in the detection of infectious agents, however, has been hindered by additional technological hurdles. For instance, the variability among and within genomes of interest complicate target amplification and multiplex analysis. Advances in biosensor technologies based on alternative detection strategies have offered new perspectives on pathogen detection; however, whether they are adaptable to diagnostic applications testing biologic fluids is under debate. Elsewhere, current nanotechnologies now offer new tools to improve the sample preparation, target capture, and detection steps. Second-generation devices combining micro- and nanotechnologies have brought us one step closer to the potential development of innovative and multiplexed approaches applicable to the screening of blood for transmissible agents.
Collapse
Affiliation(s)
- Chantal Fournier-Wirth
- Laboratoire de R&D-Agents Transmissibles par Transfusion (R&D-ATT), Etablissement Français du Sang Pyrénées-Méditerranée, Montpellier, France.
| | | | | |
Collapse
|
6
|
Fournier-Wirth C, Coste J. Nanotechnologies for pathogen detection: Future alternatives? Biologicals 2010; 38:9-13. [DOI: 10.1016/j.biologicals.2009.10.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 10/23/2009] [Indexed: 12/01/2022] Open
|
7
|
Weinrich D, Jonkheijm P, Niemeyer CM, Waldmann H. Applications of protein biochips in biomedical and biotechnological research. Angew Chem Int Ed Engl 2009; 48:7744-51. [PMID: 19757463 PMCID: PMC7159567 DOI: 10.1002/anie.200901480] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Progress in the development of protein‐immobilization strategies and methods has made protein biochips increasingly accessible. The integration of these assay and analysis platforms into biomedical and biotechnological research has substantially expanded the repertoire of methods available for proteomics and biomarker research and for drug development. This Minireview highlights selected developments in the application of protein biochips in these fields.
Collapse
Affiliation(s)
- Dirk Weinrich
- Max-Planck-Institut für molekulare Physiologie and Technische Universität Dortmund, Fachbereich Chemie, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | | | | | | |
Collapse
|
8
|
Molero C, Rodríguez-Escudero I, Alemán A, Rotger R, Molina M, Cid VJ. Addressing the effects of Salmonella internalization in host cell signaling on a reverse-phase protein array. Proteomics 2009; 9:3652-65. [PMID: 19609973 DOI: 10.1002/pmic.200800907] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Through acute enteric infection, Salmonella invades host enterocytes and reproduces intracellularly into specialized vacuolae. This involves changes in host cell signaling elicited by bacterial proteins delivered via type III secretion systems (TTSS). One of the two TTSSs of Salmonella enterica serovar Typhimurium encoded by the Salmonella pathogenicity island-1, triggers bacterial internalization. Among the effector proteins translocated by this TTSS, the GTPase modulator SopE/E2 and the phosphoinositide phosphatase SigD are known to play key roles in these processes. To better understand their contribution to re-programming host cell pathways, we used ZeptoMARK reverse-phase protein array technology, which allows printing 32-sample lysate arrays that can be analyzed with phospho-specific antibodies to evaluate the phosphorylation of signaling proteins. Lysates were obtained at different times after infection of HeLa cells with WT, TTSS-deficient, sopE/E2 and sigD single and double deletants, as well as different sigD Salmonella mutants. Our analysis detected activation of p38, JNK and ERK mitogen-activated protein kinases, mainly dependent on SopE/E2, as well as SigD-dependent phosphorylation of PKB/Akt and its targets GSK-3beta and FKHR/FoxO. This is the first time that reverse-phase protein array technology is used in the cellular microbiology field, demonstrating its value to screen for host signaling events through bacterial infection.
