1
|
Fei K, Shen L, Gao XD, Nakanishi H, Li Z. Multienzyme Cascade Synthesis of Rare Sugars From Glycerol in Bacillus subtilis. Biotechnol J 2024; 19:e202400539. [PMID: 39726022 DOI: 10.1002/biot.202400539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/02/2024] [Accepted: 12/07/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Rare sugars are valuable and unique monosaccharides extensively utilized in the food, cosmetics, and pharmaceutical industries. Considering the high purification costs and the complex processes of enzymatic synthesis, whole-cell conversion has emerged as a significantly important alternative. The Escherichia coli strain was initially used in whole-cell synthesis of rare sugars. However, its pathogenic nature poses limitations to its widespread applications. Consequently, there is an urgent need to explore biologically safe strains for the efficient production of rare sugars. RESULTS In this study, the generally regarded as safe (GRAS) strain Bacillus subtilis was employed as the chassis cells to produce rare sugars via whole-cell conversion. Three genes encoding alditol oxidase (AldO), L-rhamnulose-1-phosphate aldolase (RhaD), and fructose-1-phosphatase (YqaB) involved in rare sugars biosynthesis were heterogeneously expressed in B. subtilis to convert the only substrate glycerol into rare sugars. To enhance the expression levels of the relevant enzymes in B. subtilis, different promoters for aldO, rhaD, and yqaB were investigated and optimized in this system. Under the optimized reaction conditions, the maximum total production titer was 16.96 g/L of D-allulose and D-sorbose with a conversion yield of 33.9% from glycerol. Furthermore, the engineered strain produced 26.68 g/L of D-allulose and D-sorbose through fed-batch for the whole-cell conversion, representing the highest titer from glycerol reported to date. CONCLUSION This study demonstrated an efficient and cost-effective method for the synthesis of rare sugars, providing a food-grade platform with the potential to meet the growing demand for rare sugars in industries.
Collapse
Affiliation(s)
- Kangqing Fei
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Liqun Shen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiao-Dong Gao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Hideki Nakanishi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
2
|
Hebert H, Sönmez E, Purhonen P, Widersten M. Structure of the iminium reaction intermediate in an engineered aldolase explains the carboligation activity toward arylated ketones and aldehydes. Structure 2024; 32:1322-1326.e4. [PMID: 39013461 DOI: 10.1016/j.str.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/28/2024] [Accepted: 06/19/2024] [Indexed: 07/18/2024]
Abstract
Two structures of fructose 6-phosphate aldolase, the wild-type and an engineered variant containing five active-site mutations, have been solved by cryoelectron microscopy (cryo-EM). The engineered variant affords production of aldols from aryl substituted ketones and aldehydes. This structure was solved to a resolution of 3.1 Å and contains the critical iminium reaction intermediate trapped in the active site. This provides new information that rationalizes the acquired substrate scope and aids in formulating hypotheses of the chemical mechanism. A Tyr residue (Y131) is positioned for a role as catalytic acid/base during the aldol reaction and the different structures demonstrate mobility of this amino acid residue. Further engineering of this fructose 6-phosphate aldolase (FSA) variant, guided by this new structure, identified additional FSA variants that display improved carboligation activities with 2-hydroxyacetophenone and phenylacetaldehyde.
Collapse
Affiliation(s)
- Hans Hebert
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, 14152 Huddinge, Sweden.
| | - Eda Sönmez
- Department of Chemistry - BMC, Box 576, SE-751 23 Uppsala, Sweden
| | - Pasi Purhonen
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, 14152 Huddinge, Sweden
| | - Mikael Widersten
- Department of Chemistry - BMC, Box 576, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
3
|
Zhao H. Recent advances in enzymatic carbon-carbon bond formation. RSC Adv 2024; 14:25932-25974. [PMID: 39161440 PMCID: PMC11331486 DOI: 10.1039/d4ra03885a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024] Open
Abstract
Enzymatic carbon-carbon (C-C) bond formation reactions have become an effective and invaluable tool for designing new biological and medicinal molecules, often with asymmetric features. This review provides a systematic overview of key C-C bond formation reactions and enzymes, with the focus of reaction mechanisms and recent advances. These reactions include the aldol reaction, Henry reaction, Knoevenagel condensation, Michael addition, Friedel-Crafts alkylation and acylation, Mannich reaction, Morita-Baylis-Hillman (MBH) reaction, Diels-Alder reaction, acyloin condensations via Thiamine Diphosphate (ThDP)-dependent enzymes, oxidative and reductive C-C bond formation, C-C bond formation through C1 resource utilization, radical enzymes for C-C bond formation, and other C-C bond formation reactions.
Collapse
Affiliation(s)
- Hua Zhao
- Department of Bioproducts and Biosystems Engineering, University of Minnesota St. Paul MN 55108 USA
| |
Collapse
|
4
|
Carceller JM, Arias KS, Climent MJ, Iborra S, Corma A. One-pot chemo- and photo-enzymatic linear cascade processes. Chem Soc Rev 2024; 53:7875-7938. [PMID: 38965865 DOI: 10.1039/d3cs00595j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The combination of chemo- and photocatalyses with biocatalysis, which couples the flexible reactivity of the photo- and chemocatalysts with the highly selective and environmentally friendly nature of enzymes in one-pot linear cascades, represents a powerful tool in organic synthesis. However, the combination of photo-, chemo- and biocatalysts in one-pot is challenging because the optimal operating conditions of the involved catalyst types may be rather different, and the different stabilities of catalysts and their mutual deactivation are additional problems often encountered in one-pot cascade processes. This review explores a large number of transformations and approaches adopted for combining enzymes and chemo- and photocatalytic processes in a successful way to achieve valuable chemicals and valorisation of biomass. Moreover, the strategies for solving incompatibility issues in chemo-enzymatic reactions are analysed, introducing recent examples of the application of non-conventional solvents, enzyme-metal hybrid catalysts, and spatial compartmentalization strategies to implement chemo-enzymatic cascade processes.
Collapse
Affiliation(s)
- J M Carceller
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - K S Arias
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - M J Climent
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - S Iborra
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - A Corma
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| |
Collapse
|
5
|
Mukhopadhyay A, Karu K, Dalby PA. Two-substrate enzyme engineering using small libraries that combine the substrate preferences from two different variant lineages. Sci Rep 2024; 14:1287. [PMID: 38218974 PMCID: PMC10787763 DOI: 10.1038/s41598-024-51831-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024] Open
Abstract
Improving the range of substrates accepted by enzymes with high catalytic activity remains an important goal for the industrialisation of biocatalysis. Many enzymes catalyse two-substrate reactions which increases the complexity in engineering them for the synthesis of alternative products. Often mutations are found independently that can improve the acceptance of alternatives to each of the two substrates. Ideally, we would be able to combine mutations identified for each of the two alternative substrates, and so reprogramme new enzyme variants that synthesise specific products from their respective two-substrate combinations. However, as we have previously observed for E. coli transketolase, the mutations that improved activity towards aromatic acceptor aldehydes, did not successfully recombine with mutations that switched the donor substrate to pyruvate. This likely results from several active site residues having multiple roles that can affect both of the substrates, as well as structural interactions between the mutations themselves. Here, we have designed small libraries, including both natural and non-natural amino acids, based on the previous mutational sites that impact on acceptance of the two substrates, to achieve up to 630× increases in kcat for the reaction with 3-formylbenzoic acid (3-FBA) and pyruvate. Computational docking was able to determine how the mutations shaped the active site to improve the proximity of the 3-FBA substrate relative to the enamine-TPP intermediate, formed after the initial reaction with pyruvate. This work opens the way for small libraries to rapidly reprogramme enzyme active sites in a plug and play approach to catalyse new combinations of two-substrate reactions.
