1
|
Camarena-Bernard C, Pozzobon V. Evolving perspectives on lutein production from microalgae - A focus on productivity and heterotrophic culture. Biotechnol Adv 2024; 73:108375. [PMID: 38762164 DOI: 10.1016/j.biotechadv.2024.108375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024]
Abstract
Increased consumer awareness for healthier and more sustainable products has driven the search for naturally sourced compounds as substitutes for chemically synthesized counterparts. Research on pigments of natural origin, such as carotenoids, particularly lutein, has been increasing for over three decades. Lutein is recognized for its antioxidant and photoprotective activity. Its ability to cross the blood-brain barrier allows it to act at the eye and brain level and has been linked to benefits for vision, cognitive function and other conditions. While marigold flower is positioned as the only crop from which lutein is extracted from and commercialized, microalgae are proposed as an alternative with several advantages over this terrestrial crop. The main barrier to scaling up lutein production from microalgae to the commercial level is the low productivity compared to the high costs. This review explores strategies to enhance lutein production in microalgae by emphasizing the overall productivity over lutein content alone. Evaluation of how culture parameters, such as light quality, nitrogen sufficiency, temperature and even stress factors, affect lutein content and biomass development in batch phototrophic cultures was performed. Overall, the total lutein production remains low under this metabolic regime due to the low biomass productivity of photosynthetic batch cultures. For this reason, we describe findings on microalgal cultures grown under different metabolic regimes and culture protocols (fed-batch, pulse-feed, semi-batch, semi-continuous, continuous). After a careful literature examination, two-step heterotrophic or mixotrophic cultivation strategies are suggested to surpass the lutein productivity achieved in single-step photosynthetic cultures. Furthermore, this review highlights the urgent need to develop technical feasibility studies at a pilot scale for these cultivation strategies, which will strengthen the necessary techno-economic analyses to drive their commercial production.
Collapse
Affiliation(s)
- Cristobal Camarena-Bernard
- Université Paris-Saclay, CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), 3 rue des Rouges Terres 51110 Pomacle, France; Instituto de Estudios Superiores de Occidente (ITESO), 45604 Tlaquepaque, Jalisco, Mexico.
| | - Victor Pozzobon
- Université Paris-Saclay, CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), 3 rue des Rouges Terres 51110 Pomacle, France
| |
Collapse
|
2
|
Kadri MS, Singhania RR, Anisha GS, Gohil N, Singh V, Patel AK, Patel AK. Microalgal lutein: Advancements in production, extraction, market potential, and applications. BIORESOURCE TECHNOLOGY 2023; 389:129808. [PMID: 37806362 DOI: 10.1016/j.biortech.2023.129808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Lutein, a bioactive xanthophyll, has recently attracted significant attention for numerous health benefits, e.g., protection of eye health, macular degeneration, and acute and chronic syndromes etc. Microalgae have emerged as the best platform for high-value lutein production with high productivity, lutein content, and scale-up potential. Algal lutein possesses numerous bioactivities, hence widely used in pharmaceuticals, nutraceuticals, aquaculture, cosmetics, etc. This review highlights advances in upstream lutein production enhancement and feasible downstream extraction and cell disruption techniques for a large-scale lutein biorefinery. Besides bioprocess-related advances, possible solutions for existing production challenges in microalgae-based lutein biorefinery, market potential, and emerging commercial scopes of lutein and its potential health applications are also discussed. The key enzymes involved in the lutein biosynthesizing Methyl-Erythritol-phosphate (MEP) pathway have been briefly described. This review provides a comprehensive updates on lutein research advancements covering scalable upstream and downstream production strategies and potential applications for researchers and industrialists.
Collapse
Affiliation(s)
- Mohammad Sibtain Kadri
- Department of Education and Human Potential Development, National Dong Hwa University, Hualien, 974301, Taiwan
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow, 226 029, Uttar Pradesh, India
| | - Grace Sathyanesan Anisha
- Post-graduate and Research Department of Zoology, Government College for Women, Thiruvananthapuram, 695014, Kerala, India
| | - Nisarg Gohil
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, 382715, Gujarat, India
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, 382715, Gujarat, India
| | - Alok Kumar Patel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow, 226 029, Uttar Pradesh, India.
| |
Collapse
|
3
|
Sun H, Wang Y, He Y, Liu B, Mou H, Chen F, Yang S. Microalgae-Derived Pigments for the Food Industry. Mar Drugs 2023; 21:md21020082. [PMID: 36827122 PMCID: PMC9967018 DOI: 10.3390/md21020082] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
In the food industry, manufacturers and customers have paid more attention to natural pigments instead of the synthetic counterparts for their excellent coloring ability and healthy properties. Microalgae are proven as one of the major photosynthesizers of naturally derived commercial pigments, gaining higher value in the global food pigment market. Microalgae-derived pigments, especially chlorophylls, carotenoids and phycobiliproteins, have unique colors and molecular structures, respectively, and show different physiological activities and health effects in the human body. This review provides recent updates on characteristics, application fields, stability in production and extraction processes of chlorophylls, carotenoids and phycobiliproteins to standardize and analyze their commercial production from microalgae. Potential food commodities for the pigment as eco-friendly colorants, nutraceuticals, and antioxidants are summarized for the target products. Then, recent cultivation strategies, metabolic and genomic designs are presented for high pigment productivity. Technical bottlenecks of downstream processing are discussed for improved stability and bioaccessibility during production. The production strategies of microalgal pigments have been exploited to varying degrees, with some already being applied at scale while others remain at the laboratory level. Finally, some factors affecting their global market value and future prospects are proposed. The microalgae-derived pigments have great potential in the food industry due to their high nutritional value and competitive production cost.
Collapse
Affiliation(s)
- Han Sun
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Carbon Neutrality, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Yuxin Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yongjin He
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Bin Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Carbon Neutrality, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Haijin Mou
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Carbon Neutrality, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
- Correspondence: (F.C.); (S.Y.)
| | - Shufang Yang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Carbon Neutrality, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
- Correspondence: (F.C.); (S.Y.)
| |
Collapse
|
4
|
Zhou L, Li K, Duan X, Hill D, Barrow C, Dunshea F, Martin G, Suleria H. Bioactive compounds in microalgae and their potential health benefits. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Cezare-Gomes EA, Lousada MEG, Matsudo MC, Ferreira-Camargo LS, Ishii M, Singh AK, Carvalho JCM. Two-stage semi-continuous cultivation of Dunaliella salina for β-carotene production. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-022-00246-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Diaz-MacAdoo D, Mata MT, Riquelme C. Influence of Irradiance and Wavelength on the Antioxidant Activity and Carotenoids Accumulation in Muriellopsis sp. Isolated from the Antofagasta Coastal Desert. Molecules 2022; 27:molecules27082412. [PMID: 35458610 PMCID: PMC9031948 DOI: 10.3390/molecules27082412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/02/2022] [Accepted: 04/02/2022] [Indexed: 12/10/2022] Open
Abstract
Microalgae are a valuable natural resource for a variety of biocompounds such as carotenoids. The use of different light spectra and irradiance has been considered as a promising option to improve the production of these compounds. The objective of this study was to evaluate the influence of different wavelengths (white, red, and blue) and irradiances (80 and 350 µmol photons/m2/s) on the photosynthetic state, total carotenoids and lutein productivity (HPLC), lipids (Nile red method) and antioxidant activity (DPPH) of the microalgae Muriellopsis sp. (MCH-35). This microalga, which is a potential source of lutein, was isolated from the coastal desert of Antofagasta, Chile, and adapted to grow in seawater. The results indicate that the culture exposed to high-intensity red light showed the highest biomass yield (2.5 g/L) and lutein productivity (>2.0 mg L−1day−1). However, blue light was found to have a stimulating effect on the synthesis of lutein and other carotenoids (>0.8% dry wt). Furthermore, a direct relationship between lipid accumulation and high light intensity was evidenced. Finally, the highest antioxidant activity was observed with high-intensity white light, these values have no direct relationship with lutein productivity. Therefore, the findings of this study could be utilized to obtain biocompounds of interest by altering certain culture conditions during the large-scale cultivation of MCH-35.
