1
|
Rizk SS, Moustafa DM, ElBanna SA, Nour El-Din HT, Attia AS. Nanobodies in the fight against infectious diseases: repurposing nature's tiny weapons. World J Microbiol Biotechnol 2024; 40:209. [PMID: 38771414 PMCID: PMC11108896 DOI: 10.1007/s11274-024-03990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024]
Abstract
Nanobodies are the smallest known antigen-binding molecules to date. Their small size, good tissue penetration, high stability and solubility, ease of expression, refolding ability, and negligible immunogenicity in the human body have granted them excellence over conventional antibodies. Those exceptional attributes of nanobodies make them promising candidates for various applications in biotechnology, medicine, protein engineering, structural biology, food, and agriculture. This review presents an overview of their structure, development methods, advantages, possible challenges, and applications with special emphasis on infectious diseases-related ones. A showcase of how nanobodies can be harnessed for applications including neutralization of viruses and combating antibiotic-resistant bacteria is detailed. Overall, the impact of nanobodies in vaccine design, rapid diagnostics, and targeted therapies, besides exploring their role in deciphering microbial structures and virulence mechanisms are highlighted. Indeed, nanobodies are reshaping the future of infectious disease prevention and treatment.
Collapse
Affiliation(s)
- Soha S Rizk
- Microbiology and Immunology Postgraduate Program, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Dina M Moustafa
- Department of Medical Sciences, Faculty of Dentistry, The British University in Egypt, El Sherouk City, Cairo, 11837, Egypt
| | - Shahira A ElBanna
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Hanzada T Nour El-Din
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Ahmed S Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
2
|
Yu S, Zhang L, Wang A, Jin Y, Zhou D. Nanobodies: the Potential Application in Bacterial Treatment and Diagnosis. Biochem Pharmacol 2023:115640. [PMID: 37315818 DOI: 10.1016/j.bcp.2023.115640] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
An infection caused by bacteria is one of the main factors that poses a threat to human health. A recent report from the World Health Organization (WHO) has highlighted that bacteria that cause blood infections have become increasingly drug-resistant. Therefore, it is crucial to research and develop new techniques for detecting and treating these infections. Since their discovery, nanobodies have exhibited numerous outstanding biological properties. They are easy to express, modify, and have high stability, robust permeability and low immunogenicity, all of which indicate their potential as a substitute. Nanobodies have been utilized in a variety of studies on viruses and cancer. This article primarily focuses on nanobodies and introduces their characteristics and application in the diagnosis and treatment of bacterial infections.
Collapse
Affiliation(s)
- Siyuan Yu
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang, China
| | - Lu Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang, China; Northwest A&F University Shenzhen Research Institute, Shenzhen, China; Department of Animal Engineering, Yangling Vocational&Technical College, Xianyang, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang, China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang, China; Northwest A&F University Shenzhen Research Institute, Shenzhen, China.
| | - Dong Zhou
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang, China
| |
Collapse
|
3
|
Li B, Qin X, Mi LZ. Nanobodies: from structure to applications in non-injectable and bispecific biotherapeutic development. NANOSCALE 2022; 14:7110-7122. [PMID: 35535618 DOI: 10.1039/d2nr00306f] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The increasing demand for convenient, miniaturized and multifunctional antibodies necessitates the development of novel antigen-recognition molecules for biological and medical studies. Nanobodies, the functional variable regions of camelid heavy-chain-only antibodies, as a new tool, complement the conventional antibodies and are in the stage of rapid development. The outstanding advantages of nanobodies include a stable structure, easy production, excellent water solubility, high affinity toward antigens and low immunogenicity. With promising application potential, nanobodies are now increasingly applied to various studies, including protein structure analysis, microscopic imaging, medical diagnosis, and drug development. The approval of the first nanobody drug Caplacizumab by the FDA disclosed the therapeutic potential of nanobodies. The outbreak of COVID-19 accelerated the development of nanobody drugs in non-injectable and bispecific biotherapeutic applications. Herein, we reviewed recent studies on the nanobody structure, screening and their applications in protein structure analysis and nanobody drugs, especially on non-injectable nanobody and bispecific nanobody development.
