1
|
Ghazi-Yaker A, Kraak B, Houbraken J, Nabti EH, Cruz C, Saadoun N, Houali K. In Vitro Antioxidant and Antibacterial Activities of Ethyl Acetate Extracts of Ziziphus lotus Leaves and Five Associated Endophytic Fungi. Microorganisms 2024; 12:2671. [PMID: 39770873 PMCID: PMC11728511 DOI: 10.3390/microorganisms12122671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/15/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
The exploration of new pharmacological compounds from endophytic fungi offers infinite possibilities. The aim of this study was to evaluate the antibacterial and antioxidant activities of extracts from the leaves of Ziziphus lotus and five of its endophytic fungi and investigate the chemical diversity of the secondary metabolites produced. Isolated, purified, and molecularly identified endophytes and plant leaves were subjected to ethyl acetate extraction. The antibacterial potential of the extracts was assessed by the disc diffusion method against five bacterial strains: Staphylococcus aureus ATCC 25923; Staphylococcus aureus MU50; Enterococcus faecalis WDCM00009; Escherichia coli ATCC 25922; and Pseudomonas aeruginosa ATCC 27853. DPPH and reducing power tests were performed to assess antioxidant potential. GC-MS analysis was used to identify volatile compounds in extracts. Fungal endophytes were identified as Aspergillus cavernicola, Aspergillus persii, Alternaria alternata, Cladosporium asperlatum, and Fusarium incarnatum-equiseti complex, with respective accession numbers DTO 412-G6, DTO 412-I5, DTO 413-E7, DTO 412-G4, and DTO 414-I2. GC-MS analysis revealed a large number of bioactive compounds. All extracts showed antibacterial activity against at least two of the bacteria tested, and most showed antioxidant activity. The Aspergillus cavernicola extract stood out for its higher phenolic content and higher antioxidant and antibacterial activities in all tests.
Collapse
Affiliation(s)
- Amel Ghazi-Yaker
- Natural Resources Laboratory, Faculty of Biological and Agronomic Sciences, Mouloud Mammeri Univesity, Tizi-Ouzou 15000, Algeria; (A.G.-Y.); (N.S.)
- Laboratory of Analytic Biochemistry and Biotechnology (LABAB), Department of Biochemistry and Microbiology, Faculty of Biological and Agronomic Sciences, Mouloud Mammeri University, Tizi-Ouzou 15000, Algeria
| | - Bart Kraak
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan, 3584 CT Utrecht, The Netherlands; (B.K.); (J.H.)
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan, 3584 CT Utrecht, The Netherlands; (B.K.); (J.H.)
| | - El-hafid Nabti
- Laboratoire de Maitrise des Energies Renouvelables, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria;
| | - Cristina Cruz
- cE3c—Center for Ecology, Evolution and Environmental Changes & CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências da Universidade de Lisboa Campo Grande, 1749-016 Lisboa, Portugal;
| | - Noria Saadoun
- Natural Resources Laboratory, Faculty of Biological and Agronomic Sciences, Mouloud Mammeri Univesity, Tizi-Ouzou 15000, Algeria; (A.G.-Y.); (N.S.)
| | - Karim Houali
- Laboratory of Analytic Biochemistry and Biotechnology (LABAB), Department of Biochemistry and Microbiology, Faculty of Biological and Agronomic Sciences, Mouloud Mammeri University, Tizi-Ouzou 15000, Algeria
| |
Collapse
|
2
|
Zulqarnain, Iqbal Z, Anwar J, Iqbal M, Manzoor N, Ahmad N, Khattak SU, Alam SS, Sakamoto K. Bioactivity of a dihydroxy flavone produced by Penicillium EU0013 against the wilt pathogen of tomato. Nat Prod Res 2024:1-7. [PMID: 39394939 DOI: 10.1080/14786419.2024.2413037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/30/2024] [Accepted: 09/30/2024] [Indexed: 10/14/2024]
Abstract
Bioassay-guided isolation of a dihydroxy flavone from the cell extract of Penicillium EU0013 was carried out using preparative LCMS and the structure was interpreted using 1D and 2D NMR spectra. The fungus was fermented in three different nutrient media i.e. Glucose Nutrient Broth, Glucose Peptone Yeast Broth, and Yeast Extract Broth and the cell extract was obtained using organics. Comparative LCMS profiles of the fungus confirmed the enhanced production of dihydroxy flavone in GPYB media. In this study, the pathogenicity of the dihydroxy flavone is reported for the first time against Fusarium oxysporum f.sp. lycopersici, wilt causing pathogen of a tomato plant. In MIC experiments, the compound inhibited the pathogen at 80 µg mL-1. Molecular docking studies of the compound with Fol tomatinase showed five binding interactions. These docking studies may help explore dihydroxy flavones as a lead for developing new fungicides to prevent wilt disease in tomatoes.
Collapse
Affiliation(s)
- Zulqarnain
- Department of Agricultural Chemistry & Biochemistry, The University of Agriculture, Peshawar, Pakistan
- Directorate of Soil and Plant Nutrition, Agricultural Research Institute, Peshawar, Pakistan
| | - Zafar Iqbal
- Department of Agricultural Chemistry & Biochemistry, The University of Agriculture, Peshawar, Pakistan
| | - Jawad Anwar
- The University of Agriculture, Swat, Pakistan
| | - Mudassar Iqbal
- Department of Agricultural Chemistry & Biochemistry, The University of Agriculture, Peshawar, Pakistan
| | - Nazish Manzoor
- Kohat University of Science and Technology, Kohat, Pakistan
| | - Nasir Ahmad
- Department of Chemistry, Islamia College University, Peshawar, Pakistan
| | - Saeed Ullah Khattak
- Centre of Biotechnology & Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Syed Sartaj Alam
- Department of Plant Pathology, The University of Agriculture, Peshawar, Pakistan
| | | |
Collapse
|
3
|
Shah ZA, Khan K, Shah T, Ahmad N, Muhammad A, Rashid HU. Biological investigations of Aspergillus ficuum via in vivo, in vitro and in silico analyses. Sci Rep 2023; 13:17260. [PMID: 37828066 PMCID: PMC10570320 DOI: 10.1038/s41598-023-43819-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023] Open
Abstract
Serious human health impacts have been observed worldwide due to several life-threatening diseases such as cancer, candidiasis, hepatic coma, and gastritis etc. Exploration of nature for the treatment of such fatal diseases is an area of immense interest for the scientific community. Based on this idea, the genus Aspergillus was selected to discover its hidden therapeutic potential. The genus Aspergillus is known to possess several biologically active compounds. The current research aimed to assess the biological and pharmacological potency of the extracts of less-studied Aspergillus ficuum (FCBP-DNA-1266) (A. ficuum) employing experimental and bioinformatics approaches. The disc diffusion method was used for the antifungal investigation, and the MTT assay was performed to assess the anticancer effects. Mice were employed as an in vivo model to evaluate the antispasmodic effects. A standard spectrophotometric technique was applied to gauge the urease inhibitory activity. The antifungal studies indicate that both n-hexane and ethyl acetate extracts were significantly active against Candida albicans (C. albicans) with their zone of inhibitions (ZOI) values reported as 19 ± 1.06 mm and 25 ± 0.55 mm, respectively at a dose of 30 µg.mL-1. In vitro cytotoxicity assay against HeLa, fibroblast 3T3, prostate PC3, and breast MCF-7 cancer cell lines was performed. The ethyl acetate extract of A. ficuum was found to be significantly active against MCF-7 with its IC50 value of 43.88 µg.mL-1. However, no substantial effects on the percent cell death of HeLa cancer cell lines were observed. In addition, the A. ficuum extracts also inhibited the urease enzyme compared to standard thiourea. The antispasmodic activity of A. ficuum extract was assessed by an in vivo model and the results demonstrated promising activity at 150 mg.kg-1. Molecular docking results also supported the antifungal, anticancer, and antiurease potency of A. ficuum extract. Overall, the results display promising aspects of A. ficuum extract as a future pharmacological source.
Collapse
Affiliation(s)
- Zafar Ali Shah
- Department of Chemistry, Islamia College University, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Khalid Khan
- Department of Chemistry, Islamia College University, Peshawar, Khyber Pakhtunkhwa, Pakistan.
| | - Tanzeel Shah
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Nasir Ahmad
- Department of Chemistry, Islamia College University, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Akhtar Muhammad
- Department of Chemistry, Islamia College University, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Haroon Ur Rashid
- Center of Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas RS, Brazil.
- Institute of Chemistry, Sao Paulo State University, Araraquara, Sao Paulo, Brazil.
| |
Collapse
|
4
|
Hamoda AM, Hamdy R, Fayed B, Abouleish M, Sulaiman A, Hamad M, Soliman SSM. Evolutionary relevance of metabolite production in relation to marine sponge bacteria symbiont. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12649-3. [PMID: 37358811 DOI: 10.1007/s00253-023-12649-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/14/2023] [Accepted: 06/15/2023] [Indexed: 06/27/2023]
Abstract
Sponges are habitats for a diverse community of microorganisms. Sponges provide shelter, whereas microbes provide a complementary defensive mechanism. Here, a symbiotic bacterium, identified as Bacillus spp., was isolated from a marine sponge following culture enrichment. Fermentation-assisted metabolomics using thin-layer chromatography (TLC) and gas chromatography-mass spectrometry (GC-MS) indicated that marine simulated nutrition and temperature was the optimum in metabolite production represented by the highest number of metabolites and the diverse chemical classes when compared to other culture media. Following large-scale culture in potato dextrose broth (PDB) and dereplication, compound M1 was isolated and identified as octadecyl-1-(2',6'-di-tert-butyl-1'-hydroxyphenyl) propionate. M1, at screening concentrations up to 10 mg/ml, showed no activity against prokaryotic bacteria including Staphylococcus aureus and Escherichia coli, while 1 mg/ml of M1 was sufficient to cause a significant killing effect on eukaryotic cells including Candida albicans, Candida auris, and Rhizopus delemar fungi and different mammalian cells. M1 exhibited MIC50 0.97 ± 0.006 and 7.667 ± 0.079 mg/ml against C. albicans and C. auris, respectively. Like fatty acid esters, we hypothesize that M1 is stored in a less harmful form and upon pathogenic attack is hydrolyzed to a more active form as a defensive metabolite. Subsequently, [3-(3,5-di-tert-butyl-4-hydroxyphenyl)-propionic acid] (DTBPA), the hydrolysis product of M1, exhibited ~ 8-fold and 18-fold more antifungal activity than M1 against C. albicans and C. auris, respectively. These findings indicated the selectivity of that compound as a defensive metabolite towards the eukaryotic cells particularly the fungi, a major infectious agent to sponges. Metabolomic-assisted fermentation can provide a significant understanding of a triple marine-evolved interaction. KEY POINTS: • Bacillus species, closely related to uncultured Bacillus, is isolated from Gulf marine sponge • Metabolomic-assisted fermentations showed diverse metabolites • An ester with a killing effect against eukaryotes but not prokaryotes is isolated.
Collapse
Affiliation(s)
- Alshaimaa M Hamoda
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE
- College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, UAE
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut-71526, Egypt
| | - Rania Hamdy
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE
- Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Bahgat Fayed
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE
- Chemistry of Natural and Microbial Product Department, National Research Centre, Cairo, Egypt
| | - Mohamed Abouleish
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, UAE
| | - Ashna Sulaiman
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Mohamad Hamad
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE
- Department of Medical Laboratory Sciences, Collage of Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Sameh S M Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE.