Collapse
|
7
|
Van T Do C, Dinh CT, Dang MT, Dang Tran T, Giang Le T. A novel flat-panel photobioreactor for simultaneous production of lutein and carbon sequestration by Chlorella sorokiniana TH01. BIORESOURCE TECHNOLOGY 2022; 345:126552. [PMID: 34906709 DOI: 10.1016/j.biortech.2021.126552] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Carbon dioxide is the major cause of global warming. However, it is a carbon source for phototrophic production of chemicals from microalgae. In this work, a novel flat-panel photobioreactor (FPP) was used for maximization of biomass and lutein production and CO2 fixation by a lutein-rich C. sorokiniana TH01. CO2 concentration, light intensity and aeration rate were optimized as 5%, 150 µmol/m2/s and 1 L/min, respectively. The highest biomass productivity, lutein productivity and CO2 fixation efficiency were measured for indoor single and sequential FPPs were 284 - 469 mg/L/d, 2.57 - 4.57 mg/L/d, and 63 - 100%, respectively. In a climatic condition of 25.5 - 33 °C and 86 - 600 µmol/m2/s, C. sorokiniana TH01 achieved lutein productivity and CO2 fixation efficiency of 2.1 - 3.03 mg/L/d and 56 - 81%, respectively, while the comparable biomass productivity of 284 - 419 mg/L/d was maintained. This pioneered FPP system was efficiently demonstrated for production of algal lutein from CO2.
Collapse
Affiliation(s)
- Cam Van T Do
- HaUI Institute of Technology, Hanoi University of Industry, 298 Cau Dien Street, Bac Tu Liem, Hanoi, Vietnam
| | - Cuc T Dinh
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Mai T Dang
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Thuan Dang Tran
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
| | - Truong Giang Le
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| |
Collapse
|
8
|
Smaoui S, Barkallah M, Ben Hlima H, Fendri I, Mousavi Khaneghah A, Michaud P, Abdelkafi S. Microalgae Xanthophylls: From Biosynthesis Pathway and Production Techniques to Encapsulation Development. Foods 2021; 10:2835. [PMID: 34829118 PMCID: PMC8623138 DOI: 10.3390/foods10112835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/01/2021] [Accepted: 11/10/2021] [Indexed: 12/28/2022] Open
Abstract
In the last 20 years, xanthophylls from microalgae have gained increased scientific and industrial interests. This review highlights the essential issues that concern this class of high value compounds. Firstly, their chemical diversity as the producer microorganisms was detailed. Then, the use of conventional and innovative extraction techniques was discussed. Upgraded knowledge on the biosynthetic pathway of the main xanthophylls produced by photosynthetic microorganisms was reviewed in depth, providing new insightful ideas, clarifying the function of these active biomolecules. In addition, the recent advances in encapsulation techniques of astaxanthin and fucoxanthin, such as spray and freeze drying, gelation, emulsification and coacervation were updated. Providing information about these topics and their applications and advances could be a help to students and young researchers who are interested in chemical and metabolic engineering, chemistry and natural products communities to approach the complex thematic of xanthophylls.
Collapse
Affiliation(s)
- Slim Smaoui
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Route Sidi Mansour Km 6 B.P. 117, Sfax 3018, Tunisia;
| | - Mohamed Barkallah
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia; (M.B.); (H.B.H.)
| | - Hajer Ben Hlima
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia; (M.B.); (H.B.H.)
| | - Imen Fendri
- Laboratoire de Biotechnologie Végétale Appliquée à l’Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax 3038, Tunisia;
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil;
| | - Philippe Michaud
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, F-63000 Clermont-Ferrand, France
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia; (M.B.); (H.B.H.)
| |
Collapse
|
9
|
Cruz-Balladares V, Marticorena P, Riquelme C. Effect on growth and productivity of lutein from the chlorophyta microalga, strain MCH of Muriellopsis sp., when grown in sea water and outdoor conditions at the Atacama Desert. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
10
|
Ferdous UT, Yusof ZNB. Medicinal Prospects of Antioxidants From Algal Sources in Cancer Therapy. Front Pharmacol 2021; 12:593116. [PMID: 33746748 PMCID: PMC7973026 DOI: 10.3389/fphar.2021.593116] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 01/19/2021] [Indexed: 12/20/2022] Open
Abstract
Though cancer therapeutics can successfully eradicate cancerous cells, the effectiveness of these medications is mostly restricted to several deleterious side effects. Therefore, to alleviate these side effects, antioxidant supplementation is often warranted, reducing reactive species levels and mitigating persistent oxidative damage. Thus, it can impede the growth of cancer cells while protecting the normal cells simultaneously. Moreover, antioxidant supplementation alone or in combination with chemotherapeutics hinders further tumor development, prevents chemoresistance by improving the response to chemotherapy drugs, and enhances cancer patients' quality of life by alleviating side effects. Preclinical and clinical studies have been revealed the efficacy of using phytochemical and dietary antioxidants from different sources in treating chemo and radiation therapy-induced toxicities and enhancing treatment effectiveness. In this context, algae, both micro and macro, can be considered as alternative natural sources of antioxidants. Algae possess antioxidants from diverse groups, which can be exploited in the pharmaceutical industry. Despite having nutritional benefits, investigation and utilization of algal antioxidants are still in their infancy. This review article summarizes the prospective anticancer effect of twenty-three antioxidants from microalgae and their potential mechanism of action in cancer cells, as well as usage in cancer therapy. In addition, antioxidants from seaweeds, especially from edible species, are outlined, as well.
Collapse
Affiliation(s)
- Umme Tamanna Ferdous
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Zetty Norhana Balia Yusof
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Faculty of Biotechnology and Biomolecular Sciences, Department of Biochemistry, Universiti Putra Malaysia, Selangor, Malaysia
- Bioprocessing and Biomanufacturing Research Center, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
11
|
Patel AK, Singhania RR, Sim SJ, Dong CD. Recent advancements in mixotrophic bioprocessing for production of high value microalgal products. BIORESOURCE TECHNOLOGY 2021; 320:124421. [PMID: 33246239 DOI: 10.1016/j.biortech.2020.124421] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 06/11/2023]
Abstract
Recently, microalgal biomass has become an attractive and sustainable feedstock for renewable production of various biochemicals and biofuels. However, attaining required productivity remains a key challenge to develop industrial applications. Fortunately, mixotrophic cultivation strategy (MCS) is leading to higher productivity due to the metabolic ability of some microalgal strain to utilise both photosynthesis and organic carbon compared to phototrophic or heterotrophic processes. The potential of MCS is being explored by researchers for maximized biochemicals and biofuels production however it requires further development yet to reach commercialization stage. In this review, recent developments in the MCS bioprocess for selective value-added (carotenoids) products have been reviewed; synergistic mechanism of carbon and energy was conferred. Moreover, the metabolic regulation of microalgae under MCS for utilized carbon forms and carbon recycling was demonstrated; Additionally, the opportunities and challenges of large-scale MCS have been discussed.