Collapse
Affiliation(s)
- Bingxuan Li
- School of Life Sciences, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China.
| | - Xiaohong Qin
- School of Life Sciences, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China.
| | - Li-Zhi Mi
- School of Life Sciences, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China.
| |
Collapse
|
4
|
Mir MA, Mehraj U, Sheikh BA, Hamdani SS. Nanobodies: The "Magic Bullets" in therapeutics, drug delivery and diagnostics. Hum Antibodies 2020; 28:29-51. [PMID: 31322555 DOI: 10.3233/hab-190390] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Antibodies represent a well-established class of clinical diagnostics for medical applications as well as essential research and biotechnological tools. Although both polyclonal and monoclonal antibodies are indispensable reagents in basic research and diagnostics but both of them have their limitations. Hence, there is urgent need to develop strategies aimed at production of alternative scaffolds and recombinant antibodies of smaller dimensions that could be easily produced, selected and manipulated. Unlike conventional antibodies, members of Camelidae and sharks produce antibodies composed only of heavy chains with small size, high solubility, thermal stability, refolding capacity and good tissue penetration in vivo. The discovery of these naturally occurring antibodies having only heavy-chain in Camelidae family and their further development into small recombinant nanobodies represents an attractive alternative in drug delivery, diagnostics and imaging. Nanobody derivatives are soluble, stable, versatile, have unique refolding capacities, reduced aggregation tendencies and high-target binding capabilities. They can be genetically customized to target enzymes, transmembrane proteins or molecular interactions. Their ability to recognize recessed antigenic sites has been attributed to their smaller size and the ability of the extended CDR3 loop to quickly penetrate into such epitopes. With the advent of molecular engineering and phage display technology, they can be of potential use in molecular imaging, drug delivery and therapeutics for several major diseases. In this review we present the recent advances in nanobodies for modulating immune functions, for targeting cancers, viruses, toxins and microbes as well as their utility as diagnostic and biosensor tools.
Collapse
|
5
|
Deng H, Zhou J, Gong B, Xiao M, Zhang M, Pang Q, Zhang X, Zhao B, Zhou X. Screening and identification of a human domain antibody against Brucella abortus VirB5. Acta Trop 2019; 197:105026. [PMID: 31103700 DOI: 10.1016/j.actatropica.2019.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 04/02/2019] [Accepted: 05/15/2019] [Indexed: 01/18/2023]
Abstract
Brucellosis is caused by the genus Brucella. Brucella is widely distributed in cattle, swine, sheep, goat and other mammals including human. Animal brucellosis causes severe economic losses and affects related international transportation and trade. Human brucellosis causes both acute and chronic symptoms of multi-organ dysfunction. Brucella type IV secretion system (T4SS) VirB5 was required for macrophages infection and essential for virulence in mice. VirB5 is located on the cell surface and serves as a specific adhesin targeting host cell receptors. The aim of this study was to isolate and characterize a specific human domain antibody against Brucella abortus (B. abortus) VirB5 from human single domain antibody (sdAb or VHH) phage display library. Following five rounds of screening, an sdAb named as BaV5VH4 showed the highest affinity by enzyme-linked immunosorbent assay (ELISA). Its interaction with B. abortus VirB5 was verified by binding assay, dot blot and molecular docking. These findings in this paper could greatly help elucidate the molecular mechanisms of Brucella infection, and accelerate the development of sdAbs-based vaccines and neutralizing therapeutics of brucellosis.
Collapse
|
6
|
del Rio B, Redruello B, Fernandez M, Martin MC, Ladero V, Alvarez MA. Lactic Acid Bacteria as a Live Delivery System for the in situ Production of Nanobodies in the Human Gastrointestinal Tract. Front Microbiol 2019. [PMCID: PMC6346216 DOI: 10.3389/fmicb.2018.03179] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
7
|
Wilken L, McPherson A. Application of camelid heavy-chain variable domains (VHHs) in prevention and treatment of bacterial and viral infections. Int Rev Immunol 2017; 37:69-76. [PMID: 29182399 DOI: 10.1080/08830185.2017.1397657] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Camelid heavy-chain variable domains (VHHs) are the smallest, intact, antigen-binding units to occur in nature. VHHs possess high degrees of solubility and robustness enabling generation of multivalent constructs with increased avidity - characteristics that mark their superiority to other antibody fragments and monoclonal antibodies. Capable of effectively binding to molecular targets inaccessible to classical immunotherapeutic agents and easily produced in microbial culture, VHHs are considered promising tools for pharmaceutical biotechnology. With the aim to demonstrate the perspective and potential of VHHs for the development of prophylactic and therapeutic drugs to target diseases caused by bacterial and viral infections, this review article will initially describe the structural features that underlie the unique properties of VHHs and explain the methods currently used for the selection and recombinant production of pathogen-specific VHHs, and then thoroughly summarize the experimental findings of five distinct studies that employed VHHs as inhibitors of host-pathogen interactions or neutralizers of infectious agents. Past and recent studies suggest the potential of camelid heavy-chain variable domains as a novel modality of immunotherapeutic drugs and a promising alternative to monoclonal antibodies. VHHs demonstrate the ability to interfere with bacterial pathogenesis by preventing adhesion to host tissue and sequestering disease-causing bacterial toxins. To protect from viral infections, VHHs may be employed as inhibitors of viral entry by binding to viral coat proteins or blocking interactions with cell-surface receptors. The implementation of VHHs as immunotherapeutic agents for infectious diseases is of considerable potential and set to contribute to public health in the near future.