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, UAE.
| |
Collapse
|
5
|
Sharma N, Dabral S, Tyagi J, Yadav G, Aggarwal H, Joshi NC, Varma A, Koul M, Choudhary DK, Mishra A. Interaction studies of Serendipita indica and Zhihengliuella sp. ISTPL4 and their synergistic role in growth promotion in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1155715. [PMID: 37293679 PMCID: PMC10244739 DOI: 10.3389/fpls.2023.1155715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/17/2023] [Indexed: 06/10/2023]
Abstract
Rapid urbanization and globalization demand increasing agricultural productivity. Soil nutrient supply capacity is continuously decreasing due to soil erosion, degradation, salt deposition, undesired element, metal deposition, water scarcity, and an uneven nutrient delivery system. Rice cultivation requires a large amount of water which is becoming detrimental due to these activities. There is a need to increase its productivity. Microbial inoculants are becoming increasingly important in achieving sustainable agricultural production systems. The current study was conducted to investigate the interaction between the root endophytic fungus Serendipita indica (S. indica) and the actinobacterium Zhihengliuella sp. ISTPL4 (Z. sp. ISTPL4) and their synergistic effects on the growth of rice (Oryza sativa L). Both S. indica and Z. sp. ISTPL4 showed positive interactions. Growth of S. indica was observed at different days after Z. sp. ISTPL4 inoculation, and stimulated growth of S. indica was observed when Z. sp. ISTPL4 was inoculated at 5 dafi (days after fungal inoculation). Z. sp. ISTPL4 promoted the growth of S. indica as it increased spore germination. Furthermore, confocal and scanning electron microscopy (SEM) analyses showed a 27% increase in the spore size of S. indica in the presence of Z. sp. ISTPL4. In a liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis increased production of alanine and glutamic acid was observed in their sequential co-culture as compared with individual cultures. Sequential inoculation of S. indica and Z. sp. ISTPL4 significantly increased the biochemical and physical characteristics of rice as compared with their individual inoculum. Biochemical parameters such as chlorophyll content, total soluble sugar, and flavonoid content in the rice increased by up to 57%, 47%, and 39%, respectively, in the presence of the combined inoculum of S. indica and Z. sp. ISTPL4. This will be the first study, to the best of our knowledge, which shows the fungus and actinobacterium interaction and their synergistic roles in the growth promotion of rice. Furthermore, this novel combination can also be used to boost the growth of other crops to increase the agricultural yield.
Collapse
Affiliation(s)
- Neha Sharma
- Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, India
| | - Surbhi Dabral
- Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, India
| | - Jaagriti Tyagi
- Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, India
| | - Gaurav Yadav
- Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, India
| | - Himanshi Aggarwal
- Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, India
| | | | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, India
| | - Monika Koul
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | | | - Arti Mishra
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| |
Collapse
|
6
|
Srinivasan N, Thangavelu K, Uthandi S. Lovastatin production by an oleaginous fungus, Aspergillus terreus KPR12 using sago processing wastewater (SWW). Microb Cell Fact 2022; 21:22. [PMID: 35164756 PMCID: PMC8842936 DOI: 10.1186/s12934-022-01751-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/25/2022] [Indexed: 12/19/2022] Open
Abstract
Abstract
Background
Lovastatin is one of the first statins to be extensively used for its cholesterol-lowering ability. It is commercially produced by fermentation. Species belonging to the genus Aspergillus are well-studied fungi that have been widely used for lovastatin production. In the present study, we produced lovastatin from sago processing wastewater (SWW) under submerged fermentation using oleaginous fungal strains, A. terreus KPR12 and A. caespitosus ASEF14.
Results
The intra- and extracellular concentrations of lovastatin produced by A. terreus KPR12 and A. caespitosus ASEF14 were lactonized. Because A. caespitosus ASEF14 produced a negligible amount of lovastatin, further kinetics of lovastatin production in SWW was studied using the KPR12 strain for 9 days. Lovastatin concentrations in the intra- and extracellular fractions of the A. terreus KPR12 cultured in a synthetic medium (SM) were 117.93 and 883.28 mg L–1, respectively. However, these concentrations in SWW were 142.23 and 429.98 mg L–1, respectively. The yeast growth inhibition bioassay confirmed the antifungal property of fungal extracts. A. terreus KPR12 showed a higher inhibition zone of 14 mm than the ASEF14 strain. The two-way analysis of variance (ANOVA; p < 0.01) showed significant differences in the localization pattern, fungal strains, growth medium, and their respective interactions. The lovastatin yield coefficient values were 0.153 g g–1 on biomass (YLOV/X) and 0.043 g g–1 on the substrate, starch (YLOV/S). The pollutant level of treated SWW exhibited a reduction in total solids (TS, 59%), total dissolved solids (TDS, 68%), biological oxygen demand (BOD, 79.5%), chemical oxygen demand (COD, 57.1%), phosphate (88%), cyanide (65.4%), and void of nutrients such as nitrate (100%), and ammonia (100%).
Conclusion
The starch-rich wastewater serves as a suitable medium for A. terreus KPR12 for the production of lovastatin. It simultaneously decontaminates the sago processing wastewater, enabling its reuse for irrigation/recreation.
Graphical Abstract
Collapse
|
7
|
Gola D, Tyagi PK, Arya A, Gupta D, Raghav J, Kaushik A, Agarwal M, Chauhan N, Srivastava SK. Antimicrobial and dye degradation application of fungi-assisted silver nanoparticles and utilization of fungal retentate biomass for dye removal. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2727-2739. [PMID: 34415655 DOI: 10.1002/wer.1629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/07/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
The present study utilized Aspergillus spp. for the synthesis of silver nanoparticles (AgNPs); the developed AgNPs were categorized using analytical techniques, that is, ultraviolet-visible (UV-vis) spectrophotometer, Zeta-potential, dynamic light scattering (DLS), and transmission electron microscopy (TEM). A sharp peak of 463 nm highlighted the synthesis of AgNPs; further Zeta-potential of -16 mV indicates stability of synthesized AgNPs. The TEM micrograph showed spherical and hexagonal shapes of synthesized AgNPs of 6-25 nm. The photocatalytic activity of fungal-mediated AgNPs was evaluated for degradation of reactive yellow dye in the concentration range of 20-100 mg L-1 . The results showed efficient degradation of dye using AgNPs in short span of time. For antibacterial activity, synthesized AgNPs, antibiotic, and AgNPs + antibiotic were tested. As per results, the zone of inhibition (ZOI) of AgNPs showed the values of 13 and 10 mm for Escherichia coli and Staphylococcus aureus, respectively. Further, the ZOI of penicillin highlighted the values of 18 and 17 mm for E. coli and S. aureus, respectively. When AgNPs and penicillin were used in combination, a clear synergistic effect was observed; the ZOI showed 0.49- and 0.36-fold increase in area against E. coli and S. aureus, respectively, in comparison with penicillin or AgNPs alone. Further, the leftover biomass (retentate biomass) was used to decolorize the reactive yellow dye at different initial concentration ranging from 20 to 100 mg L-1 . It was observed that 1 g L-1 retentate biomass (BR ) can effectively remove 82%-100% dye at 20 and 100 mg L-1 initial dye concentration. Results also indicated that with increase in initial reactive dye concentration from 20 to 100 mg L-1 , the decolorization capacity of retentate biomass (BR ) (at 0.2 g L-1 ) decreased from 79.2% to 32.3%. However, the use of AgNPs synthesized leftover fungal biomass can be a good option for up taking the additional dyes/contaminants, and also as leftover biomass can be utilized effectively, it can prove to be an excellent approach for environment safety. As the literature studies did not mentioned the further use of retentate biomass, the present study provides an excellent approach for further research on this aspect. PRACTITIONER POINTS: Synthesis of AgNPs from Aspergillus spp. and characterized with the help of a U.V-vis spectrophotometer, a zeta potential, DLS and TEM. The developed AgNPs were used for antibacterial and dye degradation activity. The left over (retentate) fungal biomass was used further for additional dye degradation activity.
Collapse
Affiliation(s)
- Deepak Gola
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, India
| | - Pankaj Kumar Tyagi
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, India
| | - Arvind Arya
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, India
| | - Dhriti Gupta
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, India
| | - Jyoti Raghav
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, India
| | - Ankush Kaushik
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, India
| | - Meenu Agarwal
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, India
| | - Nitin Chauhan
- Department of Microbiology, Swami Shraddhanand College, University of Delhi, Delhi, India
| | - Sunil Kumar Srivastava
- Department of Microbiology, Swami Shraddhanand College, University of Delhi, Delhi, India
| |
Collapse
|
8
|
Balbinot RB, de Oliveira JAM, Bernardi DI, Polli AD, Polonio JC, Cabral MRP, Zanqueta ÉB, Endo EH, Meneguello JE, Cardoso RF, Azevedo JL, Dias Filho BP, Nakamura TU, do Carmo MRB, Sarragiotto MH, Pamphile JA, Baldoqui DC. Chromolaena laevigata (Asteraceae) as a source of endophytic non-aflatoxigenic Aspergillus flavus: chemical profile in different culture conditions and biological applications. Braz J Microbiol 2021; 52:1201-1214. [PMID: 33929720 PMCID: PMC8324641 DOI: 10.1007/s42770-021-00502-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/16/2021] [Indexed: 10/21/2022] Open
Abstract
Endophytes are microorganisms that form symbiotic relationships with their host. These microorganisms can produce a variety of secondary metabolites, some of which have inhibitory effects on pests and pathogens or even act to promote plant growth. Due to these characteristics, these microorganisms are used as sources of biologically active substances for a wide range of biotechnological applications. Based on that, the aim of this study was to evaluate the production of metabolites of the endophytic Aspergillus flavus CL7 isolated from Chromolaena laevigata, in four different cultivation conditions, and to determine the antimicrobial, cytotoxic, antiviral, and antioxidant potential of these extracts. The multiphasic approach used to identify this strain was based on morphology and ITS gene sequence analysis. The chemical investigation of A. flavus using potato dextrose and minimal medium, using both stationary and agitated methods, resulted in the isolation of kojic acid, α-cyclopiazonic acid, and 20,25-dihydroxyaflavinine. Another 18 compounds in these extracts were identified by UHPLC-HRMS/MS, of which dideacetyl parasiticolide A has been described for the first time from A. flavus. Aflatoxins, important chemomarkers of A. flavus, were not detected in any of the extracts, thus indicating that the CL7 strain is non-aflatoxigenic. The biological potential of all extracts was evaluated, and the best results were observed for the extract obtained using minimal medium against Trichophyton rubrum and Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Rodolfo B Balbinot
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900, Maringá, Paraná, Brazil
| | - Josiane A M de Oliveira
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900, Maringá, Paraná, Brazil
| | - Darlon I Bernardi
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900, Maringá, Paraná, Brazil
| | - Andressa D Polli
- Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900, Maringá, Paraná, Brazil
| | - Julio C Polonio
- Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900, Maringá, Paraná, Brazil
| | - Márcia R P Cabral
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900, Maringá, Paraná, Brazil
| | - Érica B Zanqueta
- Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900, Maringá, Paraná, Brazil
| | - Eliana H Endo
- Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900, Maringá, Paraná, Brazil
| | - Jean E Meneguello
- Departamento de Análises Clínicas e Biomedicina, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900, Maringá, Paraná, Brazil
| | - Rosilene F Cardoso
- Departamento de Análises Clínicas e Biomedicina, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900, Maringá, Paraná, Brazil
| | - João L Azevedo
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz - ESALQ/USP, Universidade de São Paulo, Av. Pádua Dias 11, 13418-900, Piracicaba, São Paulo, Brazil
| | - Benedito P Dias Filho
- Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900, Maringá, Paraná, Brazil
| | - Tania U Nakamura
- Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900, Maringá, Paraná, Brazil
| | - Marta R B do Carmo
- Departamento de Biologia Geral, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4778, 84030-910, Ponta Grossa, Paraná, Brazil
| | - Maria H Sarragiotto
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900, Maringá, Paraná, Brazil
| | - João A Pamphile
- Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900, Maringá, Paraná, Brazil
| | - Debora C Baldoqui
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900, Maringá, Paraná, Brazil.