Collapse
Affiliation(s)
- Anil Kumar Patel
- Centre for Energy and Environmental Sustainability, Lucknow 226 029, India.
| | | | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seoungbuk-gu, Seoul 02841, Republic of Korea
| | - Cheng Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| |
Collapse
|
12
|
Cavieres L, Bazaes J, Marticorena P, Riveros K, Medina P, Sepúlveda C, Riquelme C. Pilot-scale phycoremediation using Muriellopsis sp. for wastewater reclamation in the Atacama Desert: microalgae biomass production and pigment recovery. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:331-343. [PMID: 33504698 DOI: 10.2166/wst.2020.576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Municipal wastewater phycoremediation represents a promising circular economy-based process for wastewater reclamation used to recover water and produce biomass. This study aimed to evaluate a pilot-scale phycoremediation system, using the most efficient strain of microalgae for wastewater reclamation in the Atacama Desert. Nitrogen and phosphorus removal, as well as biomass growth, were compared in different microalgae treatments, namely Muriellopsis sp., Scenedesmus almeriensis, Chlamydomonas segnis, Chlorella pyrenoidosa and Chlorella vulgaris. The most efficient treatments, Muriellopsis sp. and S. almeriensis, were scaled up to 20-L bubble column reactors to evaluate nutrient removal and biomass biochemical profile for potential biotechnological application. Finally, Muriellopsis sp. was selected for a pilot-scale phycoremediation experiment (800-L raceway), which removed 84% of nitrogen, 93% of phosphorus and other chemical compounds after 4 days of treatment to meet most of the Chilean standards for irrigation water (NCh. 1333. DS. MOP No. 867/78). Faecal coliforms count was reduced by 99.9%. Furthermore, biomass productivity reached 104.25 mg·L-1·day-1 value with 51% protein, and pigment content of 0.6% carotenoid, with 0.3% lutein. These results indicate the potential of wastewater phycoremediation at an industrial scale for the production of irrigation water and carotenoid using Muriellopsis sp.
Collapse
Affiliation(s)
- L Cavieres
- Unidad de Microbiología Aplicada, Centro de Bioinnovación Antofagasta, Universidad de Antofagasta, Av. Angamos, 601. 1270300 Antofagasta, Chile E-mail:
| | - J Bazaes
- Unidad de Microbiología Aplicada, Centro de Bioinnovación Antofagasta, Universidad de Antofagasta, Av. Angamos, 601. 1270300 Antofagasta, Chile E-mail:
| | - P Marticorena
- Unidad de Microbiología Aplicada, Centro de Bioinnovación Antofagasta, Universidad de Antofagasta, Av. Angamos, 601. 1270300 Antofagasta, Chile E-mail:
| | - K Riveros
- Unidad de Microbiología Aplicada, Centro de Bioinnovación Antofagasta, Universidad de Antofagasta, Av. Angamos, 601. 1270300 Antofagasta, Chile E-mail:
| | - P Medina
- Unidad de Microbiología Aplicada, Centro de Bioinnovación Antofagasta, Universidad de Antofagasta, Av. Angamos, 601. 1270300 Antofagasta, Chile E-mail:
| | - C Sepúlveda
- Unidad de Microbiología Aplicada, Centro de Bioinnovación Antofagasta, Universidad de Antofagasta, Av. Angamos, 601. 1270300 Antofagasta, Chile E-mail:
| | - C Riquelme
- Unidad de Microbiología Aplicada, Centro de Bioinnovación Antofagasta, Universidad de Antofagasta, Av. Angamos, 601. 1270300 Antofagasta, Chile E-mail:
| |
Collapse
|
13
|
Effect of Drying Methods on Lutein Content and Recovery by Supercritical Extraction from the Microalga Muriellopsis sp. (MCH35) Cultivated in the Arid North of Chile. Mar Drugs 2020; 18:md18110528. [PMID: 33114504 PMCID: PMC7692189 DOI: 10.3390/md18110528] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/07/2020] [Accepted: 10/14/2020] [Indexed: 11/16/2022] Open
Abstract
In this study, we determined the effect of drying on extraction kinetics, yield, and lutein content and recovery of the microalga Muriellopsis sp. (MCH35) using the supercritical fluid extraction (SFE) process. The strain was cultivated in an open-raceways reactor in the presence of seawater culture media and arid outdoor conditions in the north of Chile. Spray-drying (SD) and freeze-drying (FD) techniques were used for dehydrating the microalgal biomass. Extraction experiments were performed by using Box-Behnken designs, and the parameters were studied: pressure (30–50 MPa), temperature (40–70 °C), and co-solvent (0–30% ethanol), with a CO2 flow rate of 3.62 g/min for 60 min. Spline linear model was applied in the central point of the experimental design to obtain an overall extraction curve and to reveal extraction kinetics involved in the SFE process. A significant increase in all variables was observed when the level of ethanol (15–30% v/v) was increased. However, temperature and pressure were non-significant parameters in the SFE process. The FD method showed an increase in lutein content and recovery by 0.3–2.5-fold more than the SD method. Overall, Muriellopsis sp. (MCH35) is a potential candidate for cost-effective lutein production, especially in desert areas and for different biotechnological applications.
Collapse
|
14
|
Abstract
Lutein is particularly known to help maintain normal visual function by absorbing and attenuating the blue light that strikes the retina in our eyes. The effect of overexposure to blue light on our eyes due to the excessive use of electronic devices is becoming an issue of modern society due to insufficient dietary lutein consumption through our normal diet. There has, therefore, been an increasing demand for lutein-containing dietary supplements and also in the food industry for lutein supplementation in bakery products, infant formulas, dairy products, carbonated drinks, energy drinks, and juice concentrates. Although synthetic carotenoid dominates the market, there is a need for environmentally sustainable carotenoids including lutein production pathways to match increasing consumer demand for natural alternatives. Currently, marigold flowers are the predominant natural source of lutein. Microalgae can be a competitive sustainable alternative, which have higher growth rates and do not require arable land and/or a growth season. Currently, there is no commercial production of lutein from microalgae, even though astaxanthin and β-carotene are commercially produced from specific microalgal strains. This review discusses the potential microalgae strains for commercial lutein production, appropriate cultivation strategies, and the challenges associated with realising a commercial market share.
Collapse
|
15
|
Rajendran L, Nagarajan NG, Karuppan M. Enhanced biomass and lutein production by mixotrophic cultivation of Scenedesmus sp. using crude glycerol in an airlift photobioreactor. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Robles Á, Capson-Tojo G, Galès A, Ruano MV, Sialve B, Ferrer J, Steyer JP. Microalgae-bacteria consortia in high-rate ponds for treating urban wastewater: Elucidating the key state indicators under dynamic conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 261:110244. [PMID: 32148311 DOI: 10.1016/j.jenvman.2020.110244] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/18/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
On-line performance indicators of a microalgae-bacteria consortium were screened out from different variables based on pH and dissolved oxygen on-line measurements via multivariate projection analysis, aiming at finding on-line key state indicators to easily monitor the process. To fulfil this objective, a pilot-scale high-rate pond for urban wastewater treatment was evaluated under highly variable conditions, i.e. during the start-up period. The system was started-up without seed of either bacterial or microalgal biomass. It took around 19 days to fully develop a microalgal community assimilating nutrients significantly. Slight increases in the biomass productivities in days 26-30 suggest that the minimum time for establishing a performant bacteria-microalgae consortium could be of around one month for non-inoculated systems. At this point, the process was fully functional, meeting the European discharge limits for protected areas. The results of the statistical analyses show that both the pH and the dissolved oxygen concentration represent accurately the biochemical processes taking place under the start-up of the process. Both pH and dissolved oxygen represented accurately also the performance of the high-rate algal pond, being affordable, easily-implemented, options for monitoring, control and optimization of industrial-scale processes.
