1
|
Howland KE, Mouradian JJ, Uzarski DR, Henson MW, Uzarski DG, Learman DR. Nutrient amendments enrich microbial hydrocarbon degradation metagenomic potential in freshwater coastal wetland microcosm experiments. Appl Environ Microbiol 2025; 91:e0197224. [PMID: 39651865 PMCID: PMC11784303 DOI: 10.1128/aem.01972-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 11/13/2024] [Indexed: 02/01/2025] Open
Abstract
Biostimulating native microbes with fertilizers has proven to be a highly effective strategy to speed up biodegradation rates in microbial communities. This study investigates the genetic potential of microbes to degrade light synthetic crude oil in a freshwater coastal wetland. Experimental sediment microcosms were exposed to a variety of conditions (biological control, a light synthetic crude oil amendment, and light synthetic crude oil with nutrient amendment) and incubated for 30 days before volatile organic compounds (BTEX) were quantified and DNA was sequenced for metagenomic analysis. The resulting DNA sequences were binned into metagenome-assembled genomes (MAGs). Analyses of MAGs uncovered a 13-fold significant increase in the abundance of rate-limiting hydrocarbon degrading monooxygenases and dioxygenases, identified only in MAGs from the light synthetic crude oil with nutrient amendments. Further, complete degradation pathways for BTEX compounds were found only in MAGs resulting from the light synthetic crude with nutrient amendment. Moreover, volatile organic compounds (BTEX, cyclohexane, and naphthalene) analyses of microcosm sediments in the presence of nutrients documented that benzene was degraded below detection limits, toluene (98%) and ethylbenzene (67%) were predominantly reduced within 30 days. Results indicate that the genetic potential to degrade BTEX compounds in this freshwater wetland can be linked to the functional potential for bioremediation. BTEX compounds are typically more recalcitrant and tougher to degrade than alkanes. This study demonstrated that stimulating a microbial community with nutrients to enhance its ability to biodegrade hydrocarbons, even in a relatively nutrient-rich habitat like a freshwater wetland, is an effective remediation tactic. IMPORTANCE The impact of oil spills in a freshwater aquatic environment can pose dire social, economic, and ecological effects on the region. An oil spill in the Laurentian Great Lakes region has the potential to affect the drinking water of more than 30 million people. The light synthetic crude oil used in this experimental microcosm study is transported through an underground pipeline crossing the waterway between two Laurentian Great Lakes. This study collected metagenomic data (experiments in triplicate) and assessed the quantity of BTEX compounds, which connected microbial degradation function to gene potential. The resulting data documented the bioremediation capabilities of native microbes in a freshwater coastal wetland. This study also provided evidence for this region that bioremediation can be a viable remediation strategy instead of invasive physical methods.
Collapse
Affiliation(s)
- Katie E. Howland
- Institute for Great Lakes Research, CMU Biological Station, and Department of Biology, Central Michigan University, Mount Pleasant, Michigan, USA
| | - Jack J. Mouradian
- Institute for Great Lakes Research, CMU Biological Station, and Department of Biology, Central Michigan University, Mount Pleasant, Michigan, USA
| | - Donald R. Uzarski
- Institute for Great Lakes Research, CMU Biological Station, and Department of Biology, Central Michigan University, Mount Pleasant, Michigan, USA
| | - Michael W. Henson
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA
| | - Donald G. Uzarski
- Institute for Great Lakes Research, CMU Biological Station, and Department of Biology, Central Michigan University, Mount Pleasant, Michigan, USA
| | - Deric R. Learman
- Institute for Great Lakes Research, CMU Biological Station, and Department of Biology, Central Michigan University, Mount Pleasant, Michigan, USA
| |
Collapse
|
2
|
Marquiegui – Alvaro A, Kottara A, Chacón M, Cliffe L, Brockhurst M, Dixon N. Genetic Bioaugmentation-Mediated Bioremediation of Terephthalate in Soil Microcosms Using an Engineered Environmental Plasmid. Microb Biotechnol 2025; 18:e70071. [PMID: 39801293 PMCID: PMC11725763 DOI: 10.1111/1751-7915.70071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/22/2024] [Accepted: 12/15/2024] [Indexed: 01/16/2025] Open
Abstract
Harnessing in situ microbial communities to clean-up polluted natural environments is a potentially efficient means of bioremediation, but often the necessary genes to breakdown pollutants are missing. Genetic bioaugmentation, whereby the required genes are delivered to resident bacteria via horizontal gene transfer, offers a promising solution to this problem. Here, we engineered a conjugative plasmid previously isolated from soil, pQBR57, to carry a synthetic set of genes allowing bacteria to consume terephthalate, a chemical component of plastics commonly released during their manufacture and breakdown. Our engineered plasmid caused a low fitness cost and was stably maintained in terephthalate-contaminated soil by the bacterium P. putida. Plasmid carriers efficiently bioremediated contaminated soil in model soil microcosms, achieving complete breakdown of 3.2 mg/g of terephthalate within 8 days. The engineered plasmid horizontally transferred the synthetic operon to P. fluorescens in situ, and the resulting transconjugants degraded 10 mM terephthalate during a 180-h incubation. Our findings show that environmental plasmids carrying synthetic catabolic operons can be useful tools for in situ engineering of microbial communities to perform clean-up even of complex environments like soil.