Collapse
Affiliation(s)
- Lucas Wilken
- a School of Pharmacy and Life Sciences , Robert Gordon University , Garthdee Road, Aberdeen , United Kingdom.,b Department of Natural Sciences , Hochschule Bonn-Rhein-Sieg , Rheinbach , Germany
| | - Anne McPherson
- a School of Pharmacy and Life Sciences , Robert Gordon University , Garthdee Road, Aberdeen , United Kingdom
| |
Collapse
|
8
|
Comor L, Dolinska S, Bhide K, Pulzova L, Jiménez-Munguía I, Bencurova E, Flachbartova Z, Potocnakova L, Kanova E, Bhide M. Joining the in vitro immunization of alpaca lymphocytes and phage display: rapid and cost effective pipeline for sdAb synthesis. Microb Cell Fact 2017; 16:13. [PMID: 28114943 PMCID: PMC5259998 DOI: 10.1186/s12934-017-0630-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 01/17/2017] [Indexed: 12/13/2022] Open
Abstract
Background Camelids possess unique functional heavy chain antibodies, which can be produced and modified in vitro as a single domain antibody (sdAb or nanobody) with full antigen binding ability. Production of sdAb in conventional manner requires active immunization of Camelidae animal, which is laborious, time consuming, costly and in many cases not feasible (e.g. in case of highly toxic or infectious antigens). Results In this study, we describe an alternative pipeline that includes in vitro stimulation of naïve alpaca B-lymphocytes by antigen of interest (in this case endothelial cell binding domain of OspA of Borrelia) in the presence of recombinant alpaca interleukins 2 and 4, construction of sdAb phage library, selection of antigen specific sdAb expressed on phages (biopanning) and confirmation of binding ability of sdAb to the antigen. By joining the in vitro immunization and the phage display ten unique phage clones carrying sdAb were selected. Out of ten, seven sdAb showed strong antigen binding ability in phage ELISA. Furthermore, two soluble forms of sdAb were produced and their differential antigen binding affinity was measured with bio-layer interferometry. Conclusion A proposed pipeline has potential to reduce the cost substantially required for maintenance of camelid herd for active immunization. Furthermore, in vitro immunization can be achieved within a week to enrich mRNA copies encoding antigen-specific sdAbs in B cell. This rapid and cost effective pipeline can help researchers to develop efficiently sdAb for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Lubos Comor
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, 73, 04181, Kosice, Slovakia
| | - Saskia Dolinska
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, 73, 04181, Kosice, Slovakia
| | - Katarina Bhide
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, 73, 04181, Kosice, Slovakia
| | - Lucia Pulzova
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, 73, 04181, Kosice, Slovakia
| | - Irene Jiménez-Munguía
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, 73, 04181, Kosice, Slovakia
| | - Elena Bencurova
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, 73, 04181, Kosice, Slovakia
| | - Zuzana Flachbartova
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, 73, 04181, Kosice, Slovakia
| | - Lenka Potocnakova
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, 73, 04181, Kosice, Slovakia
| | - Evelina Kanova
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, 73, 04181, Kosice, Slovakia
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, 73, 04181, Kosice, Slovakia. .,Institute of Neuroimunnology, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
9
|
Bagheri M, Babaei E, Shahbazzadeh D, Habibi-Anbouhi M, Alirahimi E, Kazemi-Lomedasht F, Behdani M. Development of a recombinant camelid specific diabody against the heminecrolysin fraction of Hemiscorpius lepturus scorpion. TOXIN REV 2016. [DOI: 10.1080/15569543.2016.1244552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
10
|