| |
Collapse
|
9
|
Dudeja S, Chhokar V, Beniwal V, Badgujjar H, Chauhan R, Soni S, Kumar A. Optimization and production of antimicrobial compounds by Aspergillus flavus MTCC 13062 and its synergistic studies. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Li XP, Zhou LL, Guo YH, Wang JW. The signaling role of extracellular ATP in co-culture of Shiraia sp. S9 and Pseudomonas fulva SB1 for enhancing hypocrellin A production. Microb Cell Fact 2021; 20:144. [PMID: 34301268 PMCID: PMC8305905 DOI: 10.1186/s12934-021-01637-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/16/2021] [Indexed: 12/20/2022] Open
Abstract
Background Adenosine 5′-triphosphate (ATP) plays both a central role as an intracellular energy source, and a crucial extracellular signaling role in diverse physiological processes of animals and plants. However, there are less reports concerning the signaling role of microbial extracellular ATP (eATP). Hypocrellins are effective anticancer photodynamic therapy (PDT) agents from bambusicolous Shiraia fungi. The co-culture of Shiraia sp. S9 and a bacterium Pseudomonas fulva SB1 isolated from Shiraia fruiting bodies was established for enhanced hypocrellin A (HA) production. The signaling roles of eATP to mediate hypocrellin biosynthesis were investigated in the co-culture. Results The co-culture induced release of eATP at 378 nM to the medium around 4 h. The eATP release was interdependent on cytosolic Ca2+ concentration and reactive oxygen species (ROS) production, respectively. The eATP production could be suppressed by the Ca2+ chelator EGTA or abolished by the channel blocker La3+, ROS scavenger vitamin C and NADPH oxidase inhibitor diphenyleneiodonium chloride (DPI). The bacterium-induced H2O2 production was strongly inhibited by reactive blue (RB), a specific inhibitor of membrane purinoceptors, but dependent on the induced Ca2+ influx in the co-culture. On the other hand, the application of exogenous ATP (exATP) at 10–300 µM to Shiraia cultures also promoted fungal conidiation and HA production, both of which were blocked effectively by the purinoceptor inhibitors pyridoxalphosphate-6-azophenyl-2′, 4′-disulfonic acid (PPADS) and RB, and ATP hydrolase apyrase. Both the induced expression of HA biosynthetic genes and HA accumulation were inhibited significantly under the blocking of the eATP or Ca2+ signaling, and the scavenge of ROS in the co-culture. Conclusions Our results indicate that eATP release is an early event during the intimate bacterial–fungal interaction and eATP plays a signaling role in the bacterial elicitation on fungal metabolites. Ca2+ and ROS are closely linked for activation of the induced ATP release and its signal transduction. This is the first report on eATP production in the fungal–bacterial co-culture and its involvement in the induced biosynthesis of fungal metabolites. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01637-9.
Collapse
Affiliation(s)
- Xin Ping Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Lu Lu Zhou
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Yan Hua Guo
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Jian Wen Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
11
|
Kwon SL, Park MS, Jang S, Lee YM, Heo YM, Hong JH, Lee H, Jang Y, Park JH, Kim C, Kim GH, Lim YW, Kim JJ. The genus Arthrinium (Ascomycota, Sordariomycetes, Apiosporaceae) from marine habitats from Korea, with eight new species. IMA Fungus 2021; 12:13. [PMID: 34059142 PMCID: PMC8168325 DOI: 10.1186/s43008-021-00065-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 04/28/2021] [Indexed: 11/10/2022] Open
Abstract
Species of Arthrinium are well-known plant pathogens, endophytes, or saprobes found in various terrestrial habitats. Although several species have been isolated from marine environments and their remarkable biological activities have been reported, marine Arthrinium species remain poorly understood. In this study, the diversity of this group was evaluated based on material from Korea, using morphological characterization and molecular analyses with the internal transcribed spacer (ITS) region, β-tubulin (TUB), and translation elongation factor 1-alpha (TEF). A total of 41 Arthrinium strains were isolated from eight coastal sites which represented 14 species. Eight of these are described as new to science with detailed descriptions.
Collapse
Affiliation(s)
- Sun Lul Kwon
- Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Myung Soo Park
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, South Korea
| | - Seokyoon Jang
- Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Young Min Lee
- Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Young Mok Heo
- Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Joo-Hyun Hong
- Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Hanbyul Lee
- Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Yeongseon Jang
- Division of Wood Chemistry and Microbiology, National Institute of Forest Science, Seoul, 02455, South Korea
| | - Ji-Hyun Park
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, South Korea
| | - Changmu Kim
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, 22689, South Korea
| | - Gyu-Hyeok Kim
- Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Young Woon Lim
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, South Korea.
| | - Jae-Jin Kim
- Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
12
|
OVAT Analysis and Response Surface Methodology Based on Nutrient Sources for Optimization of Pigment Production in the Marine-Derived Fungus Talaromyces albobiverticillius 30548 Submerged Fermentation. Mar Drugs 2021; 19:md19050248. [PMID: 33925595 PMCID: PMC8146719 DOI: 10.3390/md19050248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/24/2021] [Accepted: 04/25/2021] [Indexed: 11/17/2022] Open
Abstract
Pigment production from filamentous fungi is gaining interest due to the diversity of fungal species, the variety of compounds synthesized, and the possibility of controlled massive productions. The Talaromyces species produce a large panel of metabolites, including Monascus-like azaphilone pigments, with potential use as natural colorants in industrial applications. Optimizing pigment production from fungal strains grown on different carbon and nitrogen sources, using statistical methods, is widespread nowadays. The present work is the first in an attempt to optimize pigments production in a culture of the marine-derived T. albobiverticillius 30548, under the influence of several nutrients sources. Nutrient combinations were screened through the one-variable-at-a-time (OVAT) analysis. Sucrose combined with yeast extract provided a maximum yield of orange pigments (OPY) and red pigments (RPY) (respectively, 1.39 g/L quinizarin equivalent and 2.44 g/L Red Yeast pigment equivalent), as well as higher dry biomass (DBW) (6.60 g/L). Significant medium components (yeast extract, K2HPO4 and MgSO4·7H2O) were also identified from one-variable-at-a-time (OVAT) analysis for pigment and biomass production. A five-level central composite design (CCD) and a response surface methodology (RSM) were applied to evaluate the optimal concentrations and interactive effects between selected nutrients. The experimental results were well fitted with the chosen statistical model. The predicted maximum response for OPY (1.43 g/L), RPY (2.59 g/L), and DBW (15.98 g/L) were obtained at 3 g/L yeast extract, 1 g/L K2HPO4, and 0.2 g/L MgSO4·7H2O. Such optimization is of great significance for the selection of key nutrients and their concentrations in order to increase the pigment production at a pilot or industrial scale.
Collapse
|
13
|
Wong Chin JM, Puchooa D, Bahorun T, Jeewon R. Antimicrobial properties of marine fungi from sponges and brown algae of Mauritius. Mycology 2021; 12:231-244. [PMID: 34900379 PMCID: PMC8654394 DOI: 10.1080/21501203.2021.1895347] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/19/2021] [Indexed: 11/03/2022] Open
Abstract
Purpose of the study: Marine fungi of Mauritius have been poorly studied. There are numerous reports on the bioactive secondary metabolites that are produced by fungi around the world. Yet, research on the molecular characterisation and the pharmaceutical potential of marine fungi in Mauritius is rather scanty. Method: The samples, which consisted of three sponges Haliclona sp., Iotrochota sp. and Biemna sp. and two brown algae Turbinaria conoides and Sargassum portierianum, were collected in the North of Mauritius during winter. No sporulating structures were observed from the fungal cultures making morphological analysis impossible. The molecular characterisation of the selected isolates was carried out by the amplification of the ITS regions and phylogenetic analysis. The antimicrobial properties were then determined using the disc diffusion and the minimum inhibitory concentration (MIC) assay. Results: Genus level identification was made from molecular data and for some isolates, species-level identification was even possible. Twelve fungi that showed the best antimicrobial properties were identified as Peniophora sp., Aspergillus cristatus, Acremonium sp., Cordyceps memorabilis, Aspergillus ochraceus, Biscogniauxia sp., Aspergillus keratitidis, Exserohilum rostratum, Chromocleista sp., Nigrospora oryzae, Aspergillus flavipes and Mycosphaerella. The lowest MIC result of 0.0098 mg/mL was obtained with Chromocleista sp. mycelium extract against Staphylococcus aureus. The MIC of the mycelium extracts was lower than the broth extracts for most isolates indicating that the antimicrobial compounds are not secreted. Conclusion: Marine fungi from the Mauritian waters have immense potential in the search for natural products against antibiotic-resistant bacteria.