Collapse
Affiliation(s)
- Arka Mukhopadhyay
- Department of Biochemical Engineering, UCL, Bernard Katz Building, Gower Street, London, WC1E 6BT, UK
| | - Kersti Karu
- Department of Chemistry, UCL, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Paul A Dalby
- Department of Biochemical Engineering, UCL, Bernard Katz Building, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
6
|
Varela RF, Valino AL, Abdelraheem E, Médici R, Sayé M, Pereira CA, Hagedoorn PL, Hanefeld U, Iribarren A, Lewkowicz E. Synthetic Activity of Recombinant Whole Cell Biocatalysts Containing 2-Deoxy-D-ribose-5-phosphate Aldolase from Pectobacterium atrosepticum. Chembiochem 2022; 23:e202200147. [PMID: 35476788 DOI: 10.1002/cbic.202200147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/14/2022] [Indexed: 11/09/2022]
Abstract
In nature 2-deoxy-D-ribose-5-phosphate aldolase (DERA) catalyses the reversible formation of 2-deoxyribose 5-phosphate from D-glyceraldehyde 3-phosphate and acetaldehyde. In addition, this enzyme can use acetaldehyde as the sole substrate, resulting in a tandem aldol reaction, yielding 2,4,6-trideoxy-D-erythro-hexapyranose, which spontaneously cyclizes. This reaction is very useful for the synthesis of the side chain of statin-type drugs used to decrease cholesterol levels in blood. One of the main challenges in the use of DERA in industrial processes, where high substrate loads are needed to achieve the desired productivity, is its inactivation by high acetaldehyde concentration. In this work, the utility of different variants of Pectobacterium atrosepticum DERA (PaDERA) as whole cell biocatalysts to synthesize 2-deoxyribose 5-phosphate and 2,4,6-trideoxy-D-erythro-hexapyranose was analysed. Under optimized conditions, E. coli BL21 (PaDERA C-His AA C49M) whole cells yields 99 % of both products. Furthermore, this enzyme is able to tolerate 500 mM acetaldehyde in a whole-cell experiment which makes it suitable for industrial applications.
Collapse
Affiliation(s)
- Romina Fernández Varela
- Laboratorio de Biotransformaciones y Química de, Ácidos Nucléicos, Department of Science and Technology, Universidad Nacional de Quilmes, Roque S. Peña 352, B1876BXD, Bernal and CONICET, Argentina
| | - Ana Laura Valino
- Laboratorio de Biotransformaciones y Química de, Ácidos Nucléicos, Department of Science and Technology, Universidad Nacional de Quilmes, Roque S. Peña 352, B1876BXD, Bernal and CONICET, Argentina
| | - Eman Abdelraheem
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Rosario Médici
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Melisa Sayé
- Instituto de Investigaciones Médicas A. Lanari, Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina.,Laboratorio de Parasitología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Buenos Aires, Argentina
| | - Claudio A Pereira
- Instituto de Investigaciones Médicas A. Lanari, Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina.,Laboratorio de Parasitología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Buenos Aires, Argentina
| | - Peter-Leon Hagedoorn
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Ulf Hanefeld
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Adolfo Iribarren
- Laboratorio de Biotransformaciones y Química de, Ácidos Nucléicos, Department of Science and Technology, Universidad Nacional de Quilmes, Roque S. Peña 352, B1876BXD, Bernal and CONICET, Argentina
| | - Elizabeth Lewkowicz
- Laboratorio de Biotransformaciones y Química de, Ácidos Nucléicos, Department of Science and Technology, Universidad Nacional de Quilmes, Roque S. Peña 352, B1876BXD, Bernal and CONICET, Argentina
| |
Collapse
|
7
|
Structural characterization of an L-fuculose-1-phosphate aldolase from Klebsiella pneumoniae. Biochem Biophys Res Commun 2022; 607:15-19. [PMID: 35366538 DOI: 10.1016/j.bbrc.2022.03.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/23/2022] [Indexed: 11/23/2022]
Abstract
Fuculose phosphate aldolases play an important role in glycolysis and gluconeogenesis pathways. L-fuculose 1-phosphate aldolase catalyzes the reversible cleavage of L-fuculose 1-phosphate to DHAP and L-lactaldehyde. Class II aldolases found in bacteria are linked to pathogenesis of human pathogens, and have potential applications in the biosynthesis of carbohydrates and other chiral compounds. Here we report the structure of a putative L-fuculose 1-phosphate aldolase (KpFucA) from the nosocomial pathogen Klebsiella pneumoniae to 1.85 Å resolution. The enzyme crystallizes in space group P422 with one monomer per asymmetric unit. Analytical ultracentrifugation analysis confirms that KpFucA is a tetramer in solution. A magnesium ion cofactor and sulfate ion were identified in the active pocket. Enzyme activity assays confirmed that KpFcuA has a strong preference for L-fuculose 1-phosphate as a substrate, but can also catalyze the cleavage of fructose-1,6-bisphosphate and glucose-6-phosphate. This work should provide a starting point for further investigation of the role of KpFucA in K. pneumoniae pathogenesis or in industrial applications.
Collapse
|
8
|
Hélaine V, Gastaldi C, Lemaire M, Clapés P, Guérard-Hélaine C. Recent Advances in the Substrate Selectivity of Aldolases. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04273] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Virgil Hélaine
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Cédric Gastaldi
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Marielle Lemaire
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Pere Clapés
- Biological Chemistry Department, Institute for Advanced Chemistry of Catalonia, IQAC−CSIC, 08034 Barcelona, Spain
| | - Christine Guérard-Hélaine
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| |
Collapse
|
9
|
Dai Y, Zhang J, Jiang B, Zhang T, Chen J. New strategy for rare sugars biosynthesis: Aldol reactions using dihydroxyacetone phosphate (DHAP)-dependent aldolases. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Kunzendorf A, Xu G, van der Velde JJH, Rozeboom H, Thunnissen AMWH, Poelarends GJ. Unlocking Asymmetric Michael Additions in an Archetypical Class I Aldolase by Directed Evolution. ACS Catal 2021; 11:13236-13243. [PMID: 34765282 PMCID: PMC8576802 DOI: 10.1021/acscatal.1c03911] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/02/2021] [Indexed: 01/06/2023]
Abstract
Class I aldolases catalyze asymmetric aldol addition reactions and have found extensive application in the biocatalytic synthesis of chiral β-hydroxy-carbonyl compounds. However, the usefulness of these powerful enzymes for application in other C-C bond-forming reactions remains thus far unexplored. The redesign of class I aldolases to expand their catalytic repertoire to include non-native carboligation reactions therefore continues to be a major challenge. Here, we report the successful redesign of 2-deoxy-d-ribose-5-phosphate aldolase (DERA) from Escherichia coli, an archetypical class I aldolase, to proficiently catalyze enantioselective Michael additions of nitromethane to α,β-unsaturated aldehydes to yield various pharmaceutically relevant chiral synthons. After 11 rounds of directed evolution, the redesigned DERA enzyme (DERA-MA) carried 12 amino-acid substitutions and had an impressive 190-fold enhancement in catalytic activity compared to the wildtype enzyme. The high catalytic efficiency of DERA-MA for this abiological reaction makes it a proficient "Michaelase" with potential for biocatalytic application. Crystallographic analysis provides a structural context for the evolved activity. Whereas an aldolase acts naturally by activating the enzyme-bound substrate as a nucleophile (enamine-based mechanism), DERA-MA instead acts by activating the enzyme-bound substrate as an electrophile (iminium-based mechanism). This work demonstrates the power of directed evolution to expand the reaction scope of natural aldolases to include asymmetric Michael addition reactions and presents opportunities to explore iminium catalysis with DERA-derived catalysts inspired by developments in the organocatalysis field.