Wang Y, Fan Z, Shao L, Kong X, Hou X, Tian D, Sun Y, Xiao Y, Yu L. Nanobody-derived nanobiotechnology tool kits for diverse biomedical and biotechnology applications. Int J Nanomedicine 2016; 11:3287-303. [PMID: 27499623 PMCID: PMC4959585 DOI: 10.2147/ijn.s107194] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Owing to peculiar properties of nanobody, including nanoscale size, robust structure, stable and soluble behaviors in aqueous solution, reversible refolding, high affinity and specificity for only one cognate target, superior cryptic cleft accessibility, and deep tissue penetration, as well as a sustainable source, it has been an ideal research tool for the development of sophisticated nanobiotechnologies. Currently, the nanobody has been evolved into versatile research and application tool kits for diverse biomedical and biotechnology applications. Various nanobody-derived formats, including the nanobody itself, the radionuclide or fluorescent-labeled nanobodies, nanobody homo- or heteromultimers, nanobody-coated nanoparticles, and nanobody-displayed bacteriophages, have been successfully demonstrated as powerful nanobiotechnological tool kits for basic biomedical research, targeting drug delivery and therapy, disease diagnosis, bioimaging, and agricultural and plant protection. These applications indicate a special advantage of these nanobody-derived technologies, already surpassing the “me-too” products of other equivalent binders, such as the full-length antibodies, single-chain variable fragments, antigen-binding fragments, targeting peptides, and DNA-based aptamers. In this review, we summarize the current state of the art in nanobody research, focusing on the nanobody structural features, nanobody production approach, nanobody-derived nanobiotechnology tool kits, and the potentially diverse applications in biomedicine and biotechnology. The future trends, challenges, and limitations of the nanobody-derived nanobiotechnology tool kits are also discussed.
Collapse
Affiliation(s)
- Yongzhong Wang
- School of Life Sciences, Collaborative Innovation Center of Modern Bio-manufacture, Anhui University, Hefei, People's Republic of China
| | - Zhen Fan
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Lei Shao
- State Key Laboratory of New Drugs and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, Shanghai
| | - Xiaowei Kong
- School of Life Sciences, Collaborative Innovation Center of Modern Bio-manufacture, Anhui University, Hefei, People's Republic of China
| | - Xianjuan Hou
- School of Life Sciences, Collaborative Innovation Center of Modern Bio-manufacture, Anhui University, Hefei, People's Republic of China
| | - Dongrui Tian
- School of Life Sciences, Collaborative Innovation Center of Modern Bio-manufacture, Anhui University, Hefei, People's Republic of China
| | - Ying Sun
- School of Life Sciences, Collaborative Innovation Center of Modern Bio-manufacture, Anhui University, Hefei, People's Republic of China
| | - Yazhong Xiao
- School of Life Sciences, Collaborative Innovation Center of Modern Bio-manufacture, Anhui University, Hefei, People's Republic of China
| | - Li Yu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
11
|
Steeland S, Vandenbroucke RE, Libert C. Nanobodies as therapeutics: big opportunities for small antibodies. Drug Discov Today 2016; 21:1076-113. [DOI: 10.1016/j.drudis.2016.04.003] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 02/26/2016] [Accepted: 04/04/2016] [Indexed: 12/28/2022]
|
12
|
Abstract
Whereas active immunity refers to the process of exposing the individual to an antigen to generate an adaptive immune response, passive immunity refers to the transfer of antibodies from one individual to another. Passive immunity provides immediate but short-lived protection, lasting several weeks up to 3 or 4 months. Passive immunity can occur naturally, when maternal antibodies are transferred to the fetus through the placenta or from breast milk to the gut of the infant. It can also be produced artificially, when antibody preparations derived from sera or secretions of immunized donors or, more recently, different antibody producing platforms are transferred via systemic or mucosal route to nonimmune individuals. Passive immunization has recently become an attractive approach because of the emergence of new and drug-resistant microorganisms, diseases that are unresponsive to drug therapy and individuals with an impaired immune system who are unable to respond to conventional vaccines. This chapter addresses the contributions of natural and artificial acquired passive immunity in understanding the concept of passive immunization. We will mainly focus on administration of antibodies for protection against various infectious agents entering through mucosal surfaces.