Collapse
Affiliation(s)
| | - Daneshwar Puchooa
- Department of Agricultural and Food Science, University of Mauritius, Réduit, Republic of Mauritius
| | - Theeshan Bahorun
- Department of Biosciences and Ocean Studies, ANDI Centre for Biomedical and Biomaterials Research (CBBR) and University of Mauritius, Réduit, Republic of Mauritius
| | - Rajesh Jeewon
- Department of Health Sciences, University of Mauritius, Réduit, Republic of Mauritius
| |
Collapse
|
14
|
Lotfy MM, Sayed AM, AboulMagd AM, Hassan HM, El Amir D, Abouzid SF, El-Gendy AO, Rateb ME, Abdelmohsen UR, Alhadrami H, Mohammed R. Metabolomic profiling, biological evaluation of Aspergillus awamori, the river Nile-derived fungus using epigenetic and OSMAC approaches. RSC Adv 2021; 11:6709-6719. [PMID: 35423214 PMCID: PMC8694877 DOI: 10.1039/d0ra07578g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/10/2021] [Indexed: 11/21/2022] Open
Abstract
LC-HRMS-based metabolomics approach was applied to the river Nile-derived fungus Aspergillus awamori after its fermentation on four different media and using four epigenetic modifiers as elicitors. Thereafter, a comprehensive multivariate statistical analysis such as PCA, PLS-DA and OPLS-DA were employed to explain the generated metabolomic data (1587 features). PCA showed that the fungus displayed a unique chemical profile in each medium or elicitor. Additionally, PLS-DA results revealed the upregulated metabolites under each of these conditions. Results indicated that both rice and malt dextrose agar were recognized as the best media in terms of secondary metabolites diversity and showed better profiles than the four applied epigenetic modifiers, of which nicotinamide was the best secondary metabolite elicitor. Testing the antibacterial and cytotoxic effects of all A. awamori-derived extracts revealed that using epigenetic modifiers can induce antimicrobial metabolites against S. aureus and E. coli, whereas using rice, malt dextrose or nicotinamide can induce groups of cytotoxic metabolites. OPLS-DA results assisted in the putative identification of the induced metabolites that could be responsible for these observed inhibitory activities. This study highlighted how powerful the OSMAC approach in maximizing of the chemical diversity of a single organism. Furthermore, it revealed the power of metabolomics in tracing, profiling and categorizing such chemical diversity and even targeting the possible bioactive candidates which require further scaling up studies in the future. LC-HRMS-based metabolomics approach was applied to the river Nile-derived fungus Aspergillus awamori after its fermentation on four different media and using four epigenetic modifiers as elicitors.![]()
Collapse
Affiliation(s)
- Momen M Lotfy
- Pharmacognosy Department, Faculty of Pharmacy, Beni-Suef University Beni-Suef 62111 Egypt +20 1202442204
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University Beni-Suef 62513 Egypt
| | - Asmaa M AboulMagd
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University Beni-Suef 62513 Egypt
| | - Hossam M Hassan
- Pharmacognosy Department, Faculty of Pharmacy, Beni-Suef University Beni-Suef 62111 Egypt +20 1202442204.,Department of Pharmacognosy, Faculty of Pharmacy, Nahda University Beni-Suef 62513 Egypt
| | - Dalia El Amir
- Pharmacognosy Department, Faculty of Pharmacy, Beni-Suef University Beni-Suef 62111 Egypt +20 1202442204
| | - Sameh F Abouzid
- Pharmacognosy Department, Faculty of Pharmacy, Beni-Suef University Beni-Suef 62111 Egypt +20 1202442204
| | - Ahmed O El-Gendy
- Microbiology and Immunology Department, Faculty of Pharmacy, Beni-Suef University Beni-Suef 62111 Egypt
| | - Mostafa E Rateb
- School of Computing, Engineering & Physical Science, University of the West of Scotland Paisley PA1 2BE Scotland UK
| | - Usama R Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University Minia 61519 Egypt.,Department of Pharmacognosy, Faculty of Pharmacy, Deraya University 7 Universities Zone 61111 New Minia City Egypt.,Department of Pharmacognosy, College of Pharmacy, King Khalid University Abha 61441 Saudi Arabia
| | - Hani Alhadrami
- Department of Medical Laboratory Technology, King Abdulaziz University P.O. Box 80402 Jeddah 21589 Saudi Arabia.,Special Infectious Agent Unit, King Fahd Medical Research Centre P.O. Box 80402 Jeddah 21589 Saudi Arabia
| | - Rabab Mohammed
- Pharmacognosy Department, Faculty of Pharmacy, Beni-Suef University Beni-Suef 62111 Egypt +20 1202442204
| |
Collapse
|
15
|
Alvandi H, Hatamian-Zarmi A, Ebrahimi Hosseinzadeh B, Mokhtari-Hosseini ZB. Optimization of Production Conditions for Bioactive Polysaccharides from Fomes fomentarius and Investigation of Antibacterial and Antitumor Activities. IRANIAN JOURNAL OF MEDICAL MICROBIOLOGY 2020. [DOI: 10.30699/ijmm.14.6.596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
Hawaiian Bobtail Squid Symbionts Inhibit Marine Bacteria via Production of Specialized Metabolites, Including New Bromoalterochromides BAC-D/D'. mSphere 2020; 5:5/4/e00166-20. [PMID: 32611694 PMCID: PMC7333567 DOI: 10.1128/msphere.00166-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Animals that deposit eggs must protect their embryos from fouling and disease by microorganisms to ensure successful development. Although beneficial bacteria are hypothesized to contribute to egg defense in many organisms, the mechanisms of this protection are only recently being elucidated. Our previous studies of the Hawaiian bobtail squid focused on fungal inhibition by beneficial bacterial symbionts of a female reproductive gland and eggs. Herein, using genomic and chemical analyses, we demonstrate that symbiotic bacteria from this gland can also inhibit other marine bacteria in vitro. One bacterial strain in particular, Pseudoalteromonas sp. JC28, had broad-spectrum abilities to inhibit potential fouling bacteria, in part via production of novel bromoalterochromide metabolites, confirmed via genomic annotation of the associated biosynthetic gene cluster. Our results suggest that these bacterial metabolites may contribute to antimicrobial activity in this association and that such defensive symbioses are underutilized sources for discovering novel antimicrobial compounds. The Hawaiian bobtail squid, Euprymna scolopes, has a symbiotic bacterial consortium in the accessory nidamental gland (ANG), a female reproductive organ that protects eggs against fouling microorganisms. To test the antibacterial activity of ANG community members, 19 bacterial isolates were screened for their ability to inhibit Gram-negative and Gram-positive bacteria, of which two strains were inhibitory. These two antibacterial isolates, Leisingera sp. ANG59 and Pseudoalteromonas sp. JC28, were subjected to further genomic characterization. Genomic analysis of Leisingera sp. ANG59 revealed a biosynthetic gene cluster encoding the antimicrobial compound indigoidine. The genome of Pseudoalteromonas sp. JC28 had a 14-gene cluster with >95% amino acid identity to a known bromoalterochromide (BAC) cluster. Chemical analysis confirmed production of known BACs, BAC-A/A′ (compounds 1a/1b), as well as two new derivatives, BAC-D/D′ (compounds 2a/2b). Extensive nuclear magnetic resonance (NMR) analyses allowed complete structural elucidation of compounds 2a/2b, and the absolute stereochemistry was unambiguously determined using an optimized Marfey’s method. The BACs were then investigated for in vitro antibacterial, antifungal, and nitric oxide (NO) inhibitory activity. Compounds 1a/1b were active against the marine bacteria Bacillus algicola and Vibrio fischeri, while compounds 2a/2b were active only against B. algicola. Compounds 1a/1b inhibited NO production via lipopolysaccharide (LPS)-induced inflammation in RAW264.7 macrophage cells and also inhibited the pathogenic fungus Fusarium keratoplasticum, which, coupled with their antibacterial activity, suggests that these polyketide-nonribosomal peptides may be used for squid egg defense against potential pathogens and/or fouling microorganisms. These results indicate that BACs may provide Pseudoalteromonas sp. JC28 an ecological niche, facilitating competition against nonsymbiotic microorganisms in the host’s environment. IMPORTANCE Animals that deposit eggs must protect their embryos from fouling and disease by microorganisms to ensure successful development. Although beneficial bacteria are hypothesized to contribute to egg defense in many organisms, the mechanisms of this protection are only recently being elucidated. Our previous studies of the Hawaiian bobtail squid focused on fungal inhibition by beneficial bacterial symbionts of a female reproductive gland and eggs. Herein, using genomic and chemical analyses, we demonstrate that symbiotic bacteria from this gland can also inhibit other marine bacteria in vitro. One bacterial strain in particular, Pseudoalteromonas sp. JC28, had broad-spectrum abilities to inhibit potential fouling bacteria, in part via production of novel bromoalterochromide metabolites, confirmed via genomic annotation of the associated biosynthetic gene cluster. Our results suggest that these bacterial metabolites may contribute to antimicrobial activity in this association and that such defensive symbioses are underutilized sources for discovering novel antimicrobial compounds.
Collapse
|
17
|
Dabral S, Saxena SC, Choudhary DK, Bandyopadhyay P, Sahoo RK, Tuteja N, Nath M. Synergistic inoculation of Azotobacter vinelandii and Serendipita indica augmented rice growth. Symbiosis 2020. [DOI: 10.1007/s13199-020-00689-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Toghueo RMK, Sahal D, Boyom FF. Recent advances in inducing endophytic fungal specialized metabolites using small molecule elicitors including epigenetic modifiers. PHYTOCHEMISTRY 2020; 174:112338. [PMID: 32179305 DOI: 10.1016/j.phytochem.2020.112338] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
Today when the quest of new lead molecules to supply the development pipeline is driving the course of drug discovery, endophytic fungi with their outstanding biosynthetic potential seem to be highly promising avenues for natural product scientists. However, challenges such as the production of inadequate quantities of compounds, the attenuation or loss of ability of endophytes to produce the compound of interest when grown in culture and the inability of fungal endophytes to express their full biosynthetic potential in laboratory conditions have been the major constraints. These have led to the application of small chemical elicitors that induce epigenetic changes in fungi to activate their silent gene clusters optimizing the amount of metabolites of interest or inducing the synthesis of hitherto undescribed compounds. In this respect small molecular weight compounds which are known to function as inhibitors of histone deacetylase (HDAC), DNA methyltransferase (DNMT) and proteasome have proven their efficacy in enhancing or inducing the production of specialized metabolites by fungi. Moreover, organic solvents, metals and plants extracts are also acknowledged for their ability to cause shifts in fungal metabolism. We highlight the successful studies from the past two decades reporting the ability of structurally diverse small molecular weight compounds to elicit the production of previously undescribed metabolites from endophytic fungi grown in culture. This mini review argues in favor of chemical elicitation as an effective strategy to optimize the production of fungal metabolites and invigorate the pipeline of drug discovery with new chemical entities.
Collapse
Affiliation(s)
- Rufin Marie Kouipou Toghueo
- Antimicrobial and Biocontrol Agents Unit (AmBcAU), Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Dinkar Sahal
- Malaria Drug Discovery Laboratory, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Fabrice Fekam Boyom
- Antimicrobial and Biocontrol Agents Unit (AmBcAU), Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| |
Collapse
|
19
|
Bioactive properties of streptomyces may affect the dominance of Tricholoma matsutake in shiro. Symbiosis 2020. [DOI: 10.1007/s13199-020-00678-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AbstractTricholoma matsutake is known to be the dominant fungal species in matsutake fruitbody neighboring (shiro) soil. To understand the mechanisms behind matsutake dominance, we studied the bacterial communities in matsutake dominant shiro soil and non-shiro soil, isolated the strains of Streptomyces from matsutake mycorrhizal root tips both from shiro soil and from the Pinus densiflora seedlings cultivated in shiro soil. Further, we investigated three Streptomyces spp. for their ability to inhibit fungal growth and Pinus densiflora seedling root elongation as well as two strains for their antifungal and antioxidative properties.Our results showed that Actinobacteria was the most abundant phylum in shiro soil. However, the differences in the Actinobacterial community composition (phylum or order level) between shiro and non-shiro soils were not significant, as indicated by PERMANOVA analyses. A genus belonging to Actinobacteria, Streptomyces, was present on the matsutake mycorrhizas, although in minority. The two antifungal assays revealed that the broths of three Streptomyces spp. had either inhibitory, neutral or promoting effects on the growth of different forest soil fungi as well as on the root elongation of the seedlings. The extracts of two strains, including one isolated from the P. densiflora seedlings, inhibited the growth of either pathogenic or ectomycorrhizal fungi. The effect depended on the medium used to cultivate the strains, but not the solvent used for the extraction. Two Streptomyces spp. showed antioxidant activity in one out of three assays used, in a ferric reducing antioxidant power assay. The observed properties seem to have several functions in matsutake shiro soil and they may contribute to the protection of the shiro area for T. matsutake dominance.
Collapse
|
20
|
Gerin D, Nigro F, Faretra F, Pollastro S. Identification of Arthrinium marii as Causal Agent of Olive Tree Dieback in Apulia (Southern Italy). PLANT DISEASE 2020; 104:694-701. [PMID: 31961768 DOI: 10.1094/pdis-03-19-0569-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Olive (Olea europaea L. var. sativa) is one of the most economically important tree crops grown in the Mediterranean basin. Arthrinium Kunze ex Fr. (teleomorph: Apiospora Sacc.) is a widespread fungal genus, and Arthrinium marii Larrondo & Calvo is a ubiquitous species, found in algae, soil, plants, and agricultural communities. A. marii was isolated from olive trees showing dieback from orchards located in Andria and in Fasano, Brindisi (Apulia, southern Italy) and identified based on morphological features and molecular analysis of four genomic regions (ITS, TUB2, TEF1, and LSU). Two-year-old olive plants artificially inoculated with three representative A. marii isolates showed complete dieback within 6 months, and the fungus was reisolated, satisfying Koch's postulates. This is the first report of A. marii causing dieback on olive trees that could represent an important threat for olive cultivation.