Collapse
Affiliation(s)
- Andreas Kunzendorf
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Guangcai Xu
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Jesse J. H. van der Velde
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Henriëtte
J. Rozeboom
- Molecular
Enzymology Group, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Andy-Mark W. H. Thunnissen
- Molecular
Enzymology Group, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Gerrit J. Poelarends
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
11
|
Mao Y, Yuan Q, Yang X, Liu P, Cheng Y, Luo J, Liu H, Yao Y, Sun H, Cai T, Ma H. Non-natural Aldol Reactions Enable the Design and Construction of Novel One-Carbon Assimilation Pathways in vitro. Front Microbiol 2021; 12:677596. [PMID: 34149668 PMCID: PMC8208507 DOI: 10.3389/fmicb.2021.677596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/04/2021] [Indexed: 12/02/2022] Open
Abstract
Methylotrophs utilizes cheap, abundant one-carbon compounds, offering a promising green, sustainable and economical alternative to current sugar-based biomanufacturing. However, natural one-carbon assimilation pathways come with many disadvantages, such as complicated reaction steps, the need for additional energy and/or reducing power, or loss of CO2, resulting in unsatisfactory biomanufacturing performance. Here, we predicted eight simple, novel and carbon-conserving formaldehyde (FALD) assimilation pathways based on the extended metabolic network with non-natural aldol reactions using the comb-flux balance analysis (FBA) algorithm. Three of these pathways were found to be independent of energy/reducing equivalents, and thus chosen for further experimental verification. Then, two novel aldol reactions, condensing D-erythrose 4-phosphate and glycolaldehyde (GALD) into 2R,3R-stereo allose 6-phosphate by DeoC or 2S,3R-stereo altrose 6-phosphate by TalBF178Y/Fsa, were identified for the first time. Finally, a novel FALD assimilation pathway proceeding via allose 6-phosphate, named as the glycolaldehyde-allose 6-phosphate assimilation (GAPA) pathway, was constructed in vitro with a high carbon yield of 94%. This work provides an elegant paradigm for systematic design of one-carbon assimilation pathways based on artificial aldolase (ALS) reactions, which could also be feasibly adapted for the mining of other metabolic pathways.
Collapse
Affiliation(s)
- Yufeng Mao
- Biodesign Center, Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Qianqian Yuan
- Biodesign Center, Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xue Yang
- Biodesign Center, Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Pi Liu
- Biodesign Center, Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Ying Cheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, China
| | - Jiahao Luo
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Huanhuan Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, China
| | - Yonghong Yao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Hongbing Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Tao Cai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Hongwu Ma
- Biodesign Center, Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
12
|
Iqbal MW, Riaz T, Mahmood S, Ali K, Khan IM, Rehman A, Zhang W, Mu W. A review on selective l-fucose/d-arabinose isomerases for biocatalytic production of l-fuculose/d-ribulose. Int J Biol Macromol 2020; 168:558-571. [PMID: 33296692 DOI: 10.1016/j.ijbiomac.2020.12.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/16/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
L-Fuculose and D-ribulose are kinds of rare sugars used in food, agriculture, and medicine industries. These are pentoses and categorized into the two main groups, aldo pentoses and ketopentoses. There are 8 aldo- and 4 ketopentoses and only fewer are natural, while others are rare sugars found in a very small amount in nature. These sugars have great commercial applications, especially in many kinds of drugs in the medicine industry. The synthesis of these sugars is very expensive, difficult by chemical methods due to its absence in nature, and could not meet industry demands. The pentose izumoring strategy offers a complete enzymatic tactic to link all kinds of pentoses using different enzymes. The enzymatic production of L-fuculose and D-ribulose through L-fucose isomerase (L-FI) and D-arabinose isomerase (D-AI) is the inexpensive and uncomplicated method up till now. Both enzymes have similar kinds of isomerizing mechanisms and each enzyme can catalyze both L-fucose and D-arabinose. In this review article, the enzymatic process of biochemically characterized L-FI & D-AI, their application to produce L-fuculose and D-ribulose and its uses in food, agriculture, and medicine industries are reviewed.
Collapse
Affiliation(s)
- Muhammad Waheed Iqbal
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tahreem Riaz
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shahid Mahmood
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Khubaib Ali
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Abdur Rehman
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
13
|
A multi-enzyme strategy for the production of a highly valuable lactonized statin side-chain precursor. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.09.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Abstract
Formation of carbon-carbon bonds is central to synthetic chemistry. The aldol reaction provides the chemistry to fuse a nucleophilic enolate with an electrophilic aldehyde to form a new CC bond between two newly formed asymmetric centers. A major challenge in the reaction is steering the stereochemistry of the product. Aldolases are lyases that catalyze aldol reactions as well as the retro-aldol cleavage, and are abundant in cellular metabolism. Due to the often exquisite stereoselectivity in aldolase catalyzed carboligation reactions, these enzymes are gaining increased interest as potentially important tools in asymmetric synthesis of new useful compounds. Fructose 6-phosphate aldolase from Escherichia coli (FSA) is of special interest because of its very unusual independence of phosphorylated reactant substrates. The current text describes the protein engineering of FSA, applying principles of directed evolution, for the generation, production and characterization of new aldolase variants. A range of new enantiopure polyhydroxylated compounds were produced applying isolated FSA variants.
Collapse
Affiliation(s)
- Mikael Widersten
- Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
15
|
Xuan K, Yang G, Wu Z, Xu Y, Zhang R. Efficient synthesis of (3R,5S)-6-chloro-2,4,6-trideoxyhexapyranose by using new 2-deoxy-d-ribose-5-phosphate aldolase from Streptococcus suis with moderate activity and aldehyde tolerance. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Al-Smadi D, Enugala TR, Kessler V, Mhashal AR, Lynn Kamerlin SC, Kihlberg J, Norberg T, Widersten M. Chemical and Biochemical Approaches for the Synthesis of Substituted Dihydroxybutanones and Di- and Tri-Hydroxypentanones. J Org Chem 2019; 84:6982-6991. [PMID: 31066559 DOI: 10.1021/acs.joc.9b00742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polyhydroxylated compounds are building blocks for the synthesis of carbohydrates and other natural products. Their synthesis is mainly achieved by different synthetic versions of aldol-coupling reactions, catalyzed either by organocatalysts, enzymes, or metal-organic catalysts. We have investigated the formation of 1,4-substituted 2,3-dihydroxybutan-1-one derivatives from para- and meta-substituted phenylacetaldehydes by three distinctly different strategies. The first involved a direct aldol reaction with hydroxyacetone, dihydroxyacetone, or 2-hydroxyacetophenone, catalyzed by the cinchona derivative cinchonine. The second was reductive cross-coupling with methyl- or phenylglyoxal promoted by SmI2, resulting in either 5-substituted 3,4-dihydroxypentan-2-ones or 1,4 bis-phenyl-substituted butanones, respectively. Finally, in the third case, aldolase catalysis was employed for synthesis of the corresponding 1,3,4-trihydroxylated pentan-2-one derivatives. The organocatalytic route with cinchonine generated distereomerically enriched syn-products (de = 60-99%), with moderate enantiomeric excesses (ee = 43-56%) but did not produce aldols with either hydroxyacetone or dihydroxyacetone as donor ketones. The SmI2-promoted reductive cross-coupling generated product mixtures with diastereomeric and enantiomeric ratios close to unity. This route allowed for the production of both 1-methyl- and 1-phenyl-substituted 2,3-dihydroxybutanones at yields between 40-60%. Finally, the biocatalytic approach resulted in enantiopure syn-(3 R,4 S) 1,3,4-trihydroxypentan-2-ones.