Collapse
|
13
|
Kolkman JA, Law DA. Nanobodies - from llamas to therapeutic proteins. DRUG DISCOVERY TODAY. TECHNOLOGIES 2013; 7:e95-e146. [PMID: 24103724 DOI: 10.1016/j.ddtec.2010.03.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
14
|
Abstract
Sera of camelids contain both conventional heterotetrameric antibodies and unique functional heavy (H)-chain antibodies (HCAbs). The H chain of these homodimeric antibodies consists of one antigen-binding domain, the VHH, and two constant domains. HCAbs fail to incorporate light (L) chains owing to the deletion of the first constant domain and a reshaped surface at the VHH side, which normally associates with L chains in conventional antibodies. The genetic elements composing HCAbs have been identified, but the in vivo generation of these antibodies from their dedicated genes into antigen-specific and affinity-matured bona fide antibodies remains largely underinvestigated. However, the facile identification of antigen-specific VHHs and their beneficial biochemical and economic properties (size, affinity, specificity, stability, production cost) supported by multiple crystal structures have encouraged antibody engineering of these single-domain antibodies for use as a research tool and in biotechnology and medicine.
Collapse
Affiliation(s)
- Serge Muyldermans
- Research Group Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
| |
Collapse
|
15
|
Caljon G, De Vooght L, Van Den Abbeele J. Options for the delivery of anti-pathogen molecules in arthropod vectors. J Invertebr Pathol 2012; 112 Suppl:S75-82. [PMID: 22841635 DOI: 10.1016/j.jip.2012.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 05/15/2012] [Accepted: 05/18/2012] [Indexed: 10/28/2022]
Abstract
Blood feeding arthropods are responsible for the transmission of a large array of medically important infectious agents that include viruses, bacteria, protozoan parasites and helminths. The recent development of transgenic and paratransgenic technologies have enabled supplementing the immune system of these arthropod vectors with anti-pathogen effector molecules in view of compromising their vector competence for these microbial agents. The characteristics of the selected anti-pathogen compound will largely determine the efficacy and specificity of this approach. Low specificity will generally result in bystander effects, likely having a direct or indirect fitness cost for the arthropod. In contrast, the use of highly specific compounds from the adaptive immune system of vertebrates such as antibody derived fragments is more likely to enable highly specific effects without conferring a selective disadvantage to the (para)transgenic arthropods. Here, Nanobodies® are excellent candidates to increase the immune competence of arthropods. Moreover they were shown to exert a novel type of anti-pathogen activity that uniquely depends on their small size.
Collapse
Affiliation(s)
- Guy Caljon
- Department of Biomedical Sciences, Unit of Veterinary Protozoology, Institute of Tropical Medicine Antwerp (ITM), Antwerp, Belgium.
| | | | | |
Collapse
|
16
|
Hisada H, Tsutsumi H, Ishida H, Hata Y. High production of llama variable heavy-chain antibody fragment (VHH) fused to various reader proteins by Aspergillus oryzae. Appl Microbiol Biotechnol 2012; 97:761-6. [DOI: 10.1007/s00253-012-4211-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/21/2012] [Accepted: 06/03/2012] [Indexed: 10/28/2022]
|
17
|
Gorlani A, Hulsik DL, Adams H, Vriend G, Hermans P, Verrips T. Antibody engineering reveals the important role of J segments in the production efficiency of llama single-domain antibodies in Saccharomyces cerevisiae. Protein Eng Des Sel 2011; 25:39-46. [PMID: 22143875 DOI: 10.1093/protein/gzr057] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Variable domains of llama heavy-chain antibodies (VHH) are becoming a potent tool for a wide range of biotechnological and medical applications. Because of structural features typical of their single-domain nature, they are relatively easy to produce in lower eukaryotes, but it is not uncommon that some molecules have poor secretion efficiency. We therefore set out to study the production yield of VHH. We computationally identified five key residues that are crucial for folding and secretion, and we validated their importance with systematic site-directed mutations. The observation that all key residues were localised in the V segment, in proximity of the J segment of VHH, led us to study the importance of J segment in secretion efficiency. Intriguingly, we found that the use of specific J segments in VHH could strongly influence the production yield. Sequence analysis and expression experiments strongly suggested that interactions with chaperones, especially with the J segment, are a crucial aspect of the production yield of VHH.