Collapse
Affiliation(s)
- Donato Gerin
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari 70126, Italy
| | - Franco Nigro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari 70126, Italy
- Selge Network, University of Bari Aldo Moro, Bari 70126, Italy
| | - Francesco Faretra
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari 70126, Italy
- Selge Network, University of Bari Aldo Moro, Bari 70126, Italy
| | - Stefania Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari 70126, Italy
- Selge Network, University of Bari Aldo Moro, Bari 70126, Italy
| |
Collapse
|
21
|
Effects of Cultural Conditions in Enhancing the Production of Anti-MRSA Activity of Lasiodiplodia pseudotheobromae IBRL OS-64, an Endophytic Fungus Isolated from Leaf of Ocimum sanctum L. in Submerged Fermentation System. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.4.67] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
22
|
Production of pectin lyase from agricultural wastes by isolated marine Penicillium expansum RSW_SEP1 as dye wool fiber. Heliyon 2019; 5:e02302. [PMID: 31463402 PMCID: PMC6709266 DOI: 10.1016/j.heliyon.2019.e02302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/29/2019] [Accepted: 08/09/2019] [Indexed: 11/23/2022] Open
Abstract
Enzyme technology is considered one of the most promising tools in the field of biotechnology as applied biocatalysts. The marine fungal strain Penicillium expansum RSW_SEP1 isolated from red sea water at Sharm El-Shiekh province and identified by 18S rRNA gene (accession number MH754656). The strain was able to produce pectin lyase from different agricultural wastes as the cheapest and most economical carbon source. The maximal enzyme activity of 88.83 U/mL was obtained from the pea peel (Pp) and sugar cane bagasse (Scb) at ratio 5:5 (w/w) and pH 6 by 8 mL of spore suspension as inoculum. Different concentrations of pectin lyase were examined on green dyed. The highest value of color strength (K/S) at 15% of wool fibers dyed with green algae by microwave after 5 min of the pretreated wool at pH 5.0. Different concentrations % of pectin lyase was examined on green dyed. The results indicated that, the highest value of color strength (K/S) at 15% of wool fibers dyed with green algae by microwave after 5 min of the pretreated wool at pH 5.0. This study focused on isolation and molecular identification of marine fungal strain as pectin lays producer from agriculture wastes and its application of dyeing wool fibers.
Collapse
|
23
|
Oda S, Nomura S, Nakagawa M, Shin-Ya K, Kagaya N, Kawahara T. Solid-liquid Interface Screening SystemーApplication to the Screening of Antibiotic and Cytotoxic Substance-producing Fungi. Biocontrol Sci 2019; 24:47-56. [PMID: 30880313 DOI: 10.4265/bio.24.47] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
A useful tool for the screening of fungi producing biologically active secondary metabolites such as antibiotics and cytotoxic substances has been developed. An agar plate-organic solvent interface cultivation (A/S-IFC) system, which comprised a hydrophobic organic solvent (upper phase) , a fungal mat (middle phase) and an agar plate (lower phase) , was constructed. The metabolite profiles were compared among the A/S-IFC, a traditional submerged cultivation (SmC) and an extractive liquid surface immobilization (Ext-LSI) system consisted of a hydrophobic solvent (upper phase) , a fungal cells-ballooned microspheres (middle phase) and a liquid medium (lower phase) , with high-performance liquid chromatography-photodiode array detector (HPLC-PDA) . In the A/S-IFC, many hydrophobic metabolites vastly different from those in the SmC were accumulated in the organic phase as with the Ext-LSI. For example, a valuable azaphilone, sclerotiorin, was remarkably produced into the organic phase in the A/S-IFC. The A/S-IFC was applied to the screening of antibiotic-producing fungi. As a result of paper disk method, it was found that 321 isolated among 811 strains produced antifungal metabolites (hit rate, 39.6%) . Furthermore, 8, 23, and 30 strains also produced cytotoxic metabolites against SKOV-3 (human ovary adenocarcinoma) , MESO-1 (human malignant pleural mesothelioma) , and Jurkat cells (immortalized human T lymphocyte) .
Collapse
Affiliation(s)
- Shinobu Oda
- Genome Biotechnology Laboratory, Kanazawa Institute of Technology.,Integrated Technology Research Center of Medicinal Science and Engineering, Kanazawa Institute of Technology
| | - Seiya Nomura
- Genome Biotechnology Laboratory, Kanazawa Institute of Technology
| | - Manami Nakagawa
- Genome Biotechnology Laboratory, Kanazawa Institute of Technology
| | - Kazuo Shin-Ya
- Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science andTechnology (AIST)
| | - Noritaka Kagaya
- Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science andTechnology (AIST)
| | - Teppei Kawahara
- Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science andTechnology (AIST).,Faculty of Life Science, Kumamoto University
| |
Collapse
|
24
|
Ganesh Kumar A, Balamurugan K, Vijaya Raghavan R, Dharani G, Kirubagaran R. Studies on the antifungal and serotonin receptor agonist activities of the secondary metabolites from piezotolerant deep-sea fungus Ascotricha sp. Mycology 2019; 10:92-108. [PMID: 31069123 PMCID: PMC6493281 DOI: 10.1080/21501203.2018.1541934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/23/2018] [Indexed: 12/29/2022] Open
Abstract
The potent antifungal agent sesquiterpenes and serotonin 5-HT2C agonist ascotricin were produced by a newly isolated deep-sea fungus Ascotricha sp. This fungus was isolated from deep-sea sediment collected at a depth of 1235 m and characterized. Piezotolerance was successfully tested under high pressure-low temperature (100 bar pressure and 20ºC) microbial cultivation system. Production of secondary metabolites was enhanced at optimized culture conditions. The in-vivo antifungal activity of sesquiterpenes was studied using the Caenorhabditis elegans – Candida albicans model system. The sesquiterpenes affected the virulence of C. albicans and prolonged the life of the host C. elegans. These findings suggest that sesquiterpenes are attractive antifungal drug candidates. The 5-HT2C receptor agonist is a potential target for the development of drugs for a range of central nervous system disorders. The interaction of 5-HT2C agonist ascotricin with the receptor was studied through bioinformatic analysis. The in silico molecular docking and molecular dynamic simulation studies demonstrated that they fit into the serotonin 5-HT2C active site and the crucial amino acid residues involved in the interactions were identified. To our knowledge, this is first report of in vivo antifungal analysis of sesquiterpenes and in silico studies of serotonin 5-HT2C receptor-ascotricin complex.
Collapse
Affiliation(s)
- A Ganesh Kumar
- Marine Biotechnology Division, Ocean Science and Technology for Islands Group, ESSO - National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai, Tamilnadu, India
| | - K Balamurugan
- Department of Biotechnology, Alagappa University, Karaikudi, Tamilnadu, India
| | - R Vijaya Raghavan
- Marine Biotechnology Division, Ocean Science and Technology for Islands Group, ESSO - National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai, Tamilnadu, India
| | - G Dharani
- Marine Biotechnology Division, Ocean Science and Technology for Islands Group, ESSO - National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai, Tamilnadu, India
| | - R Kirubagaran
- Marine Biotechnology Division, Ocean Science and Technology for Islands Group, ESSO - National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai, Tamilnadu, India
| |
Collapse
|
25
|
Kim HW, Lee SM, Seo JA, Kim YS. Effects of pH and Cultivation Time on the Formation of Styrene and Volatile Compounds by Penicillium expansum. Molecules 2019; 24:molecules24071333. [PMID: 30987370 PMCID: PMC6479942 DOI: 10.3390/molecules24071333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 03/29/2019] [Accepted: 03/29/2019] [Indexed: 11/16/2022] Open
Abstract
Styrene can be formed by the microbial metabolism of bacteria and fungi. In our previous study, styrene was determined as a spoilage marker of Fuji apples decayed by Penicillium expansum, which is responsible for postharvest diseases. In the present study, P. expansum was cultivated in potato dextrose broth added with phenylalanine—which is a precursor of styrene—using different initial pH values and cultivation times. Volatile compounds were extracted and analyzed using gas chromatography-mass spectrometry (GC-MS) combined with stir-bar sorptive extraction. The 76 detected volatile compounds included 3-methylbutan-1-ol, 3-methyl butanal, oct-1-en-3-ol, geosmin, nonanal, hexanal, and γ-decalactone. In particular, the formation of 10 volatile compounds derived from phenylalanine (including styrene and 2-phenylethanol) showed different patterns according to pH and the cultivation time. Partial least square-discriminant analysis (PLS-DA) plots indicated that the volatile compounds were affected more by pH than by the cultivation time. These results indicated that an acidic pH enhances the formation of styrene and that pH could be a critical factor in the production of styrene by P. expansum. This is the first study to analyze volatile compounds produced by P. expansum according to pH and cultivation time and to determine their effects on the formation of styrene.
Collapse
Affiliation(s)
- Hye Won Kim
- Department of Food Science and Engineering, Ewha Womans University, Seoul 120-750, Korea.
| | - Sang Mi Lee
- Department of Food Science and Engineering, Ewha Womans University, Seoul 120-750, Korea.
| | - Jeong-Ah Seo
- School of Systems Biomedical Science, Soongsil University 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Korea.
| | - Young-Suk Kim
- Department of Food Science and Engineering, Ewha Womans University, Seoul 120-750, Korea.
| |
Collapse
|
26
|
Zulqarnain, Iqbal Z, Cox R, Anwar J, Ahmad N, Khan K, Iqbal M, Manzoor N, Khattak SU. Antifungal activity of compounds isolated from Aspergillus niger and their molecular docking studies with tomatinase. Nat Prod Res 2018; 34:2642-2646. [PMID: 30582365 DOI: 10.1080/14786419.2018.1548447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Using a dual culture antagonism assay, Aspergillus niger exhibited 51.5 ± 1.1% growth inhibition against Fusarium oxysporum f.sp. lycopersici, the wilt pathogen of tomato. For enhanced production of antifungal metabolites, nutrient optimization was performed and in vitro well-diffusion antifungal assays demonstrated that crude extract obtained from GPYB culture showed a maximum zone of inhibition (8.8 ± 0.4 mm) against the wilt pathogen, which is corroborated by the comparative LCMS profiles of the extracts from all three media i.e. GPYB, YEB and PDB. Two known compounds, Asperazine (m/z 665 [M + H]+) and Nigerone (m/z 571 [M + H]+), were isolated from A. niger and their antifungal activity is reported here for the first time. In MIC experiments, Asperazine and Nigerone inhibited the pathogen at 60 and 80 µg·mL-1 respectively. Molecular docking studies of Nigerone and Asperazine with F. oxysporum tomatinase showed five and six binding interactions respectively.
Collapse
Affiliation(s)
- Zulqarnain
- Department of Agricultural Chemistry, The University of Agriculture, Peshawar, Pakistan
| | - Zafar Iqbal
- Department of Agricultural Chemistry, The University of Agriculture, Peshawar, Pakistan
| | - Russell Cox
- Institute of Organic Chemistry, Leibniz University of Hannover, Germany
| | - Jawad Anwar
- Department of Agricultural Chemistry, The University of Agriculture, Peshawar, Pakistan
| | - Nasir Ahmad
- Department of Chemistry, Islamia College University, Peshawar, Pakistan
| | - Khalid Khan
- Department of Chemistry, Islamia College University, Peshawar, Pakistan
| | - Mudassar Iqbal
- Department of Agricultural Chemistry, The University of Agriculture, Peshawar, Pakistan
| | - Nazish Manzoor
- Department of Agricultural Chemistry, The University of Agriculture, Peshawar, Pakistan
| | | |
Collapse
|
27
|
Diversity and Ecology of Marine Algicolous Arthrinium Species as a Source of Bioactive Natural Products. Mar Drugs 2018; 16:md16120508. [PMID: 30558255 PMCID: PMC6315899 DOI: 10.3390/md16120508] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 11/17/2022] Open
Abstract
In our previous study, all Arthrinium isolates from Sargassum sp. showed high bioactivities, but studies on marine Arthrinium spp. are insufficient. In this study, a phylogenetic analysis of 28 Arthrinium isolates from seaweeds and egg masses of Arctoscopus japonicus was conducted using internal transcribed spacers, nuclear large subunit rDNA, β-tubulin, and translation elongation factor region sequences, and their bioactivities were investigated. They were analyzed as 15 species, and 11 of them were found to be new species. Most of the extracts exhibited radical-scavenging activity, and some showed antifungal activities, tyrosinase inhibition, and quorum sensing inhibition. It was implied that marine algicolous Arthrinium spp. support the regulation of reactive oxygen species in symbiotic algae and protect against pathogens and bacterial biofilm formation. The antioxidant from Arthrinium sp. 10 KUC21332 was separated by bioassay-guided isolation and identified to be gentisyl alcohol, and the antioxidant of Arthrinium saccharicola KUC21221 was identical. These results demonstrate that many unexploited Arthrinium species still exist in marine environments and that they are a great source of bioactive compounds.