Collapse
Affiliation(s)
- Derar Al-Smadi
- Department of Chemistry-BMC , Uppsala University , Box 576, SE-751 23 Uppsala , Sweden
| | - Thilak Reddy Enugala
- Department of Chemistry-BMC , Uppsala University , Box 576, SE-751 23 Uppsala , Sweden
| | - Vadim Kessler
- Department of Molecular Sciences , Swedish University of Agricultural Sciences , Box 7015, SE-750 07 Uppsala , Sweden
| | - Anil Ranu Mhashal
- Department of Chemistry-BMC , Uppsala University , Box 576, SE-751 23 Uppsala , Sweden
| | | | - Jan Kihlberg
- Department of Chemistry-BMC , Uppsala University , Box 576, SE-751 23 Uppsala , Sweden
| | - Thomas Norberg
- Department of Chemistry-BMC , Uppsala University , Box 576, SE-751 23 Uppsala , Sweden
| | - Mikael Widersten
- Department of Chemistry-BMC , Uppsala University , Box 576, SE-751 23 Uppsala , Sweden
| |
Collapse
|
17
|
Biodegradation of Tetralin: Genomics, Gene Function and Regulation. Genes (Basel) 2019; 10:genes10050339. [PMID: 31064110 PMCID: PMC6563040 DOI: 10.3390/genes10050339] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 01/18/2023] Open
Abstract
Tetralin (1,2,3,4-tetrahydonaphthalene) is a recalcitrant compound that consists of an aromatic and an alicyclic ring. It is found in crude oils, produced industrially from naphthalene or anthracene, and widely used as an organic solvent. Its toxicity is due to the alteration of biological membranes by its hydrophobic character and to the formation of toxic hydroperoxides. Two unrelated bacteria, Sphingopyxis granuli strain TFA and Rhodococcus sp. strain TFB were isolated from the same niche as able to grow on tetralin as the sole source of carbon and energy. In this review, we provide an overview of current knowledge on tetralin catabolism at biochemical, genetic and regulatory levels in both strains. Although they share the same biodegradation strategy and enzymatic activities, no evidences of horizontal gene transfer between both bacteria have been found. Moreover, the regulatory elements that control the expression of the gene clusters are completely different in each strain. A special consideration is given to the complex regulation discovered in TFA since three regulatory systems, one of them involving an unprecedented communication between the catabolic pathway and the regulatory elements, act together at transcriptional and posttranscriptional levels to optimize tetralin biodegradation gene expression to the environmental conditions.
Collapse
|
18
|
Heterologous expression and characterization of novel 2-Deoxy-d-ribose-5-phosphate aldolase (DERA) from Pyrobaculum calidifontis and Meiothermus ruber. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Haridas M, Abdelraheem EMM, Hanefeld U. 2-Deoxy-D-ribose-5-phosphate aldolase (DERA): applications and modifications. Appl Microbiol Biotechnol 2018; 102:9959-9971. [PMID: 30284013 PMCID: PMC6244999 DOI: 10.1007/s00253-018-9392-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 11/25/2022]
Abstract
2-Deoxy-D-ribose-5-phosphate aldolase (DERA) is a class I aldolase that offers access to several building blocks for organic synthesis. It catalyzes the stereoselective C-C bond formation between acetaldehyde and numerous other aldehydes. However, the practical application of DERA as a biocatalyst is limited by its poor tolerance towards industrially relevant concentrations of aldehydes, in particular acetaldehyde. Therefore, the development of proper experimental conditions, including protein engineering and/or immobilization on appropriate supports, is required. The present review is aimed to provide a brief overview of DERA, its history, and progress made in understanding the functioning of the enzyme. Furthermore, the current understanding regarding aldehyde resistance of DERA and the various optimizations carried out to modify this property are discussed.
Collapse
Affiliation(s)
- Meera Haridas
- Biokatalyse, Afdeling Biotechnologie, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Eman M M Abdelraheem
- Biokatalyse, Afdeling Biotechnologie, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
- Chemistry Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Ulf Hanefeld
- Biokatalyse, Afdeling Biotechnologie, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| |
Collapse
|
20
|
Yang J, Zhu Y, Qu G, Zeng Y, Tian C, Dong C, Men Y, Dai L, Sun Z, Sun Y, Ma Y. Biosynthesis of dendroketose from different carbon sources using in vitro and in vivo metabolic engineering strategies. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:290. [PMID: 30386427 PMCID: PMC6202814 DOI: 10.1186/s13068-018-1293-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/15/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Asymmetric aldol-type C-C bond formation with ketones used as electrophilic receptor remains a challenging reaction for aldolases as biocatalysts. To date, only one kind of dihydroxyacetone phosphate (DHAP)-dependent aldolases has been discovered and applied to synthesize branched-chain sugars directly using DHAP and dihydroxyacetone (DHA) as substrate. However, the unstable and high-cost properties of DHAP limit large-scale application. Therefore, biosynthesis of branched-chain sugar from low-cost and abundant carbon sources is essential. RESULTS The detailed catalytic property of l-rhamnulose-1-phosphate aldolase (RhaD) and l-fuculose-1-phosphate aldolase (FucA) from Escherichia coli in catalyzing the aldol reactions with DHA as electrophilic receptors was characterized. Furthermore, we calculated the Bürgi-Dunitz trajectory using molecular dynamics simulations, thereby revealing the original sources of the catalytic efficiency of RhaD and FucA. A multi-enzyme reaction system composed of formolase, DHA kinase, RhaD, fructose-1-phosphatase, and polyphosphate kinase was constructed to in vitro produce dendroketose, a branched-chain sugar, from one-carbon formaldehyde. The conversion rate reached 86% through employing a one-pot, two-stage reaction process. Moreover, we constructed two artificial pathways in Corynebacterium glutamicum to obtain this product in vivo starting from glucose or glycerol. Fermentation with glycerol as feedstock produced 6.4 g/L dendroketose with a yield of 0.45 mol/mol glycerol, representing 90% of the maximum theoretical value. Additionally, the dendroketose production reached 36.3 g/L with a yield of 0.46 mol/mol glucose when glucose served as the sole carbon resource. CONCLUSIONS The detailed enzyme kinetics data of the two DHAP-dependent aldolases with DHA as electrophilic receptors were presented in this study. In addition, insights into this catalytic property were given via in silico simulations. Moreover, the cost-effective synthesis of dendroketose starting from one-, three-, and six-carbon resources was achieved through in vivo and in vitro metabolic engineering strategies. This rare branched-chain ketohexose may serve as precursor to prepare 4-hydroxymethylfurfural and branched-chain alkanes using chemical method.