Collapse
Affiliation(s)
- A Gorlani
- Biomolecular Imaging Group, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
18
|
Hussack G, Hirama T, Ding W, MacKenzie R, Tanha J. Engineered single-domain antibodies with high protease resistance and thermal stability. PLoS One 2011; 6:e28218. [PMID: 22140551 PMCID: PMC3227653 DOI: 10.1371/journal.pone.0028218] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 11/03/2011] [Indexed: 11/28/2022] Open
Abstract
The extreme pH and protease-rich environment of the upper gastrointestinal tract is a major obstacle facing orally-administered protein therapeutics, including antibodies. Through protein engineering, several Clostridium difficile toxin A-specific heavy chain antibody variable domains (VHHs) were expressed with an additional disulfide bond by introducing Ala/Gly54Cys and Ile78Cys mutations. Mutant antibodies were compared to their wild-type counterparts with respect to expression yield, non-aggregation status, affinity for toxin A, circular dichroism (CD) structural signatures, thermal stability, protease resistance, and toxin A-neutralizing capacity. The mutant VHHs were found to be well expressed, although with lower yields compared to wild-type counterparts, were non-aggregating monomers, retained low nM affinity for toxin A, albeit the majority showed somewhat reduced affinity compared to wild-type counterparts, and were capable of in vitro toxin A neutralization in cell-based assays. Far-UV and near-UV CD spectroscopy consistently showed shifts in peak intensity and selective peak minima for wild-type and mutant VHH pairs; however, the overall CD profile remained very similar. A significant increase in the thermal unfolding midpoint temperature was observed for all mutants at both neutral and acidic pH. Digestion of the VHHs with the major gastrointestinal proteases, at biologically relevant concentrations, revealed a significant increase in pepsin resistance for all mutants and an increase in chymotrypsin resistance for the majority of mutants. Mutant VHH trypsin resistance was similar to that of wild-type VHHs, although the trypsin resistance of one VHH mutant was significantly reduced. Therefore, the introduction of a second disulfide bond in the hydrophobic core not only increases VHH thermal stability at neutral pH, as previously shown, but also represents a generic strategy to increase VHH stability at low pH and impart protease resistance, with only minor perturbations in target binding affinities. These are all desirable characteristics for the design of protein-based oral therapeutics.
Collapse
Affiliation(s)
- Greg Hussack
- Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Tomoko Hirama
- Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario, Canada
| | - Wen Ding
- Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario, Canada
| | - Roger MacKenzie
- Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario, Canada
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jamshid Tanha
- Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
- * E-mail:
| |
Collapse
|
19
|
de Marco A. Biotechnological applications of recombinant single-domain antibody fragments. Microb Cell Fact 2011; 10:44. [PMID: 21658216 PMCID: PMC3123181 DOI: 10.1186/1475-2859-10-44] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 06/09/2011] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Single-domain antibody fragments possess structural features, such as a small dimension, an elevated stability, and the singularity of recognizing epitopes non-accessible for conventional antibodies that make them interesting for several research and biotechnological applications. RESULTS The discovery of the single-domain antibody's potentials has stimulated their use in an increasing variety of fields. The rapid accumulation of articles describing new applications and further developments of established approaches has made it, therefore, necessary to update the previous reviews with a new and more complete summary of the topic. CONCLUSIONS Beside the necessary task of updating, this work analyses in detail some applicative aspects of the single-domain antibodies that have been overseen in the past, such as their efficacy in affinity chromatography, as co-crystallization chaperones, protein aggregation controllers, enzyme activity tuners, and the specificities of the unconventional single-domain fragments.
Collapse
Affiliation(s)
- Ario de Marco
- University of Nova Gorica (UNG), Vipavska 13, PO Box 301-SI-5000, Rožna Dolina (Nova Gorica), Slovenia.
| |
Collapse
|
20
|
Integrative expression system for delivery of antibody fragments by lactobacilli. Appl Environ Microbiol 2011; 77:2174-9. [PMID: 21257814 DOI: 10.1128/aem.02690-10] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A series of expression cassettes which mediate secretion or surface display of antibody fragments was stably integrated in the chromosome of Lactobacillus paracasei. L. paracasei producing surface-anchored variable domain of llama heavy chain (VHH) (ARP1) directed against rotavirus showed efficient binding to rotavirus and protection in the mouse model of rotavirus infection.