Collapse
|
28
|
Hamed AA, Abdel-Aziz MS, Abd El Hady FK. Antimicrobial and antioxidant activities of different extracts from Aspergillus unguis SPMD-EGY grown on different media. BULLETIN OF THE NATIONAL RESEARCH CENTRE 2018; 42:29. [DOI: 10.1186/s42269-018-0027-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/06/2018] [Indexed: 09/02/2023]
|
29
|
Abdel-Razek AS, Hamed A, Frese M, Sewald N, Shaaban M. Penicisteroid C: New polyoxygenated steroid produced by co-culturing of Streptomyces piomogenus with Aspergillus niger. Steroids 2018; 138:21-25. [PMID: 29902496 DOI: 10.1016/j.steroids.2018.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 10/28/2022]
Abstract
Penicisteroid C, a new polyoxygenated steroid was isolated from co-cultivation of Streptomyces piomogenus AS63D and Aspergillus niger using solid-state fermentation on rice medium. Additional diverse eleven known metabolites were identified: Fumigaclavine C, fumiquinazoline C, physcion, methylsulochrin, methyllinoleate, glycerol linoleate, cerebroside A, thymine, adenine, thymidine and adenosine. The structure of penicisteroid C was determined by HRESIMS, 1D and 2D NMR data. The antimicrobial and in vitro cytotoxic activities of the microbial extract and penicisteroid C were reported as well.
Collapse
Affiliation(s)
- Ahmed S Abdel-Razek
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, D-33501 Bielefeld, Germany; Microbial Chemistry Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, El-Buhouth St. 33, Dokki, Cairo 12622, Egypt
| | - Abdelaaty Hamed
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, D-33501 Bielefeld, Germany; Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Marcel Frese
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, D-33501 Bielefeld, Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, D-33501 Bielefeld, Germany
| | - Mohamed Shaaban
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, D-33501 Bielefeld, Germany; Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, El-Buhouth St. 33, Dokki, Cairo 12622, Egypt.
| |
Collapse
|
30
|
Media studies to enhance the production of verticillins facilitated by in situ chemical analysis. J Ind Microbiol Biotechnol 2018; 45:1053-1065. [PMID: 30259213 PMCID: PMC6251749 DOI: 10.1007/s10295-018-2083-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 09/20/2018] [Indexed: 01/21/2023]
Abstract
Abstract Verticillins are a group of epipolythiodioxopiperazine alkaloids that have displayed potent cytotoxicity. To evaluate their potential further, a larger supply of these compounds was needed for both in vivo studies and analogue development via semisynthesis. To optimize the biosynthesis of these secondary metabolites, their production was analyzed in two different fungal strains (MSX59553 and MSX79542) under a suite of fermentation conditions. These studies were facilitated by the use of the droplet-liquid microjunction-surface sampling probe (droplet probe), which enables chemical analysis in situ directly from the surface of the cultures. These experiments showed that the production of verticillins was greatly affected by growth conditions; a significantly higher quantity of these alkaloids was noted when the fungal strains were grown on an oatmeal-based medium. Using these technologies to select the best among the tested growth conditions, the production of the verticillin analogues was increased while concomitantly decreasing the time required for fermentations from 5 weeks to about 11 days. Importantly, where we could previously supply 5–10 mg every 6 weeks, we are now able to supply 50–150 mg quantities of key analogues per month via laboratory scale fermentation. Graphical abstract ![]()
Electronic supplementary material The online version of this article (10.1007/s10295-018-2083-8) contains supplementary material, which is available to authorized users.
Collapse
|
31
|
Mtibaà R, Olicón-Hernández DR, Pozo C, Nasri M, Mechichi T, González J, Aranda E. Degradation of bisphenol A and acute toxicity reduction by different thermo-tolerant ascomycete strains isolated from arid soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 156:87-96. [PMID: 29533211 DOI: 10.1016/j.ecoenv.2018.02.077] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/28/2018] [Accepted: 02/28/2018] [Indexed: 05/20/2023]
Abstract
Four different laccase-producing strains were isolated from arid soils and used for bisphenol A (BPA) degradation. These strains were identified as Chaetomium strumarium G5I, Thielavia arenaria CH9, Thielavia arenaria HJ22 and Thielavia arenaria SM1(III) by internal transcribed spacer 5.8 S rDNA analysis. Residual BPA was evaluated by HPLC analysis during 48 h of incubation. A complete removal of BPA was observed by the whole cell fungal cultures within different times, depending on each strain. C. strumarium G5I was the most efficient degrader, showing 100% of removal within 8 h of incubation. The degradation of BPA was accompanied by the production of laccase and dye decolorizing peroxidase (DyP) under degradation conditions. The presence of aminobenzotriazole (ABT) as an inhibitor of cytochrome P450s monooxygenases (CYP) demonstrated a slight decrease in BPA removal rate, suggesting the effective contribution of CYP in the conversion. The great involvement of laccase in BPA transformation together with cell-associated enzymes, such as CYP, was supported by the identification of hydroxylated metabolites by ultra-high performance liquid chromatography-mass spectroscopy (UHPLC-MS). The metabolic pathway of BPA transformation was proposed based on the detected metabolites. The acute toxicity of BPA and its products was investigated and showed a significant reduction, except for T. arenaria SM1(III) that did not caused reduction of toxicity (IC50 < 8%), possibly due to the presence of toxic metabolites. The results of the present study point out the potential application of the isolated ascomycetes in pollutant removal processes, especially C. strumarium G5I as an efficient degrader of BPA.
Collapse
Affiliation(s)
- Rim Mtibaà
- Laboratory of Enzyme Engineering and Microbiology, Ecole Nationale d'Ingenieurs de Sfax, University of Sfax, Route de Soukra Km 4.5, BP 1173, 3038 Sfax, Tunisia.
| | | | - Clementina Pozo
- Department of Microbiology, University of Granada, Campus Cartuja E-18071, Granada, Spain; Institute of Water Research, University of Granada, Ramón y Cajal 4, E-18071 Granada, Spain
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and Microbiology, Ecole Nationale d'Ingenieurs de Sfax, University of Sfax, Route de Soukra Km 4.5, BP 1173, 3038 Sfax, Tunisia
| | - Tahar Mechichi
- Laboratory of Enzyme Engineering and Microbiology, Ecole Nationale d'Ingenieurs de Sfax, University of Sfax, Route de Soukra Km 4.5, BP 1173, 3038 Sfax, Tunisia
| | - Jesus González
- Department of Microbiology, University of Granada, Campus Cartuja E-18071, Granada, Spain; Institute of Water Research, University of Granada, Ramón y Cajal 4, E-18071 Granada, Spain
| | - Elisabet Aranda
- Department of Microbiology, University of Granada, Campus Cartuja E-18071, Granada, Spain; Institute of Water Research, University of Granada, Ramón y Cajal 4, E-18071 Granada, Spain
| |
Collapse
|
32
|
Extending the "One Strain Many Compounds" (OSMAC) Principle to Marine Microorganisms. Mar Drugs 2018; 16:md16070244. [PMID: 30041461 PMCID: PMC6070831 DOI: 10.3390/md16070244] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 02/07/2023] Open
Abstract
Genomic data often highlights an inconsistency between the number of gene clusters identified using bioinformatic approaches as potentially producing secondary metabolites and the actual number of chemically characterized secondary metabolites produced by any given microorganism. Such gene clusters are generally considered as “silent”, meaning that they are not expressed under laboratory conditions. Triggering expression of these “silent” clusters could result in unlocking the chemical diversity they control, allowing the discovery of novel molecules of both medical and biotechnological interest. Therefore, both genetic and cultivation-based techniques have been developed aimed at stimulating expression of these “silent” genes. The principles behind the cultivation based approaches have been conceptualized in the “one strain many compounds” (OSMAC) framework, which underlines how a single strain can produce different molecules when grown under different environmental conditions. Parameters such as, nutrient content, temperature, and rate of aeration can be easily changed, altering the global physiology of a microbial strain and in turn significantly affecting its secondary metabolism. As a direct extension of such approaches, co-cultivation strategies and the addition of chemical elicitors have also been used as cues to activate “silent” clusters. In this review, we aim to provide a focused and comprehensive overview of these strategies as they pertain to marine microbes. Moreover, we underline how changes in some parameters which have provided important results in terrestrial microbes, but which have rarely been considered in marine microorganisms, may represent additional strategies to awaken “silent” gene clusters in marine microbes. Unfortunately, the empirical nature of the OSMAC approach forces scientists to perform extensive laboratory experiments. Nevertheless, we believe that some computation and experimental based techniques which are used in other disciplines, and which we discuss; could be effectively employed to help streamline the OSMAC based approaches. We believe that natural products discovery in marine microorganisms would be greatly aided through the integration of basic microbiological approaches, computational methods, and technological innovations, thereby helping unearth much of the as yet untapped potential of these microorganisms.
Collapse
|
33
|
Toghueo RMK, Sahal D, Zabalgogeazcoa Í, Baker B, Boyom FF. Conditioned media and organic elicitors underpin the production of potent antiplasmodial metabolites by endophytic fungi from Cameroonian medicinal plants. Parasitol Res 2018; 117:2473-2485. [PMID: 29797084 DOI: 10.1007/s00436-018-5936-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/15/2018] [Indexed: 01/19/2023]
Abstract
Plasmodial resistance to artemisinin-based combination therapies emphasizes the need for new drug development to control malaria. This paper describes the antiplasmodial activity of metabolites produced by endophytic fungi of three Cameroonian plants. Ethyl acetate extracts of fungi cultivated on three different media were tested against Plasmodium falciparum chloroquine-sensitive (Pf3D7) and chloroquine-resistant (PfINDO) strains using the SYBR green florescence assay. Selected endophytes were further grown in potato dextrose broth supplemented with small organic elicitors and their extracts tested for activity. The effect of elicitors on de novo metabolite synthesis was assessed by reverse-phase HPLC. Activity screening of 81 extracts indicated that Aspergillus niger 58 (IC50 2.25-6.69 μg/mL, Pf3D7), Fusarium sp. N240 (IC50 1.62-4.38 μg/mL, Pf3D7), Phomopsis sp. N114 (IC50 0.34-7.26 μg/mL, Pf3D7), and Xylaria sp. N120 (IC50 2.69-6.77 μg/mL, Pf3D7) produced potent extracts when grown in all three media. Further culture of these endophytes in potato dextrose broth supplemented with each of the eight small organic elicitors and subsequent extracts screening indicated the extract of Phomopsis sp. N114 grown with 1% 1-butanol to be highly selective and extremely potent (IC50 0.20-0.33 μg/mL; SI > 666). RPHPLC profiles of extracts of Phomopsis sp. N114 grown with or without 1-butanol showed some peaks of enhanced intensities in the former without any qualitative change in the chromatograms. This study showed the ability of selected endophytes to produce potent and selective antiplasmodial metabolites in varied culture conditions. It also showed how the production of desired metabolites can be enhanced by use of small molecular weight elicitors.
Collapse
Affiliation(s)
- Rufin Marie Kouipou Toghueo
- Antimicrobial and Biocontrol Agents Unit (AmBcAU), Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaounde, Cameroon
| | - Dinkar Sahal
- Malaria Research Laboratory, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Íñigo Zabalgogeazcoa
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA), Consejo Superior de Investigaciones Científicas (CSIC), Cordel de Merinas 40-52, 37008, Salamanca, Spain
| | - Bill Baker
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620-9951, USA
| | - Fabrice Fekam Boyom
- Antimicrobial and Biocontrol Agents Unit (AmBcAU), Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaounde, Cameroon.
| |
Collapse
|
34
|
|
35
|
Abstract
Natural products (NPs) have been used as traditional medicines since antiquity. With more than 1060 estimated compounds with molecular weights less than 500 Da representing chemical space, NPs occupy a very small percentage; however, they are significantly overrepresented in biologically relevant chemical space. The classical approach concentrates on identifying one or more NPs with biological activity from a source organism. There is much more to be learned from NPs than we can discover this narrow view. In this review, we discuss ways to harness the global properties of NPs.