Collapse
Affiliation(s)
- Jiangang Yang
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Yueming Zhu
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Ge Qu
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Yan Zeng
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Chaoyu Tian
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Caixia Dong
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Yan Men
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Longhai Dai
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Zhoutong Sun
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Yuanxia Sun
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Yanhe Ma
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| |
Collapse
|
21
|
Ma H, Engel S, Enugala TR, Al-Smadi D, Gautier C, Widersten M. New Stereoselective Biocatalysts for Carboligation and Retro-Aldol Cleavage Reactions Derived from d-Fructose 6-Phosphate Aldolase. Biochemistry 2018; 57:5877-5885. [DOI: 10.1021/acs.biochem.8b00814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huan Ma
- Department of Chemistry-BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| | - Sarah Engel
- Department of Chemistry-BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| | - Thilak Reddy Enugala
- Department of Chemistry-BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| | - Derar Al-Smadi
- Department of Chemistry-BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| | - Candice Gautier
- Department of Chemistry-BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| | - Mikael Widersten
- Department of Chemistry-BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| |
Collapse
|
22
|
Extended substrate range of thiamine diphosphate-dependent MenD enzyme by coupling of two C–C-bonding reactions. Appl Microbiol Biotechnol 2018; 102:8359-8372. [DOI: 10.1007/s00253-018-9259-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 01/29/2023]
|
23
|
Desbois S, John UP, Perugini MA. Dihydrodipicolinate synthase is absent in fungi. Biochimie 2018; 152:73-84. [PMID: 29959064 DOI: 10.1016/j.biochi.2018.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 06/21/2018] [Indexed: 02/07/2023]
Abstract
The class I aldolase dihydrodipicolinate synthase (DHDPS) catalyzes the first committed step of the diaminopimelate (DAP) lysine biosynthesis pathway in bacteria, archaea and plants. Despite the existence, in databases, of numerous fungal sequences annotated as DHDPS, its presence in fungi has been the subject of contradictory claims. We report the characterization of DHDPS candidates from fungi. Firstly, the putative DHDPS from Coccidioides immitis (PDB ID: 3QFE) was shown to have negligible enzyme activity. Sequence analysis of 3QFE showed that three out of the seven amino acid residues critical for DHDPS activity are absent; however, exact matches to catalytic residues from two other class I aldolases, 2-keto-3-deoxygluconate aldolase (KDGA), and 4-hydroxy-2-oxoglutarate aldolase (HOGA), were identified. The presence of both KDGA and HOGA activity in 3QFE was confirmed in vitro using enzyme assays, the first report of such dual activity. Subsequent analyses of all publically available fungal sequences revealed that no entry contains all seven residues important for DHDPS function. The candidate with the highest number of identities (6 of 7), KIW77228 from Fonsecaea pedrosoi, was shown to have trace DHDPS activity in vitro, partially restored by substitution of the seventh critical residue, and to be incapable of complementing DHDPS-deficient E. coli cells. Combined with the presence of all seven sequences for the alternative α-aminoadipate (AAA) lysine biosynthesis pathway in C. immitis and F. pedrosoi, we believe that DHDPS and the DAP pathway are absent in fungi, and further, that robust informed methods for annotating genes need to be implemented.
Collapse
Affiliation(s)
- Sebastien Desbois
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, VIC, 3086, Australia
| | - Ulrik P John
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, VIC, 3086, Australia; Agriculture Victoria Research, Department of Economic Development, Jobs, Transport and Resources, AgriBio, La Trobe University, VIC, 3086, Australia
| | - Matthew A Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, VIC, 3086, Australia.
| |
Collapse
|
24
|
Petrović D, Risso VA, Kamerlin SCL, Sanchez-Ruiz JM. Conformational dynamics and enzyme evolution. J R Soc Interface 2018; 15:20180330. [PMID: 30021929 PMCID: PMC6073641 DOI: 10.1098/rsif.2018.0330] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 06/27/2018] [Indexed: 12/21/2022] Open
Abstract
Enzymes are dynamic entities, and their dynamic properties are clearly linked to their biological function. It follows that dynamics ought to play an essential role in enzyme evolution. Indeed, a link between conformational diversity and the emergence of new enzyme functionalities has been recognized for many years. However, it is only recently that state-of-the-art computational and experimental approaches are revealing the crucial molecular details of this link. Specifically, evolutionary trajectories leading to functional optimization for a given host environment or to the emergence of a new function typically involve enriching catalytically competent conformations and/or the freezing out of non-competent conformations of an enzyme. In some cases, these evolutionary changes are achieved through distant mutations that shift the protein ensemble towards productive conformations. Multifunctional intermediates in evolutionary trajectories are probably multi-conformational, i.e. able to switch between different overall conformations, each competent for a given function. Conformational diversity can assist the emergence of a completely new active site through a single mutation by facilitating transition-state binding. We propose that this mechanism may have played a role in the emergence of enzymes at the primordial, progenote stage, where it was plausibly promoted by high environmental temperatures and the possibility of additional phenotypic mutations.
Collapse
Affiliation(s)
- Dušan Petrović
- Department of Chemistry, BMC, Uppsala University, Box 576, 751 23 Uppsala, Sweden
| | - Valeria A Risso
- Departamento de Quimica Fisica, Facultad de Ciencias, University of Granada, 18071 Granada, Spain
| | | | - Jose M Sanchez-Ruiz
- Departamento de Quimica Fisica, Facultad de Ciencias, University of Granada, 18071 Granada, Spain
| |
Collapse
|
25
|
Rahimi M, Geertsema EM, Miao Y, van der Meer JY, van den Bosch T, de Haan P, Zandvoort E, Poelarends GJ. Inter- and intramolecular aldol reactions promiscuously catalyzed by a proline-based tautomerase. Org Biomol Chem 2018; 15:2809-2816. [PMID: 28277572 DOI: 10.1039/c7ob00302a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The enzyme 4-oxalocrotonate tautomerase (4-OT), which in nature catalyzes a tautomerization step as part of a catabolic pathway for aromatic hydrocarbons, was found to promiscuously catalyze different types of aldol reactions. These include the self-condensation of propanal, the cross-coupling of propanal and benzaldehyde, the cross-coupling of propanal and pyruvate, and the intramolecular cyclizations of hexanedial and heptanedial. Mutation of the catalytic amino-terminal proline (P1A) greatly reduces 4-OT's aldolase activities, whereas mutation of another active site residue (F50A) strongly enhances 4-OT's aldolase activities, indicating that aldolization is an active site process. This catalytic promiscuity of 4-OT could be exploited as starting point to create tailor-made, artificial aldolases for challenging self- and cross-aldolizations.
Collapse
Affiliation(s)
- Mehran Rahimi
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Edzard M Geertsema
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Yufeng Miao
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Jan-Ytzen van der Meer
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Thea van den Bosch
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Pim de Haan
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Ellen Zandvoort
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Gerrit J Poelarends
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
26
|
|
27
|
Li A, Cai L, Chen Z, Wang M, Wang N, Nakanishi H, Gao XD, Li Z. Recent advances in the synthesis of rare sugars using DHAP-dependent aldolases. Carbohydr Res 2017; 452:108-115. [PMID: 29096183 DOI: 10.1016/j.carres.2017.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/04/2017] [Accepted: 10/17/2017] [Indexed: 01/02/2023]
Abstract
The occurrence rates of non-communicable diseases like obesity, diabetes and hyperlipidemia have increased remarkably due to excessive consumption of a high-energy diet. Rare sugars therefore have become increasingly attractive owing to their unique nutritional properties. In the past two decades, various rare sugars have been successfully prepared guided by the "Izumoring strategy". As a valuable complement to the Izumoring approach, the controllable dihydroxyacetone phosphate (DHAP)-dependent aldolases have generally predictable regio- and stereoselectivity, which makes them powerful tools in C-C bond construction and rare sugar production. However, the main disadvantage for this group of aldolases is their strict substrate specificity toward the donor molecule DHAP, a very expensive and relatively unstable compound. Among the current methods involving DHAP, the one that couples DHAP production from inexpensive starting materials (for instance, glycerol, DL-glycerol 3-phosphate, dihydroxyacetone, and glucose) with aldol condensation appears to be the most promising. This review thus focuses on recent advances in the application of L-rhamnulose-1-phosphate aldolase (RhaD), L-fuculose-1-phosphate aldolase (FucA), and D-fructose-1,6-bisphosphate aldolase (FruA) for rare sugar synthesis in vitro and in vivo, while illustrating strategies for supplying DHAP in efficient and economical ways.