Collapse
Affiliation(s)
- Cristina Molero
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
9
|
Weinrich D, Jonkheijm P, Niemeyer C, Waldmann H. Proteinbiochips in der Biomedizin und Biotechnologie. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200901480] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Kersten B, Agrawal GK, Durek P, Neigenfind J, Schulze W, Walther D, Rakwal R. Plant phosphoproteomics: an update. Proteomics 2009; 9:964-88. [PMID: 19212952 DOI: 10.1002/pmic.200800548] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Phosphoproteomics involves identification of phosphoproteins, precise mapping, and quantification of phosphorylation sites, and eventually, revealing their biological function. In plants, several systematic phosphoproteomic analyses have recently been performed to optimize in vitro and in vivo technologies to reveal components of the phosphoproteome. The discovery of novel substrates for specific protein kinases is also an important issue. Development of a new tool has enabled rapid identification of potential kinase substrates such as kinase assays using plant protein microarrays. Progress has also been made in quantitative and dynamic analysis of mapped phosphorylation sites. Increased quantity of experimentally verified phosphorylation sites in plants has prompted the creation of dedicated web-resources for plant-specific phosphoproteomics data. This resulted in development of computational prediction methods yielding significantly improved sensitivity and specificity for the detection of phosphorylation sites in plants when compared to methods trained on less plant-specific data. In this review, we present an update on phosphoproteomic studies in plants and summarize the recent progress in the computational prediction of plant phosphorylation sites. The application of the experimental and computed results in understanding the phosphoproteomic networks of cellular and metabolic processes in plants is discussed. This is a continuation of our comprehensive review series on plant phosphoproteomics.
Collapse
Affiliation(s)
- Birgit Kersten
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany.
| | | | | | | | | | | | | |
Collapse
|
11
|
Kumada Y, Shiritani Y, Hamasaki K, Ohse T, Kishimoto M. High biological activity of a recombinant protein immobilized onto polystyrene. Biotechnol J 2009; 4:1178-89. [DOI: 10.1002/biot.200800192] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Neeley ES, Kornblau SM, Coombes KR, Baggerly KA. Variable slope normalization of reverse phase protein arrays. Bioinformatics 2009; 25:1384-9. [PMID: 19336447 PMCID: PMC3968550 DOI: 10.1093/bioinformatics/btp174] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 02/27/2009] [Accepted: 03/24/2009] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Reverse phase protein arrays (RPPA) measure the relative expression levels of a protein in many samples simultaneously. A set of identically spotted arrays can be used to measure the levels of more than one protein. Protein expression within each sample on an array is estimated by borrowing strength across all the samples, but using only within array information. When comparing across slides, it is essential to account for sample loading, the total amount of protein printed per sample. Currently, total protein is estimated using either a housekeeping protein or the sample median across all slides. When the variability in sample loading is large, these methods are suboptimal because they do not account for the fact that the protein expression for each slide is estimated separately. RESULTS We propose a new normalization method for RPPA data, called variable slope (VS) normalization, that takes into account that quantification of RPPA slides is performed separately. This method is better able to remove loading bias and recover true correlation structures between proteins. AVAILABILITY Code to implement the method in the statistical package R and anonymized data are available at (http://bioinformatics.mdanderson.org/supplements.html).
Collapse
|
13
|
Kumada Y, Hamasaki K, Shiritani Y, Ohse T, Kishimoto M. Efficient immobilization of a ligand antibody with high antigen-binding activity by use of a polystyrene-binding peptide and an intelligent microtiter plate. J Biotechnol 2009; 142:135-41. [DOI: 10.1016/j.jbiotec.2009.03.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 03/12/2009] [Accepted: 03/18/2009] [Indexed: 10/21/2022]
|
14
|
Servoss SL, Gonzalez R, Varnum S, Zangar RC. High-throughput analysis of serum antigens using sandwich ELISAs on microarrays. Methods Mol Biol 2009; 520:143-50. [PMID: 19381952 DOI: 10.1007/978-1-60327-811-9_10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Enzyme-linked immunosorbent assay (ELISA) microarrays promise to be a powerful tool for the detection and validation of disease biomarkers. ELISA microarrays are capable of simultaneous detection of many proteins using a small sample volume. Although there are many potential pitfalls to the use of ELISA microarrays, these can be avoided by careful planning of experiments. In this chapter we describe a high-throughput protocol for processing ELISA microarrays that will result in reliable and reproducible data.