Collapse
Affiliation(s)
- Asmaa Boufridi
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia; ,
| | - Ronald J Quinn
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia; ,
| |
Collapse
|
36
|
VanderMolen KM, Little JG, Sica VP, El-Elimat T, Raja HA, Oberlies NH, Baker TR, Mahony C. Safety assessment of mushrooms in dietary supplements by combining analytical data with in silico toxicology evaluation. Food Chem Toxicol 2017; 103:133-147. [PMID: 28267567 DOI: 10.1016/j.fct.2017.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/30/2017] [Accepted: 03/02/2017] [Indexed: 01/24/2023]
Abstract
Despite growing popularity in dietary supplements, many medicinal mushrooms have not been evaluated for their safe human consumption using modern techniques. The multifaceted approach described here relies on five key principles to evaluate the safety of non-culinary fungi for human use: (1) identification by sequencing the nuclear ribosomal internal transcribed spacer (ITS) region (commonly referred to as ITS barcoding), (2) screening an extract of each fungal raw material against a database of known fungal metabolites, (3) comparison of these extracts to those prepared from grocery store-bought culinary mushrooms using UHPLCPDA-ELS-HRMS, (4) review of the toxicological and chemical literature for each fungus, and (5) evaluation of data establishing presence in-market. This weight-of-evidence approach was used to evaluate seven fungal raw materials and determine safe human use for each. Such an approach may provide an effective alternative to conventional toxicological animal studies (or more efficiently identifies when studies are necessary) for the safety assessment of fungal dietary ingredients.
Collapse
Affiliation(s)
- Karen M VanderMolen
- Product Safety and Regulatory Affairs, New Chapter, Inc., 90 Technology Dr, Brattleboro, VT 05301, United States; Central Product Safety, The Procter and Gamble Company, Winton Hill Business Center, 6100 Center Hill Ave, Cincinnati, OH 45232, United States.
| | - Jason G Little
- Product Safety and Regulatory Affairs, New Chapter, Inc., 90 Technology Dr, Brattleboro, VT 05301, United States; Personal Health Care, The Procter and Gamble Company, Mason Business Center, 8700 Mason-Montogomery Rd, Mason, OH 45040, United States.
| | - Vincent P Sica
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro NC 27402, United States; Research and Development, Corporate Functions Analytical, The Procter & Gamble Company, Mason Business Center, 8700 Mason-Montogomery Rd, Mason, OH 45040, United States.
| | - Tamam El-Elimat
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro NC 27402, United States; Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro NC 27402, United States.
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro NC 27402, United States.
| | - Timothy R Baker
- Research and Development, Corporate Functions Analytical, The Procter & Gamble Company, Mason Business Center, 8700 Mason-Montogomery Rd, Mason, OH 45040, United States.
| | - Catherine Mahony
- Central Product Safety, Procter and Gamble Company Technical Centres Ltd, Egham, Surrey TW20 9NW, United Kingdom.
| |
Collapse
|
37
|
Sun Z, Shi C, Wang X, Fang Q, Huang J. Synthesis, characterization, and antimicrobial activities of sulfonated chitosan. Carbohydr Polym 2017; 155:321-328. [DOI: 10.1016/j.carbpol.2016.08.069] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 08/16/2016] [Accepted: 08/20/2016] [Indexed: 10/21/2022]
|
38
|
Mendes G, Gonçalves VN, Souza-Fagundes EM, Kohlhoff M, Rosa CA, Zani CL, Cota BB, Rosa LH, Johann S. Antifungal activity of extracts from Atacama Desert fungi against Paracoccidioides brasiliensis and identification of Aspergillus felis as a promising source of natural bioactive compounds. Mem Inst Oswaldo Cruz 2016; 111:209-17. [PMID: 27008375 PMCID: PMC4804504 DOI: 10.1590/0074-02760150451] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/15/2016] [Indexed: 12/15/2022] Open
Abstract
Fungi of the genus Paracoccidioides are responsible for
paracoccidioidomycosis. The occurrence of drug toxicity and relapse in this disease
justify the development of new antifungal agents. Compounds extracted from fungal
extract have showing antifungal activity. Extracts of 78 fungi isolated from rocks of
the Atacama Desert were tested in a microdilution assay against
Paracoccidioides brasiliensis Pb18. Approximately 18% (5) of the
extracts showed minimum inhibitory concentration (MIC) values≤ 125.0
µg/mL. Among these, extract from the fungus UFMGCB 8030 demonstrated the best
results, with an MIC of 15.6 µg/mL. This isolate was identified as
Aspergillus felis (by macro and micromorphologies, and internal
transcribed spacer, β-tubulin, and ribosomal polymerase II gene analyses) and was
grown in five different culture media and extracted with various solvents to optimise
its antifungal activity. Potato dextrose agar culture and dichloromethane extraction
resulted in an MIC of 1.9 µg/mL against P. brasiliensis and did not
show cytotoxicity at the concentrations tested in normal mammalian cell (Vero). This
extract was subjected to bioassay-guided fractionation using analytical
C18RP-high-performance liquid chromatography (HPLC) and an antifungal assay using
P. brasiliensis. Analysis of the active fractions by HPLC-high
resolution mass spectrometry allowed us to identify the antifungal agents present in
the A. felis extracts cytochalasins. These results reveal the
potential of A. felis as a producer of bioactive compounds with
antifungal activity.
Collapse
Affiliation(s)
- Graziele Mendes
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Vívian N Gonçalves
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Elaine M Souza-Fagundes
- Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Markus Kohlhoff
- Laboratório de Química de Produtos Naturais, Centro de Pesquisa René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brasil
| | - Carlos A Rosa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Carlos L Zani
- Laboratório de Química de Produtos Naturais, Centro de Pesquisa René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brasil
| | - Betania B Cota
- Laboratório de Química de Produtos Naturais, Centro de Pesquisa René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brasil
| | - Luiz H Rosa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Susana Johann
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| |
Collapse
|
39
|
Silber J, Kramer A, Labes A, Tasdemir D. From Discovery to Production: Biotechnology of Marine Fungi for the Production of New Antibiotics. Mar Drugs 2016; 14:md14070137. [PMID: 27455283 PMCID: PMC4962027 DOI: 10.3390/md14070137] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/06/2016] [Accepted: 07/12/2016] [Indexed: 02/02/2023] Open
Abstract
Filamentous fungi are well known for their capability of producing antibiotic natural products. Recent studies have demonstrated the potential of antimicrobials with vast chemodiversity from marine fungi. Development of such natural products into lead compounds requires sustainable supply. Marine biotechnology can significantly contribute to the production of new antibiotics at various levels of the process chain including discovery, production, downstream processing, and lead development. However, the number of biotechnological processes described for large-scale production from marine fungi is far from the sum of the newly-discovered natural antibiotics. Methods and technologies applied in marine fungal biotechnology largely derive from analogous terrestrial processes and rarely reflect the specific demands of the marine fungi. The current developments in metabolic engineering and marine microbiology are not yet transferred into processes, but offer numerous options for improvement of production processes and establishment of new process chains. This review summarises the current state in biotechnological production of marine fungal antibiotics and points out the enormous potential of biotechnology in all stages of the discovery-to-development pipeline. At the same time, the literature survey reveals that more biotechnology transfer and method developments are needed for a sustainable and innovative production of marine fungal antibiotics.
Collapse
Affiliation(s)
- Johanna Silber
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Natural Products Chemistry Research Unit, GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Am Kiel-Kanal 44, Kiel 24106, Germany.
| | - Annemarie Kramer
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Natural Products Chemistry Research Unit, GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Am Kiel-Kanal 44, Kiel 24106, Germany.
| | - Antje Labes
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Natural Products Chemistry Research Unit, GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Am Kiel-Kanal 44, Kiel 24106, Germany.
| | - Deniz Tasdemir
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Natural Products Chemistry Research Unit, GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Am Kiel-Kanal 44, Kiel 24106, Germany.
- Faculty of Mathematics and Natural Sciences, University of Kiel, Christian-Albrechts-Platz 4, Kiel 24118, Germany.
| |
Collapse
|
40
|
Mukherjee S, Chandrababunaidu MM, Panda A, Khowala S, Tripathy S. Tricking Arthrinium malaysianum into Producing Industrially Important Enzymes Under 2-Deoxy D-Glucose Treatment. Front Microbiol 2016; 7:596. [PMID: 27242677 PMCID: PMC4865484 DOI: 10.3389/fmicb.2016.00596] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/11/2016] [Indexed: 01/24/2023] Open
Abstract
This study catalogs production of industrially important enzymes and changes in transcript expression caused by 2-deoxy D-glucose (2-DG) treatment in Arthrinium malaysianum cultures. Carbon Catabolite Repression (CCR) induced by 2-DG in this species is cAMP independent unlike many other organisms. Higher levels of secreted endoglucanase (EG), β-glucosidase (BGL), β-xylosidase (BXL), and filter paper activity assay (FPase) enzymes under 2-DG treatment can be exploited for commercial purposes. An integrated RNA sequencing and quantitative proteomic analysis was performed to investigate the cellular response to 2-DG in A. malaysianum. Analysis of RNASeq data under 2-DG treated and control condition reveals that 56% of the unigenes do not have any known similarity to proteins in non-redundant database. Gene Ontology IDs were assigned to 36% of the transcripts (13260) and about 5207 (14%) were mapped to Kyoto Encyclopedia of Genes and Genomes pathway (KEGG). About 1711 genes encoding 2691 transcripts were differentially expressed in treated vs. control samples. Out of the 2691 differentially expressed transcripts, only 582 have any known function. The most up regulated genes belonged to Pentose Phosphate Pathways and carbohydrate degradation class as expected. In addition, genes involved in protein folding, binding, catalytic activity, DNA repair, and secondary metabolites were up-regulated under 2-DG treatment. Whereas genes encoding glycosylation pathways, growth, nutrient reservoir activity was repressed. Gene ontology analysis of the differentially expressed genes indicates metabolic process (35%) is the pre-dominant class followed by carbohydrate degradation (11%), protein folding, and trafficking (6.2%) and transport (5.3%) classes. Unlike other organisms, conventional unfolded protein response (UPR) was not activated in either control or treated conditions. Major enzymes secreted by A. malaysianum are those degrading plant polysaccharides, the most dominant ones being β-glucosidase, as demonstrated by the 2D gel analysis. A set of 7 differentially expressed mRNAs were validated by qPCR. Transmission electron microscopy analyses demonstrated that the 2-DG treated cell walls of hyphae showed significant differences in the cell-wall thickness. Overall 2-DG treatment in A. malaysianum induced secretion of large amount of commercially viable enzymes compared to other known species.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Drug Development Diagnostic and Biotechnology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical BiologyKolkata, India
| | - Mathu Malar Chandrababunaidu
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research-Indian Institute of Chemical BiologyKolkata, India
| | - Arijit Panda
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research-Indian Institute of Chemical BiologyKolkata, India
| | - Suman Khowala
- Drug Development Diagnostic and Biotechnology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical BiologyKolkata, India
| | - Sucheta Tripathy
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research-Indian Institute of Chemical BiologyKolkata, India
| |
Collapse
|
41
|
Sharma A, Sharma S, Mittal A, Naik SN. Evidence for the involvement of nematocidal toxins of Purpureocillium lilacinum 6029 cultured on Karanja deoiled cake liquid medium. World J Microbiol Biotechnol 2016; 32:82. [PMID: 27038952 DOI: 10.1007/s11274-016-2038-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 02/25/2016] [Indexed: 11/30/2022]
Abstract
In present study, in vitro nematocidal bioassays, FT-IR and HPLC analysis were employed to demonstrate the involvement of toxins of Purpureocillium lilacinum in killing root-knot nematodes (Meloidogyne incognita). During growth study, maximum mycelial biomass (10.52 g/l) in de-oiled Karanja cake medium was achieved on 8th day while complete mortality of nematodes was obtained by 6th day filtrate (FKSM). Maximum production of crude nematocidal toxin was recorded on 7th day suggesting that the toxin production was paralleled with growth of the fungus. The median lethal concentration (LC50) determined for the crude toxin from 6th day to 10th day ranged from 89.41 to 43.21 ppm. The median lethal time (LT50) for the crude toxin of FKSM was found to be 1.46 h. This is the first report of implementing a comparative infra-red spectroscopy coupled with HPLC analysis to predict the presence of nematocidal toxin in the fungal filtrate cultured on Karanja deoiled cake liquid medium.