Collapse
Affiliation(s)
- Aimin Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Li Cai
- Department of Chemistry, University of South Carolina Lancaster, 476 Hubbard Drive, Lancaster, SC, 29720, USA
| | - Zhou Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Mayan Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Ning Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Hideki Nakanishi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
28
|
Bilal M, Iqbal HMN, Hu H, Wang W, Zhang X. Metabolic engineering pathways for rare sugars biosynthesis, physiological functionalities, and applications-a review. Crit Rev Food Sci Nutr 2017; 58:2768-2778. [PMID: 28662355 DOI: 10.1080/10408398.2017.1341385] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Biomolecules like rare sugars and their derivatives are referred to as monosaccharides particularly uncommon in nature. Remarkably, many of them have various known physiological functions and biotechnological applications in cosmetics, nutrition, and pharmaceutical industries. Also, they can be exploited as starting materials for synthesizing fascinating natural bioproducts with significant biological activities. Regrettably, most of the rare sugars are quite expensive, and their synthetic chemical routes are both limited and economically unfeasible due to expensive raw materials. On the other hand, their production by enzymatic means often suffers from low space-time yields and high catalyst costs due to hasty enzyme denaturation/degradation. In this context, biosynthesis of rare sugars with industrial importance is receiving renowned scientific attention, across the globe. Moreover, the utilization of renewable resources as energy sources via microbial fermentation or microbial metabolic engineering has appeared a new tool. This article presents a comprehensive review of physiological functions and biotechnological applications of rare ketohexoses and aldohexoses, including D-psicose, D-tagatose, L-tagatose, D-sorbose, L-fructose, D-allose, L-glucose, D-gulose, L-talose, L-galactose, and L-fucose. Novel in-vivo recombination pathways based on aldolase and phosphatase for the biosynthesis of rare sugars, particularly D-psicose and D-sorbose using robust microbial strains are also deliberated.
Collapse
Affiliation(s)
- Muhammad Bilal
- a State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai , China
| | - Hafiz M N Iqbal
- b School of Engineering and Science, Tecnologico de Monterrey, Campus Monterrey , Ave. Eugenio Garza Sada 2501, Monterrey , N.L., CP , Mexico
| | - Hongbo Hu
- a State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai , China
- c National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai , China
| | - Wei Wang
- a State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai , China
| | - Xuehong Zhang
- a State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai , China
| |
Collapse
|
29
|
de Souza ROMA, Miranda LSM, Bornscheuer UT. A Retrosynthesis Approach for Biocatalysis in Organic Synthesis. Chemistry 2017; 23:12040-12063. [DOI: 10.1002/chem.201702235] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Rodrigo O. M. A. de Souza
- Biocatalysis and Organic Synthesis Group; Federal University of Rio de Janeiro, Chemistry Institute; 21941909 Rio de Janeiro Brazil
| | - Leandro S. M. Miranda
- Biocatalysis and Organic Synthesis Group; Federal University of Rio de Janeiro, Chemistry Institute; 21941909 Rio de Janeiro Brazil
| | - Uwe T. Bornscheuer
- Dept. of Biotechnology & Enzyme Catalysis; Institute of Biochemistry; Greifswald University; Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| |
Collapse
|
30
|
Lee SH, Hong SH, An JU, Kim KR, Kim DE, Kang LW, Oh DK. Structure-based prediction and identification of 4-epimerization activity of phosphate sugars in class II aldolases. Sci Rep 2017; 7:1934. [PMID: 28512318 PMCID: PMC5434028 DOI: 10.1038/s41598-017-02211-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/06/2017] [Indexed: 12/29/2022] Open
Abstract
Sugar 4-epimerization reactions are important for the production of rare sugars and their derivatives, which have various potential industrial applications. For example, the production of tagatose, a functional sweetener, from fructose by sugar 4-epimerization is currently constrained because a fructose 4-epimerase does not exist in nature. We found that class II d-fructose-1,6-bisphosphate aldolase (FbaA) catalyzed the 4-epimerization of d-fructose-6-phosphate (F6P) to d-tagatose-6-phosphate (T6P) based on the prediction via structural comparisons with epimerase and molecular docking and the identification of the condensed products of C3 sugars. In vivo, the 4-epimerization activity of FbaA is normally repressed. This can be explained by our results showing the catalytic efficiency of d-fructose-6-phosphate kinase for F6P phosphorylation was significantly higher than that of FbaA for F6P epimerization. Here, we identified the epimerization reactions and the responsible catalytic residues through observation of the reactions of FbaA and l-rhamnulose-1-phosphate aldolases (RhaD) variants with substituted catalytic residues using different substrates. Moreover, we obtained detailed potential epimerization reaction mechanism of FbaA and a general epimerization mechanism of the class II aldolases l-fuculose-1-phosphate aldolase, RhaD, and FbaA. Thus, class II aldolases can be used as 4-epimerases for the stereo-selective synthesis of valuable carbohydrates.
Collapse
Affiliation(s)
- Seon-Hwa Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Seung-Hye Hong
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jung-Ung An
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Kyoung-Rok Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Dong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Lin-Woo Kang
- Department of Biological Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
31
|
Aldolase-catalysed stereoselective synthesis of fluorinated small molecules. Curr Opin Chem Biol 2017; 37:33-38. [DOI: 10.1016/j.cbpa.2016.12.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/01/2016] [Accepted: 12/31/2016] [Indexed: 11/22/2022]
|
32
|
Jiao XC, Pan J, Kong XD, Xu JH. Protein engineering of aldolase LbDERA for enhanced activity toward real substrates with a high-throughput screening method coupled with an aldehyde dehydrogenase. Biochem Biophys Res Commun 2017; 482:159-163. [DOI: 10.1016/j.bbrc.2016.11.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 11/05/2016] [Indexed: 12/01/2022]
|
33
|
Abstract
Organophosphonic acids are unique as natural products in terms of stability and mimicry. The C-P bond that defines these compounds resists hydrolytic cleavage, while the phosphonyl group is a versatile mimic of transition-states, intermediates, and primary metabolites. This versatility may explain why a variety of organisms have extensively explored the use organophosphonic acids as bioactive secondary metabolites. Several of these compounds, such as fosfomycin and bialaphos, figure prominently in human health and agriculture. The enzyme reactions that create these molecules are an interesting mix of chemistry that has been adopted from primary metabolism as well as those with no chemical precedent. Additionally, the phosphonate moiety represents a source of inorganic phosphate to microorganisms that live in environments that lack this nutrient; thus, unusual enzyme reactions have also evolved to cleave the C-P bond. This review is a comprehensive summary of the occurrence and function of organophosphonic acids natural products along with the mechanisms of the enzymes that synthesize and catabolize these molecules.