Collapse
Affiliation(s)
- Ángel Robles
- Departament d'Enginyeria Química, Escola Tècnica Superior D'Enginyeria, Universitat de València, Avinguda de la Universitat s/n, 46100, Burjassot, Valencia, Spain.
| | - Gabriel Capson-Tojo
- CRETUS Institute, Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Amandine Galès
- LBE, Univ. Montpellier, INRA, 102 avenue des Etangs, 11100, Narbonne, France
| | - María Victoria Ruano
- Departament d'Enginyeria Química, Escola Tècnica Superior D'Enginyeria, Universitat de València, Avinguda de la Universitat s/n, 46100, Burjassot, Valencia, Spain
| | - Bruno Sialve
- LBE, Univ. Montpellier, INRA, 102 avenue des Etangs, 11100, Narbonne, France
| | - José Ferrer
- Institut Universitari d'Investigació d'Enginyeria de l'Aigua i Medi Ambient (IIAMA), Universitat Politècnica de València, Camí de Vera s/n, 46022, Valencia, Spain
| | | |
Collapse
|
17
|
Outdoor Large-Scale Cultivation of the Acidophilic Microalga Coccomyxa onubensis in a Vertical Close Photobioreactor for Lutein Production. Processes (Basel) 2020. [DOI: 10.3390/pr8030324] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The large-scale biomass production is an essential step in the biotechnological applications of microalgae. Coccomyxa onubensis is an acidophilic microalga isolated from the highly acidic waters of Río Tinto (province of Huelva, Spain) and has been shown to accumulate a high concentration of lutein (9.7 mg g−1dw), a valuable antioxidant, when grown at laboratory-scale. A productivity of 0.14 g L−1 d−1 was obtained by growing the microalga under outdoor conditions in an 800 L tubular photobioreactor. The results show a stable biomass production for at least one month and with a lutein content of 10 mg g−1dw, at pH values in the range 2.5–3.0 and temperature in the range 10–25 °C. Culture density, temperature, and CO2 availability in highly acidic medium are rate-limiting conditions for the microalgal growth. These aspects are discussed in this paper in order to improve the outdoor culture conditions for competitive applications of C. onubensis.
Collapse
|
18
|
Nwoba EG, Parlevliet DA, Laird DW, Alameh K, Moheimani NR. Pilot-scale self-cooling microalgal closed photobioreactor for biomass production and electricity generation. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101731] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
19
|
Gonçalves VD, Fagundes-Klen MR, Goes Trigueros DE, Kroumov AD, Módenes AN. Statistical and optimization strategies to carotenoids production by Tetradesmus acuminatus (LC192133.1) cultivated in photobioreactors. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
20
|
McClure DD, Nightingale JK, Luiz A, Black S, Zhu J, Kavanagh JM. Pilot-scale production of lutein using Chlorella vulgaris. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101707] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
21
|
Nwoba EG, Parlevliet DA, Laird DW, Alameh K, Moheimani NR. Light management technologies for increasing algal photobioreactor efficiency. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101433] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Sathasivam R, Radhakrishnan R, Hashem A, Abd_Allah EF. Microalgae metabolites: A rich source for food and medicine. Saudi J Biol Sci 2019; 26:709-722. [PMID: 31048995 PMCID: PMC6486502 DOI: 10.1016/j.sjbs.2017.11.003] [Citation(s) in RCA: 276] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 10/04/2017] [Accepted: 11/02/2017] [Indexed: 01/12/2023] Open
Abstract
Microalgae are one of the important components in food chains of aquatic ecosystems and have been used for human consumption as food and as medicines. The wide diversity of compounds synthesized from different metabolic pathways of fresh and marine water algae provide promising sources of fatty acids, steroids, carotenoids, polysaccharides, lectins, mycosporine-like amino acids, halogenated compounds, polyketides, toxins, agar agar, alginic acid and carrageenan. This review discusses microalgae used to produce biological substances and its economic importance in food science, the pharmaceutical industry and public health.
Collapse
Affiliation(s)
- Ramaraj Sathasivam
- Department of Biotechnology, Sangmyung University, Seoul 03016, Republic of Korea
| | - Ramalingam Radhakrishnan
- Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamilnadu, India
| | - Abeer Hashem
- Botany and Microbiology, Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia
| | - Elsayed F. Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
23
|
Chen JH, Chen CY, Hasunuma T, Kondo A, Chang CH, Ng IS, Chang JS. Enhancing lutein production with mixotrophic cultivation of Chlorella sorokiniana MB-1-M12 using different bioprocess operation strategies. BIORESOURCE TECHNOLOGY 2019; 278:17-25. [PMID: 30669027 DOI: 10.1016/j.biortech.2019.01.041] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
A lutein-enriched mutant, Chlorella sorokiniana MB-1-M12 was grown mixotrophically for lutein production. The lutein production efficiency of the strain was enhanced via optimizing the operating strategies. The results show that using semi-continuous cultivation with a medium replacement ratio of 75% resulted in a higher lutein productivity and lutein concentration of 6.24 mg/L/d and 50.6 mg/L, respectively, which were markedly higher than those obtained from batch and fed-batch cultivation. Cultivation under simulated outdoor cultivation conditions (i.e., temperature of 35 °C/25 °C for a 12 h/12 h light/dark cycle) could achieve the highest lutein productivity and lutein concentration of 3.34 mg/L/d and 30.8 mg/L, respectively. Lutein production via outdoor cultivation of MB-1-M12 strain with a 60-L tubular photobioreactor was performed using semi-continuous operation. With a medium replacement ratio of 75%, a good lutein productivity (4.46 mg/L/d) and concentration (27.4 mg/L) was obtained, indicating the feasibility of producing lutein under outdoor cultivation of the microalgal strain.
Collapse
Affiliation(s)
- Jih-Heng Chen
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Chun-Yen Chen
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada-Ku, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada-Ku, Kobe 657-8501, Japan; Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-Ku, Kobe 657-8501, Japan
| | - Chien-Hsiang Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Circular Economy, National Cheng Kung University, Tainan 701, Taiwan; College of Engineering, Tunghai University, Taichung 407, Taiwan.
| |
Collapse
|
24
|
Janchot K, Rauytanapanit M, Honda M, Hibino T, Sirisattha S, Praneenararat T, Kageyama H, Waditee‐Sirisattha R. Effects of Potassium Chloride‐Induced Stress on the Carotenoids Canthaxanthin, Astaxanthin, and Lipid Accumulations in the Green Chlorococcal Microalga StrainTISTR9500. J Eukaryot Microbiol 2019; 66:778-787. [DOI: 10.1111/jeu.12726] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/13/2019] [Accepted: 02/28/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Kantima Janchot
- Department of Microbiology Faculty of Science Chulalongkorn University Pathumwan Bangkok 10330 Thailand
- The Chemical Approaches for Food Applications Research Group Faculty of Science Chulalongkorn University Pathumwan Bangkok 10330 Thailand
| | - Monrawat Rauytanapanit
- The Chemical Approaches for Food Applications Research Group Faculty of Science Chulalongkorn University Pathumwan Bangkok 10330 Thailand
- Department of Chemistry Faculty of Science Chulalongkorn University Pathumwan Bangkok 10330 Thailand
| | - Masaki Honda
- Department of Chemistry Faculty of Science and Technology Meijo University Nagoya 468‐8502 Japan
| | - Takashi Hibino
- Department of Chemistry Faculty of Science and Technology Meijo University Nagoya 468‐8502 Japan
- Graduate School of Environmental and Human Sciences Meijo University Nagoya 468‐8502 Japan
| | - Sophon Sirisattha
- Thailand Institute of Scientific and Technological Research (TISTR) Khlong Luang Pathum Thani 12120 Thailand
| | - Thanit Praneenararat
- The Chemical Approaches for Food Applications Research Group Faculty of Science Chulalongkorn University Pathumwan Bangkok 10330 Thailand
- Department of Chemistry Faculty of Science Chulalongkorn University Pathumwan Bangkok 10330 Thailand
| | - Hakuto Kageyama
- Department of Chemistry Faculty of Science and Technology Meijo University Nagoya 468‐8502 Japan
- Graduate School of Environmental and Human Sciences Meijo University Nagoya 468‐8502 Japan
| | - Rungaroon Waditee‐Sirisattha
- Department of Microbiology Faculty of Science Chulalongkorn University Pathumwan Bangkok 10330 Thailand
- The Chemical Approaches for Food Applications Research Group Faculty of Science Chulalongkorn University Pathumwan Bangkok 10330 Thailand
| |
Collapse
|
25
|
Sosa-Hernández JE, Romero-Castillo KD, Parra-Arroyo L, Aguilar-Aguila-Isaías MA, García-Reyes IE, Ahmed I, Parra-Saldivar R, Bilal M, Iqbal HMN. Mexican Microalgae Biodiversity and State-Of-The-Art Extraction Strategies to Meet Sustainable Circular Economy Challenges: High-Value Compounds and Their Applied Perspectives. Mar Drugs 2019; 17:174. [PMID: 30889823 PMCID: PMC6470790 DOI: 10.3390/md17030174] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/05/2019] [Accepted: 03/09/2019] [Indexed: 02/05/2023] Open
Abstract
In recent years, the demand for naturally derived products has hiked with enormous pressure to propose or develop state-of-the-art strategies to meet sustainable circular economy challenges. Microalgae possess the flexibility to produce a variety of high-value products of industrial interests. From pigments such as phycobilins or lutein to phycotoxins and several polyunsaturated fatty acids (PUFAs), microalgae have the potential to become the primary producers for the pharmaceutical, food, and agronomical industries. Also, microalgae require minimal resources to grow due to their autotrophic nature or by consuming waste matter, while allowing for the extraction of several valuable side products such as hydrogen gas and biodiesel in a single process, following a biorefinery agenda. From a Mexican microalgae biodiversity perspective, more than 70 different local species have been characterized and isolated, whereas, only a minimal amount has been explored to produce commercially valuable products, thus ignoring their potential as a locally available resource. In this paper, we discuss the microalgae diversity present in Mexico with their current applications and potential, while expanding on their future applications in bioengineering along with other industrial sectors. In conclusion, the use of available microalgae to produce biochemically revenuable products currently represents an untapped potential that could lead to the solution of several problems through green technologies. As such, if the social, industrial and research communities collaborate to strive towards a greener economy by preserving the existing biodiversity and optimizing the use of the currently available resources, the enrichment of our society and the solution to several environmental problems could be attained.