Collapse
Affiliation(s)
- Abhishek Sharma
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, 289, Hauz Khas, New Delhi, 110016, India
| | - Satyawati Sharma
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, 289, Hauz Khas, New Delhi, 110016, India.
| | - Aditya Mittal
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - S N Naik
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, 289, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
42
|
Rathore SS, Ramamurthy V, Allen S, Selva Ganesan S, Ramakrishnan J. Novel approach of adaptive laboratory evolution: triggers defense molecules in Streptomyces sp. against targeted pathogen. RSC Adv 2016. [DOI: 10.1039/c6ra15952d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Adaptive laboratory evolution by competition-based co-culture: triggers and enhance specific bioactive molecules against targeted pathogen.
Collapse
Affiliation(s)
- Sudarshan Singh Rathore
- Centre for Research in Infectious Diseases (CRID)
- School of Chemical and Biotechnology
- SASTRA University
- Thanjavur
- India – 613401
| | - Vigneshwari Ramamurthy
- Centre for Research in Infectious Diseases (CRID)
- School of Chemical and Biotechnology
- SASTRA University
- Thanjavur
- India – 613401
| | - Sally Allen
- Centre for Research in Infectious Diseases (CRID)
- School of Chemical and Biotechnology
- SASTRA University
- Thanjavur
- India – 613401
| | - S. Selva Ganesan
- Department of Chemistry
- School of Chemical and Biotechnology
- SASTRA University
- Thanjavur-613401
- India
| | - Jayapradha Ramakrishnan
- Centre for Research in Infectious Diseases (CRID)
- School of Chemical and Biotechnology
- SASTRA University
- Thanjavur
- India – 613401
| |
Collapse
|
43
|
Kapley A, Tanksale H, Sagarkar S, Prasad AR, Kumar RA, Sharma N, Qureshi A, Purohit HJ. Antimicrobial activity of Alcaligenes sp. HPC 1271 against multidrug resistant bacteria. Funct Integr Genomics 2015; 16:57-65. [PMID: 26432787 DOI: 10.1007/s10142-015-0466-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 09/21/2015] [Accepted: 09/24/2015] [Indexed: 10/23/2022]
Abstract
Alcaligenes sp. HPC 1271 demonstrated antibacterial activity against multidrug resistant bacteria, Enterobacter sp., resistant to sulfamethoxazole, ampicillin, azithromycin, and tetracycline, as well as against Serratia sp. GMX1, resistant to the same antibiotics with the addition of netilmicin. The cell-free culture supernatant was analyzed for possible antibacterials by HPLC, and the active fraction was further identified by LC-MS. Results suggest the production of tunicamycin, a nucleoside antibiotic. The draft genome of this bacterial isolate was analyzed, and the 4.2 Mb sequence data revealed six secondary metabolite-producing clusters, identified using antiSMASH platform as ectoine, butyrolactone, phosphonate, terpene, polyketides, and nonribosomal peptide synthase (NRPS). Additionally, the draft genome demonstrated homology to the tunicamycin-producing gene cluster and also defined 30 ORFs linked to protein secretion that could also play a role in the antibacterial activity observed. Gene expression analysis demonstrated that both NRPS and dTDP-glucose 4,6-dehydratase gene clusters are functional and could be involved in antibacterial biosynthesis.
Collapse
Affiliation(s)
- Atya Kapley
- CSIR-NEERI, Nehru Marg, Nagpur, 440020, Maharashtra, India. .,Environmental Genomics Division, National Environmental Engineering Research Institute, CSIR, Nehru Marg, Nagpur, 440 020, India.
| | | | - Sneha Sagarkar
- CSIR-NEERI, Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - A R Prasad
- CSIR-IICT, Uppal Road, Tarnaka, Hyderabad, 500007, Andhra Pradesh, India
| | | | - Nandita Sharma
- CSIR-NEERI, Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - Asifa Qureshi
- CSIR-NEERI, Nehru Marg, Nagpur, 440020, Maharashtra, India
| | | |
Collapse
|
44
|
Bolaños J, De León LF, Ochoa E, Darias J, Raja HA, Shearer CA, Miller AN, Vanderheyden P, Porras-Alfaro A, Caballero-George C. Phylogenetic Diversity of Sponge-Associated Fungi from the Caribbean and the Pacific of Panama and Their In Vitro Effect on Angiotensin and Endothelin Receptors. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:533-564. [PMID: 26026948 DOI: 10.1007/s10126-015-9634-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 04/17/2015] [Indexed: 06/04/2023]
Abstract
Fungi occupy an important ecological niche in the marine environment, and marine fungi possess an immense biotechnological potential. This study documents the fungal diversity associated with 39 species of sponges and determines their potential to produce secondary metabolites capable of interacting with mammalian G-protein-coupled receptors involved in blood pressure regulation. Total genomic DNA was extracted from 563 representative fungal strains obtained from marine sponges collected by SCUBA from the Caribbean and the Pacific regions of Panama. A total of 194 operational taxonomic units were found with 58% represented by singletons based on the internal transcribed spacer (ITS) and partial large subunit (LSU) rDNA regions. Marine sponges were highly dominated by Ascomycota fungi (95.6%) and represented by two major classes, Sordariomycetes and Dothideomycetes. Rarefaction curves showed no saturation, indicating that further efforts are needed to reveal the entire diversity at this site. Several unique clades were found during phylogenetic analysis with the highest diversity of unique clades in the order Pleosporales. From the 65 cultures tested to determine their in vitro effect on angiotensin and endothelin receptors, the extracts of Fusarium sp. and Phoma sp. blocked the activation of these receptors by more than 50% of the control and seven others inhibited between 30 and 45%. Our results indicate that marine sponges from Panama are a "hot spot" of fungal diversity as well as a rich resource for capturing, cataloguing, and assessing the pharmacological potential of substances present in previously undiscovered fungi associated with marine sponges.
Collapse
Affiliation(s)
- Jessica Bolaños
- Institute of Scientific Research and High Technology Services, Bld. 219, City of Knowledge, Clayton, Panama, Republic of Panama
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Hong JH, Jang S, Heo YM, Min M, Lee H, Lee YM, Lee H, Kim JJ. Investigation of Marine-Derived Fungal Diversity and Their Exploitable Biological Activities. Mar Drugs 2015; 13:4137-55. [PMID: 26133554 PMCID: PMC4515608 DOI: 10.3390/md13074137] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/08/2015] [Accepted: 06/15/2015] [Indexed: 12/01/2022] Open
Abstract
Marine fungi are potential producers of bioactive compounds that may have pharmacological and medicinal applications. Fungi were cultured from marine brown algae and identified using multiple target genes to confirm phylogenetic placement. These target genes included the internal transcribed spacer (ITS), the nuclear large subunit (LSU), and the β-tubulin region. Various biological activities of marine-derived fungi were evaluated, including their antifungal, antioxidant and cellulolytic enzyme activities. As a result, a total of 50 fungi was isolated from the brown algae Sargassum sp. Among the 50 isolated fungi, Corollospora angusta was the dominant species in this study. The genus Arthrinium showed a relatively strong antifungal activity to all of the target plant pathogenic fungi. In particular, Arthrinium saccharicola KUC21221 showed high radical scavenging activity and the highest activities in terms of filter paper units (0.39 U/mL), endoglucanase activity (0.38 U/mL), and β-glucosidase activity (1.04 U/mL).
Collapse
Affiliation(s)
- Joo-Hyun Hong
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 136-713, Korea.
| | - Seokyoon Jang
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 136-713, Korea.
| | - Young Mok Heo
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 136-713, Korea.
| | - Mihee Min
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 136-713, Korea.
| | - Hwanhwi Lee
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 136-713, Korea.
| | - Young Min Lee
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 136-713, Korea.
| | - Hanbyul Lee
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 136-713, Korea.
| | - Jae-Jin Kim
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 136-713, Korea.
| |
Collapse
|
46
|
Munandar A, Jurusan Perikanan, Fakultas Pertanian, Universitas Sultan Ageng Tirtayasa, Cilegon, Mustopa AZ, Tarman K, Nurhayati T, Laboratorium Protein Rekombinan, Vaksin, dan Sistem Pengantaran Terarah, Lembaga Ilmu Pengetahuan Indonesia (LIPI) Bioteknologi, Bogor, Departemen Teknologi Hasil Perairan, Fakultas Perikanan dan Ilmu Kelautan, Institut Pertanian Bogor, Bogor, Departemen Teknologi Hasil Perairan, Fakultas Perikanan dan Ilmu Kelautan, Institut Pertanian Bogor, Bogor. AKTIVITAS ANTIBAKTERI PROTEIN KAPANG Xylaria psidii KT30 TERHADAP Escherichia coli DAN Bacillus subtilis [Antibacterial Activity of Protein Fungus Xylaria psidii KT30 on Escherichia coli and Bacillus subtilis]. JURNAL TEKNOLOGI DAN INDUSTRI PANGAN 2014. [DOI: 10.6066/jtip.2014.25.2.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
47
|
Inhibition of bacterial quorum sensing by extracts from aquatic fungi: first report from marine endophytes. Mar Drugs 2014; 12:5503-26. [PMID: 25415350 PMCID: PMC4245542 DOI: 10.3390/md12115503] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/07/2014] [Accepted: 11/07/2014] [Indexed: 11/17/2022] Open
Abstract
In our search for quorum-sensing (QS) disrupting molecules, 75 fungal isolates were recovered from reef organisms (endophytes), saline lakes and mangrove rhizosphere. Their QS inhibitory activity was evaluated in Chromobacterium violaceum CVO26. Four strains of endophytic fungi stood out for their potent activity at concentrations from 500 to 50 μg mL−1. The molecular characterization, based on the internal transcribed spacer (ITS) region sequences (ITS1, 5.8S and ITS2) between the rRNA of 18S and 28S, identified these strains as belonging to four genera: Sarocladium (LAEE06), Fusarium (LAEE13), Epicoccum (LAEE14), and Khuskia (LAEE21). Interestingly, three came from coral species and two of them came from the same organism, the coral Diploria strigosa. Metabolic profiles obtained by Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS) suggest that a combination of fungal secondary metabolites and fatty acids could be the responsible for the observed activities. The LC-HRMS analysis also revealed the presence of potentially new secondary metabolites. This is, to the best of our knowledge, the first report of QS inhibition by marine endophytic fungi.
Collapse
|
48
|
Flavonoid production by T. lactinea: screening of culture conditions via OFAT and optimization using response surface methodology (RSM). ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s13765-014-4246-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
49
|
Yus Azila Y, Mashitah Mat D, Ahmad Shukri Y. The effect of culture conditions on the growth of T. lactinea and anti-inflammatory activities via in vitro inhibition of hyaluronidase and lipoxygenase enzyme activities. J Taiwan Inst Chem Eng 2014. [DOI: 10.1016/j.jtice.2014.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
50
|
Abo-Elmagd HI. Evaluation and optimization of antioxidant potentiality of Chaetomium madrasense AUMC 9376. J Genet Eng Biotechnol 2014. [DOI: 10.1016/j.jgeb.2014.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|