Collapse
Affiliation(s)
- Geoff P Horsman
- Department of Chemistry and Biochemistry, Wilfrid Laurier University , Waterloo, Ontario N2L 3C5, Canada
| | - David L Zechel
- Department of Chemistry, Queen's University , Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
34
|
A sialic acid aldolase from Peptoclostridium difficile NAP08 with 4-hydroxy-2-oxo-pentanoate aldolase activity. Enzyme Microb Technol 2016; 92:99-106. [DOI: 10.1016/j.enzmictec.2016.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/28/2016] [Accepted: 07/08/2016] [Indexed: 11/15/2022]
|
35
|
Busto E. Recent Developments in the Preparation of Carbohydrate Derivatives from Achiral Building Blocks by using Aldolases. ChemCatChem 2016. [DOI: 10.1002/cctc.201600366] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Eduardo Busto
- Organic Chemistry I Department; Complutense University of Madrid; 28040 Madrid Spain
| |
Collapse
|
36
|
Güclü D, Szekrenyi A, Garrabou X, Kickstein M, Junker S, Clapés P, Fessner WD. Minimalist Protein Engineering of an Aldolase Provokes Unprecedented Substrate Promiscuity. ACS Catal 2016. [DOI: 10.1021/acscatal.5b02805] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Deniz Güclü
- Institut
für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Anna Szekrenyi
- Instituto de Quı́mica Avanzada de Cataluña-IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Xavier Garrabou
- Instituto de Quı́mica Avanzada de Cataluña-IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Michael Kickstein
- Institut
für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Sebastian Junker
- Institut
für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Pere Clapés
- Instituto de Quı́mica Avanzada de Cataluña-IQAC-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Wolf-Dieter Fessner
- Institut
für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| |
Collapse
|
37
|
Mahdi R, Guérard-Hélaine C, Laroche C, Michaud P, Prévot V, Forano C, Lemaire M. Polysaccharide-layered double hydroxide–aldolase biohybrid beads for biocatalysed CC bond formation. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.07.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
38
|
Ma H, Szeler K, Kamerlin SCL, Widersten M. Linking coupled motions and entropic effects to the catalytic activity of 2-deoxyribose-5-phosphate aldolase (DERA). Chem Sci 2015; 7:1415-1421. [PMID: 29910900 PMCID: PMC5975929 DOI: 10.1039/c5sc03666f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 11/17/2015] [Indexed: 12/13/2022] Open
Abstract
Local mutations in the phosphate binding group of DERA alter global conformation dynamics, catalytic activities and reaction entropies.
DERA, 2-deoxyribose-5-phosphate aldolase, catalyzes the retro-aldol cleavage of 2-deoxy-ribose-5-phosphate (dR5P) into glyceraldehyde-3-phosphate (G3P) and acetaldehyde in a branch of the pentose phosphate pathway. In addition to the physiological reaction, DERA also catalyzes the reverse addition reaction and, hence, is an interesting candidate for bio-catalysis of carbo-ligation reactions, which are central to synthetic chemistry. An obstacle to overcome for this enzyme to become a truly useful biocatalyst, however, is to relax the very strict dependency of this enzyme on phosphorylated substrates. We have studied herein the role of the non-canonical phosphate-binding site of this enzyme, consisting of Ser238 and Ser239, by site-directed and site-saturation mutagenesis, coupled to kinetic analysis of mutants. In addition, we have performed molecular dynamics simulations on the wild-type and four mutant enzymes, to analyse how mutations at this phosphate-binding site may affect the protein structure and dynamics. Further examination of the S239P mutant revealed that this variant increases the enthalpy change at the transition state, relative to the wild-type enzyme, but concomitant loss in entropy causes an overall relative loss in the TS free energy change. This entropy loss, as measured by the temperature dependence of catalysed rates, was mirrored in both a drastic loss in dynamics of the enzyme, which contributes to phosphate binding, as well as an overall loss in anti-correlated motions distributed over the entire protein. Our combined data suggests that the degree of anticorrelated motions within the DERA structure is coupled to catalytic efficiency in the DERA-catalyzed retro-aldol cleavage reaction, and can be manipulated for engineering purposes.
Collapse
Affiliation(s)
- Huan Ma
- Department of Chemistry - BMC , Uppsala University , Box 576 , SE-751 23 Uppsala , Sweden .
| | - Klaudia Szeler
- Department of Cell and Molecular Biology , Uppsala University , Box 596 , SE-751 24 , Uppsala , Sweden .
| | - Shina C L Kamerlin
- Department of Cell and Molecular Biology , Uppsala University , Box 596 , SE-751 24 , Uppsala , Sweden .
| | - Mikael Widersten
- Department of Chemistry - BMC , Uppsala University , Box 576 , SE-751 23 Uppsala , Sweden .
| |
Collapse
|
39
|
Li Z, He B, Gao Y, Cai L. Synthesis of D-Sorbose and D-Psicose by RecombinantEscherichia coli. J Carbohydr Chem 2015. [DOI: 10.1080/07328303.2015.1068794] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Li J, Yang J, Men Y, Zeng Y, Zhu Y, Dong C, Sun Y, Ma Y. Biosynthesis of 2-deoxysugars using whole-cell catalyst expressing 2-deoxy-D-ribose 5-phosphate aldolase. Appl Microbiol Biotechnol 2015; 99:7963-72. [PMID: 26104867 DOI: 10.1007/s00253-015-6740-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/07/2015] [Accepted: 05/29/2015] [Indexed: 11/29/2022]
Abstract
2-Deoxy-D-ribose 5-phosphate aldolase (DERA) accepts a wide variety of aldehydes and is used in de novo synthesis of 2-deoxysugars, which have important applications in drug manufacturing. However, DERA has low preference for non-phosphorylated substrates. In this study, DERA from Klebsiella pneumoniae (KDERA) was mutated to increase its enzyme activity and substrate tolerance towards non-phosphorylated polyhydroxy aldehyde. Mutant KDERA(K12) (S238D/F200I/ΔY259) showed a 3.15-fold improvement in enzyme activity and a 1.54-fold increase in substrate tolerance towards D-glyceraldehyde compared with the wild type. Furthermore, a whole-cell transformation strategy using resting cells of the BL21(pKDERA12) strain, containing the expressed plasmid pKDERA12, resulted in increase in 2-deoxy-D-ribose yield from 0.41 mol/mol D-glyceraldehyde to 0.81 mol/mol D-glyceraldehyde and higher substrate tolerance from 0.5 to 3 M compared to in vitro assays. With further optimization of the transformation process, the BL21(pKDERA12) strain produced 2.14 M (287.06 g/L) 2-deoxy-D-robose (DR), with a yield of 0.71 mol/mol D-glyceraldehyde and average productivity of 0.13 mol/L·h (17.94 g/L·h). These results demonstrate the potential for large-scale production of 2-deoxy-D-ribose using the BL21(pKDERA12) strain. Furthermore, the BL21(pKDERA12) strain also exhibited the ability to efficiently produce 2-deoxy-D-altrose from D-erythrose, as well as 2-deoxy-L-xylose and 2-deoxy-L-ribose from L-glyceraldehyde.