Collapse
|
21
|
Rahbarizadeh F, Ahmadvand D, Sharifzadeh Z. Nanobody; an old concept and new vehicle for immunotargeting. Immunol Invest 2011; 40:299-338. [PMID: 21244216 DOI: 10.3109/08820139.2010.542228] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The use of antibodies in cancer therapy has come a long way since the day Paul Ehrlich described the concept and Kohler and Milstein devised the hybridoma technology to bring this theory to reality. The synthesis of murine monoclonal antibodies (mAbs) was the first success in this field, leading to the invention of chimerization, the production of variable fragments (Fv) with the progression to domain antibodies (dAb) and later humanization technologies to maximize the clinical utility of murine mAbs. It was just by chance that dAbs were found to exist in ?heavy chain? immunoglobulins from Camelidae family and cartilaginous fish. These unique antibody fragments interact with antigen by virtue of only one single variable domain, referred to as VHH or nanobody. Several characteristics make nanobody use superior to the abovementioned antibodies. They are non-immunogenic and show high thermal and chemical stability. There are several reports of raising specific nanobodies against enzymes, haptens, pathogens, toxins and tumor markers, which are outlined in this paper. All these characteristics make them strong candidates as targeting agents for cancer therapy.
Collapse
Affiliation(s)
- Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | | | | |
Collapse
|
22
|
Wesolowski J, Alzogaray V, Reyelt J, Unger M, Juarez K, Urrutia M, Cauerhff A, Danquah W, Rissiek B, Scheuplein F, Schwarz N, Adriouch S, Boyer O, Seman M, Licea A, Serreze DV, Goldbaum FA, Haag F, Koch-Nolte F. Single domain antibodies: promising experimental and therapeutic tools in infection and immunity. Med Microbiol Immunol 2009; 198:157-74. [PMID: 19529959 PMCID: PMC2714450 DOI: 10.1007/s00430-009-0116-7] [Citation(s) in RCA: 371] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Indexed: 12/11/2022]
Abstract
Antibodies are important tools for experimental research and medical applications. Most antibodies are composed of two heavy and two light chains. Both chains contribute to the antigen-binding site which is usually flat or concave. In addition to these conventional antibodies, llamas, other camelids, and sharks also produce antibodies composed only of heavy chains. The antigen-binding site of these unusual heavy chain antibodies (hcAbs) is formed only by a single domain, designated VHH in camelid hcAbs and VNAR in shark hcAbs. VHH and VNAR are easily produced as recombinant proteins, designated single domain antibodies (sdAbs) or nanobodies. The CDR3 region of these sdAbs possesses the extraordinary capacity to form long fingerlike extensions that can extend into cavities on antigens, e.g., the active site crevice of enzymes. Other advantageous features of nanobodies include their small size, high solubility, thermal stability, refolding capacity, and good tissue penetration in vivo. Here we review the results of several recent proof-of-principle studies that open the exciting perspective of using sdAbs for modulating immune functions and for targeting toxins and microbes.
Collapse
Affiliation(s)
- Janusz Wesolowski
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Monegal A, Ami D, Martinelli C, Huang H, Aliprandi M, Capasso P, Francavilla C, Ossolengo G, de Marco A. Immunological applications of single-domain llama recombinant antibodies isolated from a naïve library. Protein Eng Des Sel 2009; 22:273-80. [PMID: 19196718 DOI: 10.1093/protein/gzp002] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We describe the rapid isolation of single-domain recombinant antibodies in VHH format from a pre-immune llama library created in our laboratory. Such naïve library has demonstrated to be a versatile tool and enabled the isolation of several different antibodies for any of the six proteins panned in parallel. The binders specific for human fibroblast growth factor receptor 1 (FGFR1) were successively analyzed in more detail and resulted suitable for both western blot and immunofluorescence analyses. Several milligrams per liter of antibodies were purified by affinity chromatography and used for kinetic and thermodynamic characterization. Their K(D) was in the nanomolar range and they apparently bound a FGF receptor 1 domain not overlapping the region recognized by its physiological ligand FGF. Altogether, the collected data indicate that the new library can enable the recovery of binders of high affinity, specificity and functionality in the conventional immunological tests, avoiding the necessity of further maturation steps. Such results confirmed recent reports of high affinity pre-immune IgNARs and supported the choice of using large single-domain recombinant antibody naïve libraries as an alternative to the preparation of immune libraries for selecting monoclonal antibodies, at convenient cost and time conditions.