Collapse
Affiliation(s)
- Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico.
| | - Kenya D Romero-Castillo
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico.
| | - Lizeth Parra-Arroyo
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico.
| | - Mauricio A Aguilar-Aguila-Isaías
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico.
| | - Isaac E García-Reyes
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico.
| | - Ishtiaq Ahmed
- School of Medical Science, Menzies Health Institute Queensland, Griffith University (Gold Coast campus), Parklands Drive, Southport, QLD 4222, Australia.
| | - Roberto Parra-Saldivar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico.
| |
Collapse
|
26
|
Saini DK, Chakdar H, Pabbi S, Shukla P. Enhancing production of microalgal biopigments through metabolic and genetic engineering. Crit Rev Food Sci Nutr 2019; 60:391-405. [PMID: 30706720 DOI: 10.1080/10408398.2018.1533518] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The versatile use of biopigments in food, feed, cosmetic, pharmaceutical and analytical industries emphasized to find different and renewable sources of biopigments. Microalgae, including cyanobacteria, are becoming a potential candidate for pigment production as these have fast-growing ability, high pigment content, highly variable and also have "Generally recognized as safe" status. These algal groups are known to produce different metabolites that include hormones, vitamins, biopolythene and biochemicals. We discuss here the potential use of microalgal biopigments in our daily life as well as in food and cosmetic industries. Pigment like carotenoids has many health benefits such as antioxidant, anti-inflammatory properties and also provide photo-protection against UV radiation. This review details the effect of various abiotic and biotic factors such as temperature, light, nutrition on maximizing the pigment content in the microalgal cell. This review also highlights the potential of microalgae, whether in present native or engineered strain including the many metabolic strategies which are used or can be used to produce a higher amount of these valuable biopigments. Additionally, future challenges in the context of pigment production have also been discussed.
Collapse
Affiliation(s)
- Dinesh Kumar Saini
- Enzyme Technology and Protein Bioinformatics Laboratory Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Hillol Chakdar
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Maunath Bhanjan, Uttar Pradesh, India
| | - Sunil Pabbi
- Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA) Division of Microbiology, ICAR - Indian Agricultural Research Institute, New Delhi, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
27
|
Li J, Engelberth AS. Quantification and purification of lutein and zeaxanthin recovered from distillers dried grains with solubles (DDGS). BIORESOUR BIOPROCESS 2018. [DOI: 10.1186/s40643-018-0219-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
28
|
Padmaperuma G, Kapoore RV, Gilmour DJ, Vaidyanathan S. Microbial consortia: a critical look at microalgae co-cultures for enhanced biomanufacturing. Crit Rev Biotechnol 2017; 38:690-703. [PMID: 29233009 DOI: 10.1080/07388551.2017.1390728] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Monocultures have been the preferred production route in the bio-industry, where contamination has been a major bottleneck. In nature, microorganisms usually exist as part of organized communities and consortia, gaining benefits from co-habitation, keeping invaders at bay. There is increasing interest in the use of co-cultures to tackle contamination issues, and simultaneously increase productivity and product diversity. The feasibility of extending the natural phenomenon of co-habitation to the biomanufacturing industry in the form of co-cultures requires careful and systematic consideration of several aspects. This article will critically examine and review current work on microbial co-cultures, with the intent of examining the concept and proposing a design pipeline that can be developed in a biomanufacturing context.
Collapse
Affiliation(s)
- Gloria Padmaperuma
- a ChELSI Institute, Advanced Biomanufacturing Centre, Department of Chemical and Biological Engineering , The University of Sheffield , Sheffield , UK
| | - Rahul Vijay Kapoore
- a ChELSI Institute, Advanced Biomanufacturing Centre, Department of Chemical and Biological Engineering , The University of Sheffield , Sheffield , UK
| | - Daniel James Gilmour
- b Department of Molecular Biology and Biotechnology , The University of Sheffield , Sheffield , UK
| | - Seetharaman Vaidyanathan
- a ChELSI Institute, Advanced Biomanufacturing Centre, Department of Chemical and Biological Engineering , The University of Sheffield , Sheffield , UK
| |
Collapse
|
29
|
Lutein production with wild-type and mutant strains of Chlorella sorokiniana MB-1 under mixotrophic growth. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.04.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Ambati RR, Gogisetty D, Aswathnarayana Gokare R, Ravi S, Bikkina PN, Su Y, Lei B. Botryococcus as an alternative source of carotenoids and its possible applications – an overview. Crit Rev Biotechnol 2017; 38:541-558. [DOI: 10.1080/07388551.2017.1378997] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ranga Rao Ambati
- Food Science and Technology Programme, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China
- Estuarine Fisheries Research Institute of Doumen, Zhuhai, China
| | - Deepika Gogisetty
- Department of Chemistry, Sri Vivekananda College, Viveka Educational Institutions, Tenali, India
| | | | - Sarada Ravi
- Plant Cell Biotechnology Department, Central Food Technological Research Institute (Constituent Laboratory of Council of Scientific & Industrial Research), Mysore, India
| | | | - Yuepeng Su
- Estuarine Fisheries Research Institute of Doumen, Zhuhai, China
| | - Bo Lei
- Food Science and Technology Programme, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China
| |
Collapse
|
31
|
Ghosh A, Khanra S, Mondal M, Devi TI, Halder G, Tiwari O, Bhowmick TK, Gayen K. Biochemical characterization of microalgae collected from north east region of India advancing towards the algae-based commercial production. ASIA-PAC J CHEM ENG 2017. [DOI: 10.1002/apj.2114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ashmita Ghosh
- Department of Chemical Engineering; NIT Agartala; Jirania West Tripura 799046 India
| | - Saumyakanti Khanra
- Department of Chemical Engineering; NIT Agartala; Jirania West Tripura 799046 India
| | - Madhumanti Mondal
- Department of Chemical Engineering; NIT Durgapur; Durgapur West Bengal 713209 India
| | | | - Gopinath Halder
- Department of Chemical Engineering; NIT Durgapur; Durgapur West Bengal 713209 India
| | - O.N. Tiwari
- Centre for Conservation and Utilization of Blue Green Algae; Division of Microbiology ICAR-Indian Agricultural Research Institute; New Delhi 110012 India
| | | | - Kalyan Gayen
- Department of Chemical Engineering; NIT Agartala; Jirania West Tripura 799046 India
| |
Collapse
|
32
|
Úbeda B, Gálvez JÁ, Michel M, Bartual A. Microalgae cultivation in urban wastewater: Coelastrum cf. pseudomicroporum as a novel carotenoid source and a potential microalgae harvesting tool. BIORESOURCE TECHNOLOGY 2017; 228:210-217. [PMID: 28064133 DOI: 10.1016/j.biortech.2016.12.095] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/13/2016] [Accepted: 12/22/2016] [Indexed: 06/06/2023]
Abstract
The aim of this work was to study the optimal growth and high value-added production of the microalgae Coelastrum cf. pseudomicroporum Korshikov cultivated in urban wastewater. It was observed that C. cf. pseudomicroporum grew ideally in this medium, acting as an efficient nutrient starver. Additionally, the obtained biomass increased carotenoid cell content after saltwater stress. The effects of light intensity and salt stress on its growth rate were analysed. The results showed that this alga can grow very fast using wastewater as culture medium, reaching maximum growth rates of 1.61±0.05day-1, and tolerating strong irradiances. It was also found that under salt-stress this species could accumulate carotenoids (range 1.73-91.2pgcell-1). Moreover, a good harvesting efficiency (96.84%) was observed using Coelastrum exudates as bioflocculant of Scenedesmus sp., so Coelastrum exudates could act as a potential bioflocculant for other species.