Collapse
Affiliation(s)
- Shannon L Servoss
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | | | | | | |
Collapse
|
15
|
Bannantine JP, Waters WR, Stabel JR, Palmer MV, Li L, Kapur V, Paustian ML. Development and use of a partial Mycobacterium avium subspecies paratuberculosis protein array. Proteomics 2008; 8:463-74. [PMID: 18186021 DOI: 10.1002/pmic.200700644] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
As an initial step toward systematically characterizing all antigenic proteins produced by a significant veterinary pathogen, 43 recombinant Mycobacterium avium subspecies paratuberculosis (M. paratuberculosis) expression clones were constructed, cataloged, and stored. NC filters were spotted with purified proteins from each clone along with a whole cell lysate of M. paratuberculosis. Spots on the resulting dot array consisted of hypothetical proteins (13), metabolic proteins (3), cell envelope proteins (7), known antigens (4), and unique proteins with no similarity in public sequence databases (16). Dot blot arrays were used to profile antibody responses in a rabbit and mouse exposed to M. paratuberculosis as well as in cattle showing clinical signs of Johne's disease. The M. paratuberculosis heat shock protein DnaK, encoded by ORF MAP3840 and a membrane protein (MAP2121c), were identified as the most strongly immunoreactive in both the mouse and rabbit hosts, respectively. MAP3155c, which encodes a hypothetical protein, was most strongly immunoreactive in sera from Johne's disease cattle. This study has enabled direct comparisons of antibody reactivity for an entire panel of over 40 proteins and has laid the foundation for future high throughput production and arraying of M. paratuberculosis surface proteins for immune profiling experiments in cattle.
Collapse
|
16
|
Abstract
In genomics, the ability to amplify rare transcripts has enabled rapid advances in the understanding of gene expression patterns in human disease. The inability to increase the copy number and to detect the signal of rare proteins as unique species in biological samples has hindered the ability of proteomics to dissect human disease with the same complexity as genomic analyses. Advances in nanotechnology have begun to allow researchers to identify low-abundance proteins in samples through techniques that rely upon both nanoparticles and nanoscale devices. Coupled with rapid advances made in protein identification and isolation over the past decade, currently available technology enables more effective multiplexing and improved signal-to-noise, which enhances detection of low-abundance proteins in cellular and tissue lysates significantly. Techniques, including nanowires, nanocantilevers, bio-barcoding and surface-enhanced Raman spectroscopy, permit the detection of proteins into the low attomolar range, where many biologically important cellular processes occur. In this review, we summarize several such techniques, highlight their implementation in current protein research and comment on their potential role in future proteomic investigations and biomedical applications.
Collapse
Affiliation(s)
- Nicholas F Marko
- Cleveland Clinic Foundation, Department of Neurosurgery, 9500 Euclid Avenue, Cleveland, OH, USA.
| | | | | |
Collapse
|
17
|
Abstract
Phosphoproteomics can be defined as the comprehensive study of protein phosphorylation by identification of the phosphoproteins, exact mapping of the phosphorylation sites, quantification of phosphorylation, and eventually, revealing their biological function. Its place in today's research is vitally important to address the most fundamental question - how the phosphorylation events control most, if not all, of the cellular processes in a given organism? Despite the immense importance of phosphorylation, the analysis of phosphoproteins on a proteome-wide scale remains a formidable challenge. Nevertheless, several technologies have been developed, mostly in yeast and mammals, to conduct a large-scale phosphoproteomic study. Some of these technologies have been successfully applied to plants with a few modifications, resulting in documentation of phosphoproteins, phosphorylation site mapping, identification of protein kinase substrates, etc. at the global level. In this review, we summarize in vitro and in vivo approaches for detection and analysis of phosphoproteins including protein kinases and we discuss the importance of phosphoproteomics in understanding plant biology. These approaches along with bioinformatics will help plant researchers to design and apply suitable phosphoproteomic strategies in helping to find answers to their biological questions.
Collapse
Affiliation(s)
- Birgit Kersten
- RZPD German Resource Center for Genome Research GmbH, Berlin, Germany
| | | | | | | |
Collapse
|
18
|
Abstract
The speed of the human genome project (Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C. et al., Nature 2001, 409, 860-921) was made possible, in part, by developments in automation of sequencing technologies. Before these technologies, sequencing was a laborious, expensive, and personnel-intensive task. Similarly, automation and robotics are changing the field of proteomics today. Proteomics is defined as the effort to understand and characterize proteins in the categories of structure, function and interaction (Englbrecht, C. C., Facius, A., Comb. Chem. High Throughput Screen. 2005, 8, 705-715). As such, this field nicely lends itself to automation technologies since these methods often require large economies of scale in order to achieve cost and time-saving benefits. This article describes some of the technologies and methods being applied in proteomics in order to facilitate automation within the field as well as in linking proteomics-based information with other related research areas.
Collapse
Affiliation(s)
- Gil Alterovitz
- Division of Health Sciences and Technology, HST, Harvard Medical School and Massachusetts Institute of Technology, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|