Collapse
Affiliation(s)
- Jitao Li
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Lin LP, Yuan P, Jiang N, Mei YN, Zhang WJ, Wu HM, Zhang AH, Cao JM, Xiong ZX, Lu Y, Tan RX. Gene-Inspired Mycosynthesis of Skeletally New Indole Alkaloids. Org Lett 2015; 17:2610-3. [DOI: 10.1021/acs.orglett.5b00882] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Li Ping Lin
- State
Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional
Biomolecules, Nanjing University, Nanjing 210093, China
- Jiangsu Center for Research & Development of Medicinal Plants, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Peng Yuan
- State
Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional
Biomolecules, Nanjing University, Nanjing 210093, China
| | - Nan Jiang
- School
of Pharmacy, Nanjing Medical University, Nanjing 210029, China
| | - Ya Ning Mei
- Department
of Clinical Laboratory, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wen Jing Zhang
- State
Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional
Biomolecules, Nanjing University, Nanjing 210093, China
| | - Hui Min Wu
- State
Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional
Biomolecules, Nanjing University, Nanjing 210093, China
| | - Ai Hua Zhang
- State
Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional
Biomolecules, Nanjing University, Nanjing 210093, China
| | - Jiang Ming Cao
- State
Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional
Biomolecules, Nanjing University, Nanjing 210093, China
| | - Zheng Xin Xiong
- School
of Pharmacy, Nanjing Medical University, Nanjing 210029, China
| | - Ye Lu
- Jiangsu Center for Research & Development of Medicinal Plants, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Ren Xiang Tan
- State
Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional
Biomolecules, Nanjing University, Nanjing 210093, China
| |
Collapse
|
42
|
Wang Y, Jones MK, Xu H, Ray WK, White RH. Mechanism of the Enzymatic Synthesis of 4-(Hydroxymethyl)-2-furancarboxaldehyde-phosphate (4-HFC-P) from Glyceraldehyde-3-phosphate Catalyzed by 4-HFC-P Synthase. Biochemistry 2015; 54:2997-3008. [DOI: 10.1021/acs.biochem.5b00176] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yu Wang
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Michael K. Jones
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Huimin Xu
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - W. Keith Ray
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Robert H. White
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| |
Collapse
|
43
|
Payongsri P, Steadman D, Hailes HC, Dalby PA. Second generation engineering of transketolase for polar aromatic aldehyde substrates. Enzyme Microb Technol 2015; 71:45-52. [DOI: 10.1016/j.enzmictec.2015.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/20/2015] [Accepted: 01/22/2015] [Indexed: 10/24/2022]
|
44
|
Légeret B, Hecquet L, Charmantray F. Substrate cycling based fluorometric assay for dihydroxyacetone phosphate. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2014.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
45
|
Andexer JN, Richter M. Emerging enzymes for ATP regeneration in biocatalytic processes. Chembiochem 2015; 16:380-6. [PMID: 25619338 DOI: 10.1002/cbic.201402550] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Indexed: 12/15/2022]
Abstract
Adenosine-5'-triphosphate-dependent enzyme catalysed reactions are widespread in nature. Consequently, the enzymes involved have an intrinsic potential for use in syntheses of high value products. Although regeneration systems for ATP starting from adenosine-5'-diphosphate are available, certain limitations exist for both in vitro and in vivo applications requiring ATP regeneration from adenosine-5'-monophosphate, or adenosine. Following a short overview of the chemical and thermodynamic background, this Minireview focuses on emerging enzymes and methodologies for ATP regeneration. A large range of as yet unexploited reactions will be accessible with new, powerful, multistep ATP regeneration systems that use cheap phosphate donors and provide high longevity, compatibility, and robustness under process conditions. Their potential might go far beyond the direct use of ATP in enzymatic reactions; enzyme discovery, and engineering, as well as immobilisation strategies, will help to realise such systems.
Collapse
Affiliation(s)
- Jennifer N Andexer
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104 Freiburg (Germany).
| | | |
Collapse
|
46
|
Jiao XC, Pan J, Xu GC, Kong XD, Chen Q, Zhang ZJ, Xu JH. Efficient synthesis of a statin precursor in high space-time yield by a new aldehyde-tolerant aldolase identified from Lactobacillus brevis. Catal Sci Technol 2015. [DOI: 10.1039/c5cy00537j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel 2-deoxyribose-5-phosphate aldolase (LbDERA) was identified from Lactobacillus brevis, with high activity, excellent thermostability and high tolerance against aldehyde substrates.
Collapse
Affiliation(s)
- Xue-Cheng Jiao
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Centre for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Jiang Pan
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Centre for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Guo-Chao Xu
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Centre for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Xu-Dong Kong
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Centre for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Qi Chen
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Centre for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Zhi-Jun Zhang
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Centre for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Centre for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
47
|
Liu Y, Li F, Zhang X, Cao G, Jiang W, Sun Y, Zheng P, Zhang D. A fast and sensitive coupled enzyme assay for the measurement of l-threonine and application to high-throughput screening of threonine-overproducing strains. Enzyme Microb Technol 2014; 67:1-7. [DOI: 10.1016/j.enzmictec.2014.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 11/30/2022]
|
48
|
Yang J, Zhu Y, Li J, Men Y, Sun Y, Ma Y. Biosynthesis of rare ketoses through constructing a recombination pathway in an engineered Corynebacterium glutamicum. Biotechnol Bioeng 2014; 112:168-80. [PMID: 25060350 DOI: 10.1002/bit.25345] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 06/15/2014] [Accepted: 07/11/2014] [Indexed: 01/05/2023]
Abstract
Rare sugars have various known biological functions and potential for applications in pharmaceutical, cosmetics, and food industries. Here we designed and constructed a recombination pathway in Corynebacterium glutamicum, in which dihydroxyacetone phosphate (DHAP), an intermediate of the glycolytic pathway, and a variety of aldehydes were condensed to synthesize rare ketoses sequentially by rhamnulose-1-phosphate aldolase (RhaD) and fructose-1-phosphatase (YqaB) obtained from Escherichia coli. A wild-type strain harboring this artificial pathway had the ability to produce D-sorbose and D-psicose using D-glyceraldehyde and glucose as the substrates. The tpi gene, encoding triose phosphate isomerase was further deleted, and the concentration of DHAP increased to nearly 20-fold relative to that of the wild-type. After additional optimization of expression levels from rhaD and yqaB genes and of the fermentation conditions, the engineered strain SY6(pVRTY) exhibited preferable performance for rare ketoses production. Its yield increased to 0.59 mol/mol D-glyceraldehyde from 0.33 mol/mol D-glyceraldehyde and productivity to 2.35 g/L h from 0.58 g/L h. Moreover, this strain accumulated 19.5 g/L of D-sorbose and 13.4 g/L of D-psicose using a fed-batch culture mode under the optimal conditions. In addition, it was verified that the strain SY6(pVRTY) meanwhile had the ability to synthesize C4, C5, C6, and C7 rare ketoses when a range of representative achiral and homochiral aldehydes were applied as the substrates. Therefore, the platform strain exhibited the potential for microbial production of rare ketoses and deoxysugars.
Collapse
Affiliation(s)
- Jiangang Yang
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | | | | | | | | | | |
Collapse
|
49
|
Subrizi F, Crucianelli M, Grossi V, Passacantando M, Botta G, Antiochia R, Saladino R. Versatile and Efficient Immobilization of 2-Deoxyribose-5-phosphate Aldolase (DERA) on Multiwalled Carbon Nanotubes. ACS Catal 2014. [DOI: 10.1021/cs500511c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Fabiana Subrizi
- Department
of Physical and Chemical Sciences, University of L’Aquila, Via
Vetoio, I-67100 Coppito (AQ), Italy
| | - Marcello Crucianelli
- Department
of Physical and Chemical Sciences, University of L’Aquila, Via
Vetoio, I-67100 Coppito (AQ), Italy
| | - Valentina Grossi
- Department
of Physical and Chemical Sciences, University of L’Aquila, Via
Vetoio, I-67100 Coppito (AQ), Italy
| | - Maurizio Passacantando
- Department
of Physical and Chemical Sciences, University of L’Aquila, Via
Vetoio, I-67100 Coppito (AQ), Italy
| | - Giorgia Botta
- Department
of Ecology and Biology, University of Tuscia, Largo dell’Università, 01100 Viterbo (VT), Italy
| | - Riccarda Antiochia
- Department
of Chemistry and Drug Technologies, Sapienza University of Rome, Piazzale
Aldo Moro 5, 00185 Rome (RM), Italy
| | - Raffaele Saladino
- Department
of Ecology and Biology, University of Tuscia, Largo dell’Università, 01100 Viterbo (VT), Italy
| |
Collapse
|
50
|
Kurjatschij S, Katzberg M, Bertau M. Production and properties of threonine aldolase immobilisates. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.01.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|