Collapse
Affiliation(s)
- Bárbara Úbeda
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Avda. República Saharaui s/n, 11510 Puerto Real, Cádiz, Spain
| | - José Ángel Gálvez
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Avda. República Saharaui s/n, 11510 Puerto Real, Cádiz, Spain
| | - Mónica Michel
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Avda. República Saharaui s/n, 11510 Puerto Real, Cádiz, Spain
| | - Ana Bartual
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Avda. República Saharaui s/n, 11510 Puerto Real, Cádiz, Spain.
| |
Collapse
|
33
|
Kusumaningtyas P, Nurbaiti S, Suantika G, Amran MB, Nurachman Z. Enhanced Oil Production by the Tropical Marine Diatom Thalassiosira Sp. Cultivated in Outdoor Photobioreactors. Appl Biochem Biotechnol 2017; 182:1605-1618. [DOI: 10.1007/s12010-017-2421-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/18/2017] [Indexed: 12/20/2022]
|
34
|
Aziz N, Prasad R, Ibrahim AIM, Ahmed AIS. Promising Applications for the Production of Biofuels Through Algae. Microb Biotechnol 2017. [DOI: 10.1007/978-981-10-6847-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
35
|
de Vree JH, Bosma R, Wieggers R, Gegic S, Janssen M, Barbosa MJ, Wijffels RH. Turbidostat operation of outdoor pilot-scale photobioreactors. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.06.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
de Vree JH, Bosma R, Janssen M, Barbosa MJ, Wijffels RH. Comparison of four outdoor pilot-scale photobioreactors. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:215. [PMID: 26689675 PMCID: PMC4683866 DOI: 10.1186/s13068-015-0400-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 11/30/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND Microalgae are a potential source of sustainable commodities of fuels, chemicals and food and feed additives. The current high production costs, as a result of the low areal productivities, limit the application of microalgae in industry. A first step is determining how the different production system designs relate to each other under identical climate conditions. The productivity and photosynthetic efficiency of Nannochloropsis sp. CCAP 211/78 cultivated in four different outdoor continuously operated pilot-scale photobioreactors under the same climatological conditions were compared. The optimal dilution rate was determined for each photobioreactor by operation of the different photobioreactors at different dilution rates. RESULTS In vertical photobioreactors, higher areal productivities and photosynthetic efficiencies, 19-24 g m(-2) day(-1) and 2.4-4.2 %, respectively, were found in comparison to the horizontal systems; 12-15 g m(-2) day(-1) and 1.5-1.8 %. The higher ground areal productivity in the vertical systems could be explained by light dilution in combination with a higher light capture. In the raceway pond low productivities were obtained, due to the long optical path in this system. Areal productivities in all systems increased with increasing photon flux densities up to a photon flux density of 30 mol m(-2) day(-1). Photosynthetic efficiencies remained constant in all systems with increasing photon flux densities. The highest photosynthetic efficiencies obtained were; 4.2 % for the vertical tubular photobioreactor, 3.8 % for the flat panel reactor, 1.8 % for the horizontal tubular reactor, and 1.5 % for the open raceway pond. CONCLUSIONS Vertical photobioreactors resulted in higher areal productivities than horizontal photobioreactors because of the lower incident photon flux densities on the reactor surface. The flat panel photobioreactor resulted, among the vertical photobioreactors studied, in the highest average photosynthetic efficiency, areal and volumetric productivities due to the short optical path. Photobioreactor light interception should be further optimized to maximize ground areal productivity and photosynthetic efficiency.
Collapse
Affiliation(s)
- Jeroen H. de Vree
- />Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
- />Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 8129, 6721 NG Bennekom, The Netherlands
| | - Rouke Bosma
- />Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Marcel Janssen
- />Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Maria J. Barbosa
- />Food and Biobased Research, AlgaePARC, Wageningen UR, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - René H. Wijffels
- />Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
- />Biosciences and Aquaculture, Nordland University, 8049 Bodø, Norway
| |
Collapse
|
37
|
|
38
|
Rodrigo-Baños M, Garbayo I, Vílchez C, Bonete MJ, Martínez-Espinosa RM. Carotenoids from Haloarchaea and Their Potential in Biotechnology. Mar Drugs 2015; 13:5508-32. [PMID: 26308012 PMCID: PMC4584337 DOI: 10.3390/md13095508] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/02/2015] [Accepted: 08/10/2015] [Indexed: 12/02/2022] Open
Abstract
The production of pigments by halophilic archaea has been analysed during the last half a century. The main reasons that sustains this research are: (i) many haloarchaeal species possess high carotenoids production availability; (ii) downstream processes related to carotenoid isolation from haloarchaea is relatively quick, easy and cheap; (iii) carotenoids production by haloarchaea can be improved by genetic modification or even by modifying several cultivation aspects such as nutrition, growth pH, temperature, etc.; (iv) carotenoids are needed to support plant and animal life and human well-being; and (v) carotenoids are compounds highly demanded by pharmaceutical, cosmetic and food markets. Several studies about carotenoid production by haloarchaea have been reported so far, most of them focused on pigments isolation or carotenoids production under different culture conditions. However, the understanding of carotenoid metabolism, regulation, and roles of carotenoid derivatives in this group of extreme microorganisms remains mostly unrevealed. The uses of those haloarchaeal pigments have also been poorly explored. This work summarises what has been described so far about carotenoids production by haloarchaea and their potential uses in biotechnology and biomedicine. In particular, new scientific evidence of improved carotenoid production by one of the better known haloarchaeon (Haloferax mediterranei) is also discussed.