Collapse
Affiliation(s)
- Ana Monegal
- Consortium for Genomic Technologies, Biochemistry Unit, IFOM-IEO Campus, Via Adamello 16, 20139 Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Secretory Immunity Following Mutans Streptococcal Infection or Immunization. Curr Top Microbiol Immunol 2008; 319:131-56. [DOI: 10.1007/978-3-540-73900-5_6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Hultberg A, Tremblay DM, de Haard H, Verrips T, Moineau S, Hammarström L, Marcotte H. Lactobacillli expressing llama VHH fragments neutralise Lactococcus phages. BMC Biotechnol 2007; 7:58. [PMID: 17875214 PMCID: PMC2039727 DOI: 10.1186/1472-6750-7-58] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 09/17/2007] [Indexed: 11/29/2022] Open
Abstract
Background Bacteriophages infecting lactic acid bacteria (LAB) are widely acknowledged as the main cause of milk fermentation failures. In this study, we describe the surface-expression as well as the secretion of two functional llama heavy-chain antibody fragments, one binding to the major capsid protein (MCP) and the other to the receptor-binding proteins (RBP) of the lactococcal bacteriophage p2, by lactobacilli in order to neutralise lactococcal phages. Results The antibody fragment VHH5 that is directed against the RBP, was fused to a c-myc tag and expressed in a secreted form by a Lactobacillus strain. The fragment VHH2 that is binding to the MCP, was fused to an E-tag and anchored on the surface of the lactobacilli. Surface expression of VHH2 was confirmed by flow cytometry using an anti-E-tag antibody. Efficient binding of both the VHH2 and the secreted VHH5 fragment to the phage antigens was shown in ELISA. Scanning electron microscopy showed that lactobacilli expressing VHH2 anchored at their surface were able to bind lactococcal phages. A neutralisation assay also confirmed that the secreted VHH5 and the anchored VHH2 fragments prevented the adsorption of lactococcal phages to their host cells. Conclusion Lactobacilli were able to express functional VHH fragments in both a secreted and a cell surface form and reduced phage infection of lactococcal cells. Lactobacilli expressing llama heavy-chain antibody fragments represent a novel way to limit phage infection.
Collapse
Affiliation(s)
- Anna Hultberg
- Division of Clinical Immunology at the Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital in Huddinge, Stockholm, Sweden
- Cellular Architecture and Dynamics (CAD), Utrecht University, The Netherlands
| | - Denise M Tremblay
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec, G1K 7P4, Canada
| | - Hans de Haard
- Unilever Research and Development, Vlaardingen, The Netherlands
- Ablynx, Technologiepark 4, 9052 Ghent, Belgium
| | - Theo Verrips
- Unilever Research and Development, Vlaardingen, The Netherlands
- Cellular Architecture and Dynamics (CAD), Utrecht University, Utrecht, The Netherlands
| | - Sylvain Moineau
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec, G1K 7P4, Canada
- Département de biochimie et de microbiologie, Faculté des sciences et de génie, Université Laval, Québec, G1K 7P4, Canada
| | - Lennart Hammarström
- Division of Clinical Immunology at the Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital in Huddinge, Stockholm, Sweden
| | - Harold Marcotte
- Division of Clinical Immunology at the Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital in Huddinge, Stockholm, Sweden
| |
Collapse
|
26
|
Harmsen MM, De Haard HJ. Properties, production, and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol 2007; 77:13-22. [PMID: 17704915 PMCID: PMC2039825 DOI: 10.1007/s00253-007-1142-2] [Citation(s) in RCA: 576] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 07/25/2007] [Accepted: 07/30/2007] [Indexed: 12/16/2022]
Abstract
Camelids produce functional antibodies devoid of light chains of which the single N-terminal domain is fully capable of antigen binding. These single-domain antibody fragments (VHHs or Nanobodies®) have several advantages for biotechnological applications. They are well expressed in microorganisms and have a high stability and solubility. Furthermore, they are well suited for construction of larger molecules and selection systems such as phage, yeast, or ribosome display. This minireview offers an overview of (1) their properties as compared to conventional antibodies, (2) their production in microorganisms, with a focus on yeasts, and (3) their therapeutic applications.
Collapse
Affiliation(s)
- M M Harmsen
- Institute for Animal Science and Health (ID-Lelystad) of Wageningen University and Research Centre, Edelhertweg 15, Lelystad, The Netherlands.
| | | |
Collapse
|