Collapse
Affiliation(s)
- Montserrat Rodrigo-Baños
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain.
| | - Inés Garbayo
- Algal Biotechnology Group, University of Huelva and Marine International Campus of Excellence (CEIMAR), CIDERTA and Faculty of Sciences, 21071 Huelva, Spain.
| | - Carlos Vílchez
- Algal Biotechnology Group, University of Huelva and Marine International Campus of Excellence (CEIMAR), CIDERTA and Faculty of Sciences, 21071 Huelva, Spain.
| | - María José Bonete
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain.
| | - Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain.
| |
Collapse
|
39
|
Paliwal C, Ghosh T, Bhayani K, Maurya R, Mishra S. Antioxidant, Anti-Nephrolithe Activities and in Vitro Digestibility Studies of Three Different Cyanobacterial Pigment Extracts. Mar Drugs 2015; 13:5384-401. [PMID: 26308007 PMCID: PMC4557027 DOI: 10.3390/md13085384] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/13/2015] [Accepted: 08/10/2015] [Indexed: 11/16/2022] Open
Abstract
Phycobiliprotein-containing water and carotenoid-containing methanolic extracts of three different cyanobacteria, Pseudanabaena sp., Spirulina sp. and Lyngbya sp., were studied for their DPPH scavenging, iso-bolographic studies, and anti-nephrolithe activities. The best EC50 values for DPPH scavenging were in Lyngbya water (LW, 18.78 ± 1.57 mg·mg−1 DPPH) and Lyngbya methanol (LM, 59.56 ± 37.38 mg·mg−1 DPPH) extracts. Iso-bolographic analysis revealed most of the combinations of extracts were antagonistic to each other, although LM—Spirulina methanol (SM) 1:1 had the highest synergistic rate of 86.65%. In vitro digestion studies showed that DPPH scavenging activity was considerably decreased in all extracts except for Pseudanabaena methanol (PM) and LM after the simulated digestion. All of the extracts were effective in reducing the calcium oxalate crystal size by nearly 60%–65% compared to negative control, while PM and Spirulina water (SW) extracts could inhibit both nucleation and aggregation of calcium oxalate by nearly 60%–80%.
Collapse
Affiliation(s)
- Chetan Paliwal
- Salt and Marine Chemicals, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India.
- Academy of Scientific & Innovative Research (AcSIR), CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India.
| | - Tonmoy Ghosh
- Salt and Marine Chemicals, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India.
- Academy of Scientific & Innovative Research (AcSIR), CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India.
| | - Khushbu Bhayani
- Salt and Marine Chemicals, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India.
| | - Rahulkumar Maurya
- Salt and Marine Chemicals, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India.
- Academy of Scientific & Innovative Research (AcSIR), CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India.
| | - Sandhya Mishra
- Salt and Marine Chemicals, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India.
- Academy of Scientific & Innovative Research (AcSIR), CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India.
| |
Collapse
|
40
|
Lan S, Wu L, Zhang D, Hu C. Effects of light and temperature on open cultivation of desert cyanobacterium Microcoleus vaginatus. BIORESOURCE TECHNOLOGY 2015; 182:144-150. [PMID: 25689308 DOI: 10.1016/j.biortech.2015.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 01/30/2015] [Accepted: 02/01/2015] [Indexed: 06/04/2023]
Abstract
Microalgae cultivation has recently been recognized as an important issue to deal with the increasingly prominent resource and environmental problems. In this study, desert cyanobacterium Microcoleus vaginatus was open cultivated in 4 different cultivation conditions in Qubqi Desert, and it was found Chlorella sp., Scenedesmus sp. and Navicula sp. were the main contaminating microalgal species during the cultivation. High light intensity alone was responsible for the green algae contamination, but the accompanied high temperature was beneficial to cyanobacterial growth, and the maximum biomass productivity acquired was 41.3mgL(-1)d(-1). Low temperature was more suitable for contaminating diatoms' growth, although all the microalgae (including the target and contaminating) are still demand for a degree of light intensity, at least average daily light intensity >5μEm(-2)s(-1). As a whole, cultivation time, conditions and their interaction had a significant impact on microalgal photosynthetic activity (Fv/Fm), biomass and exopolysaccharides content (P<0.001).
Collapse
Affiliation(s)
- Shubin Lan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Li Wu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Delu Zhang
- School of Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Chunxiang Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
41
|
Outdoor pilot production of Nannochloropsis gaditana: Influence of culture parameters and lipid production rates in raceway ponds. ALGAL RES 2015. [DOI: 10.1016/j.algal.2015.02.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Ahmed F, Fanning K, Netzel M, Turner W, Li Y, Schenk PM. Profiling of carotenoids and antioxidant capacity of microalgae from subtropical coastal and brackish waters. Food Chem 2014; 165:300-6. [DOI: 10.1016/j.foodchem.2014.05.107] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 05/15/2014] [Accepted: 05/18/2014] [Indexed: 10/25/2022]
|
43
|
Xie YP, Ho SH, Chen CY, Chen CNN, Liu CC, Ng IS, Jing KJ, Yang SC, Chen CH, Chang JS, Lu YH. Simultaneous enhancement of CO2 fixation and lutein production with thermo-tolerant Desmodesmus sp. F51 using a repeated fed-batch cultivation strategy. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.02.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
Effects of abiotic stressors on lutein production in the green microalga Dunaliella salina. Microb Cell Fact 2014; 13:3. [PMID: 24397433 PMCID: PMC3893366 DOI: 10.1186/1475-2859-13-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 01/06/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent years have witnessed a rising trend in exploring microalgae for valuable carotenoid products as the demand for lutein and many other carotenoids in global markets has increased significantly. In green microalgae lutein is a major carotenoid protecting cellular components from damage incurred by reactive oxygen species under stress conditions. In this study, we investigated the effects of abiotic stressors on lutein accumulation in a strain of the marine microalga D. salina which had been selected for growth under stress conditions of combined blue and red lights by adaptive laboratory evolution. RESULTS Nitrate concentration, salinity and light quality were selected as three representative influencing factors and their impact on lutein production in batch cultures of D. salina was evaluated using response surface analysis. D. salina was found to be more tolerant to hyper-osmotic stress than to hypo-osmotic stress which caused serious cell damage and death in a high proportion of cells while hyper-osmotic stress increased the average cell size of D. salina only slightly. Two models were developed to explain how lutein productivity depends on the stress factors and for predicting the optimal conditions for lutein productivity. Among the three stress variables for lutein production, stronger interactions were found between nitrate concentration and salinity than between light quality and the other two. The predicted optimal conditions for lutein production were close to the original conditions used for adaptive evolution of D. salina. This suggests that the conditions imposed during adaptive evolution may have selected for the growth optima arrived at. CONCLUSIONS This study shows that systematic evaluation of the relationship between abiotic environmental stresses and lutein biosynthesis can help to decipher the key parameters in obtaining high levels of lutein productivity in D. salina. This study may benefit future stress-driven adaptive laboratory evolution experiments and a strategy of applying stress in a step-wise manner can be suggested for a rational design of experiments.
Collapse
|
45
|
|
46
|
Skjånes K, Rebours C, Lindblad P. Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Crit Rev Biotechnol 2013; 33:172-215. [PMID: 22765907 PMCID: PMC3665214 DOI: 10.3109/07388551.2012.681625] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 01/25/2012] [Accepted: 03/29/2012] [Indexed: 12/31/2022]
Abstract
Green microalgae for several decades have been produced for commercial exploitation, with applications ranging from health food for human consumption, aquaculture and animal feed, to coloring agents, cosmetics and others. Several products from green algae which are used today consist of secondary metabolites that can be extracted from the algal biomass. The best known examples are the carotenoids astaxanthin and β-carotene, which are used as coloring agents and for health-promoting purposes. Many species of green algae are able to produce valuable metabolites for different uses; examples are antioxidants, several different carotenoids, polyunsaturated fatty acids, vitamins, anticancer and antiviral drugs. In many cases, these substances are secondary metabolites that are produced when the algae are exposed to stress conditions linked to nutrient deprivation, light intensity, temperature, salinity and pH. In other cases, the metabolites have been detected in algae grown under optimal conditions, and little is known about optimization of the production of each product, or the effects of stress conditions on their production. Some green algae have shown the ability to produce significant amounts of hydrogen gas during sulfur deprivation, a process which is currently studied extensively worldwide. At the moment, the majority of research in this field has focused on the model organism, Chlamydomonas reinhardtii, but other species of green algae also have this ability. Currently there is little information available regarding the possibility for producing hydrogen and other valuable metabolites in the same process. This study aims to explore which stress conditions are known to induce the production of different valuable products in comparison to stress reactions leading to hydrogen production. Wild type species of green microalgae with known ability to produce high amounts of certain valuable metabolites are listed and linked to species with ability to produce hydrogen during general anaerobic conditions, and during sulfur deprivation. Species used today for commercial purposes are also described. This information is analyzed in order to form a basis for selection of wild type species for a future multi-step process, where hydrogen production from solar energy is combined with the production of valuable metabolites and other commercial uses of the algal biomass.
Collapse
Affiliation(s)
- Kari Skjånes
- Bioforsk - Norwegian Institute for Agricultural and Environmental Research, Fredrik A. Dahls vei 20, Ås, Norway.
| | | | | |
Collapse
|
47
|
Freitas AC, Rodrigues D, Rocha-Santos TA, Gomes AM, Duarte AC. Marine biotechnology advances towards applications in new functional foods. Biotechnol Adv 2012; 30:1506-15. [DOI: 10.1016/j.biotechadv.2012.03.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 03/20/2012] [Accepted: 03/20/2012] [Indexed: 12/17/2022]
|
48
|
Hemaiswarya S, Raja R, Carvalho IS, Ravikumar R, Zambare V, Barh D. An Indian scenario on renewable and sustainable energy sources with emphasis on algae. Appl Microbiol Biotechnol 2012; 96:1125-35. [PMID: 23070650 DOI: 10.1007/s00253-012-4487-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/28/2012] [Accepted: 10/01/2012] [Indexed: 11/28/2022]
Abstract
India is the fifth largest primary energy consumer and fourth largest petroleum consumer after USA, China, and Japan. Despite the global economic crisis, India's economy is expected to grow at 6 to 8 %/year. There is an extreme dependence on petroleum products with considerable risks and environmental issues. Petroleum-derived transport fuels are of limited availability and contribute to global warming, making renewable biofuel as the best alternative. The focus on biogas and biomass-based energy, such as bioethanol and biohydrogen, will enhance cost-effectiveness and provide an opportunity for the rural community. Among all energy sources, microalgae have received, so far, more attention due to their facile adaptability to grow in the photobioreactors or open ponds, high yields, and multiple applications. Microalgae can produce a substantial amount of triacylglycerols as a storage lipid under photooxidative stress or other adverse environmental conditions. In addition to renewable biofuels, they can provide different types of high-value bioproducts added to their advantages, such as higher photosynthetic efficiency, higher biomass production, and faster growth compared to any other energy crops. The viability of first-generation biofuels production is, however, questionable because of the conflict with food supply. In the future, biofuels should ideally create the environmental, economic, and social benefits to the communities and reflect energy efficiency so as to plan a road map for the industry to produce third-generation biofuels.
Collapse
Affiliation(s)
- S Hemaiswarya
- IBB/CGB-Faculty of Sciences and Technology, Food Science Laboratory, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | | | | | | | | | | |
Collapse
|
49
|
Fuentes-Grünewald C, Garcés E, Alacid E, Sampedro N, Rossi S, Camp J. Improvement of lipid production in the marine strains Alexandrium minutum and Heterosigma akashiwo by utilizing abiotic parameters. ACTA ACUST UNITED AC 2012; 39:207-16. [DOI: 10.1007/s10295-011-1016-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Accepted: 06/27/2011] [Indexed: 11/28/2022]
Abstract
Abstract
Two different strains of microalgae, one raphidophyte and one dinoflagellate, were tested under different abiotic conditions with the goal of enhancing lipid production. Whereas aeration was crucial for biomass production, nitrogen deficiency and temperature were found to be the main abiotic parameters inducing the high-level cellular accumulation of neutral lipids. Net neutral lipid production and especially triacylglycerol (TAG) per cell were higher in microalgae (>200% in Alexandrium minutum, and 30% in Heterosigma akashiwo) under treatment conditions (25°C; 330 μM NaNO3) than under control conditions (20°C; 880 μM NaNO3). For both algal species, oil production (free fatty acids plus TAG fraction) was also higher under treatment conditions (57 mg L−1 in A. minutum and 323 mg L−1 in H. akashiwo). Despite the increased production and accumulation of lipids in microalgae, the different conditions did not significantly change the fatty acids profiles of the species analyzed. These profiles consisted of saturated fatty acids (SAFA) and polyunsaturated fatty acids (PUFA) in significant proportions. However, during the stationary phase, the concentrations per cell of some PUFAs, especially arachidonic acid (C20:4n6), were higher in treated than in control algae. These results suggest that the adjustment of abiotic parameters is a suitable and one of the cheapest alternatives to obtain sufficient quantities of microalgal biomass, with high oil content and minimal changes in the fatty acid profile of the strains under consideration.
Collapse
Affiliation(s)
- C Fuentes-Grünewald
- grid.418218.6 000000041793765X Departament de Biología Marina i Oceanografía Institut de Ciències del Mar, CSIC Passeig Marítim de la Barceloneta, 37–49 08003 Barcelona Spain
- grid.7080.f Institut de Ciència i Tecnologia Ambientals (Universitat Autònoma de Barcelona, UAB) Edifici Cn Campus UAB 08193 Cerdanyola del Vallés (Barcelona) Spain
| | - E Garcés
- grid.418218.6 000000041793765X Departament de Biología Marina i Oceanografía Institut de Ciències del Mar, CSIC Passeig Marítim de la Barceloneta, 37–49 08003 Barcelona Spain
| | - E Alacid
- grid.418218.6 000000041793765X Departament de Biología Marina i Oceanografía Institut de Ciències del Mar, CSIC Passeig Marítim de la Barceloneta, 37–49 08003 Barcelona Spain
| | - N Sampedro
- grid.418218.6 000000041793765X Departament de Biología Marina i Oceanografía Institut de Ciències del Mar, CSIC Passeig Marítim de la Barceloneta, 37–49 08003 Barcelona Spain
| | - S Rossi
- grid.7080.f Institut de Ciència i Tecnologia Ambientals (Universitat Autònoma de Barcelona, UAB) Edifici Cn Campus UAB 08193 Cerdanyola del Vallés (Barcelona) Spain
| | - J Camp
- grid.418218.6 000000041793765X Departament de Biología Marina i Oceanografía Institut de Ciències del Mar, CSIC Passeig Marítim de la Barceloneta, 37–49 08003 Barcelona Spain
| |
Collapse
|
50
|
Cuaresma M, Janssen M, Vílchez C, Wijffels RH. Horizontal or vertical photobioreactors? How to improve microalgae photosynthetic efficiency. BIORESOURCE TECHNOLOGY 2011; 102:5129-37. [PMID: 21334888 DOI: 10.1016/j.biortech.2011.01.078] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 01/25/2011] [Accepted: 01/28/2011] [Indexed: 05/04/2023]
Abstract
The productivity of a vertical outdoor photobioreactor was quantitatively assessed and compared to a horizontal reactor. Daily light cycles in southern Spain were simulated and applied to grow the microalgae Chlorella sorokiniana in a flat panel photobioreactor. The maximal irradiance around noon differs from 400 μmol photons m(-2) s(-1) in the vertical position to 1800 μmol photons m(-2) s(-1) in the horizontal position. The highest volumetric productivity was achieved in the simulated horizontal position, 4 g kg culture(-1) d(-1). The highest photosynthetic efficiency was found for the vertical simulation, 1.3g of biomass produced per mol of PAR photons supplied, which compares favorably to the horizontal position (0.85 g mol(-1)) and to the theoretical maximal yield (1.8 g mol(-1)). These results prove that productivity per unit of ground area could be greatly enhanced by placing the photobioreactors vertically.
Collapse
Affiliation(s)
- María Cuaresma
- Wageningen University, Bioprocess Engineering, PO Box 8129, 6700 EV Wageningen, The Netherlands.
| | | | | | | |
Collapse
|