Collapse
Affiliation(s)
| | - Anastasia Kottara
- School of Biological SciencesThe University of ManchesterManchesterUK
| | - Micaela Chacón
- Department of Chemistry, and Manchester Institute of Biotechnology (MIB)The University of ManchesterManchesterUK
| | - Lisa Cliffe
- Department of Chemistry, and Manchester Institute of Biotechnology (MIB)The University of ManchesterManchesterUK
| | | | - Neil Dixon
- Department of Chemistry, and Manchester Institute of Biotechnology (MIB)The University of ManchesterManchesterUK
| |
Collapse
|
3
|
Sartaj K, Patel A, Matsakas L, Prasad R. Unravelling Metagenomics Approach for Microbial Biofuel Production. Genes (Basel) 2022; 13:1942. [PMID: 36360179 PMCID: PMC9689425 DOI: 10.3390/genes13111942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 09/29/2023] Open
Abstract
Renewable biofuels, such as biodiesel, bioethanol, and biobutanol, serve as long-term solutions to fossil fuel depletion. A sustainable approach feedstock for their production is plant biomass, which is degraded to sugars with the aid of microbes-derived enzymes, followed by microbial conversion of those sugars to biofuels. Considering their global demand, additional efforts have been made for their large-scale production, which is ultimately leading breakthrough research in biomass energy. Metagenomics is a powerful tool allowing for functional gene analysis and new enzyme discovery. Thus, the present article summarizes the revolutionary advances of metagenomics in the biofuel industry and enlightens the importance of unexplored habitats for novel gene or enzyme mining. Moreover, it also accentuates metagenomics potentials to explore uncultivable microbiomes as well as enzymes associated with them.
Collapse
Affiliation(s)
- Km Sartaj
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Alok Patel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Ramasare Prasad
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
4
|
Gangola S, Bhatt P, Kumar AJ, Bhandari G, Joshi S, Punetha A, Bhatt K, Rene ER. Biotechnological tools to elucidate the mechanism of pesticide degradation in the environment. CHEMOSPHERE 2022; 296:133916. [PMID: 35149016 DOI: 10.1016/j.chemosphere.2022.133916] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/23/2021] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Pesticides are widely used in agriculture, households, and industries; however, they have caused severe negative effects on the environment and human health. To clean up pesticide contaminated sites, various technological strategies, i.e. physicochemical and biological, are currently being used throughout the world. Biological approaches have proven to be a viable method for decontaminating pesticide-contaminated soils and water environments. The biological process eliminates contaminants by utilizing microorganisms' catabolic ability. Pesticide degradation rates are influenced by a variety of factors, including the pesticide's structure, concentration, solubility in water, soil type, land use pattern, and microbial activity in the soil. There is currently a knowledge gap in this field of study because researchers are unable to gather collective information on the factors affecting microbial growth, metabolic pathways, optimal conditions for degradation, and genomic, transcriptomic, and proteomic changes caused by pesticide stress on the microbial communities. The use of advanced tools and omics technology in research can bridge the existing gap in our knowledge regarding the bioremediation of pesticides. This review provides new insights on the research gaps and offers potential solutions for pesticide removal from the environment through the use of various microbe-mediated technologies.
Collapse
Affiliation(s)
- Saurabh Gangola
- School of Agriculture, Graphic Era Hill University, Bhimtal, 263136, Uttarakhand, India
| | - Pankaj Bhatt
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, PR China.
| | | | - Geeta Bhandari
- Department of Biosciences, Swami Rama Himalayan University, Dehradun, Uttarakhand, India
| | - Samiksha Joshi
- School of Agriculture, Graphic Era Hill University, Bhimtal, 263136, Uttarakhand, India
| | - Arjita Punetha
- Department of Environmental Science, GB Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Kalpana Bhatt
- Department of Botany and Microbiology, Gurukul Kangri University, Haridwar, 249404, Uttarakhand, India
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, P. O. Box 3015, 2601 DA Delft, the Netherlands
| |
Collapse
|
5
|
Omics Approaches to Pesticide Biodegradation. Curr Microbiol 2020; 77:545-563. [DOI: 10.1007/s00284-020-01916-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 02/08/2020] [Indexed: 02/08/2023]
|
6
|
Conjugative Transfer of IncP-9 Catabolic Plasmids Requires a Previously Uncharacterized Gene, mpfK, Whose Homologs Are Conserved in Various MPF T-Type Plasmids. Appl Environ Microbiol 2019; 85:AEM.01850-19. [PMID: 31604768 DOI: 10.1128/aem.01850-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/02/2019] [Indexed: 11/20/2022] Open
Abstract
Conjugative transfer of bacterial plasmids to recipient cells is often mediated by type IV secretion machinery. Experimental investigations into the minimal gene sets required for efficient conjugative transfer suggest that such gene sets are variable, depending on plasmids. We have been analyzing the conjugative transfer of Pseudomonas-derived and IncP-9 plasmids, NAH7 and pWW0, whose conjugation systems belong to the MPFT type. Our deletion analysis and synthetic biology analysis in this study showed that these plasmids require previously uncharacterized genes, mpfK (formerly orf34) and its functional homolog, kikA, respectively, for their efficient conjugative transfer. MpfK was localized in periplasm and had four cysteine residues whose intramolecular or intermolecular disulfide bond formation was suggested to be important for efficient conjugative transfer. The mpfK homologs were specifically carried by many MPFT-type plasmids, including non-IncP-9 plasmids, such as R388 and R751. Intriguingly, the mpfK homologs from the two non-IncP-9 plasmids were not required for conjugation of their plasmids, but were able to complement efficiently the transfer defect of the NAH7 mpfK mutant. Our results suggested the importance of the mpfK homologs for conjugative transfer of MPFT-type plasmids.IMPORTANCE IncP-9 plasmids are important mobile genetic elements for the degradation of various aromatic hydrocarbons. Elucidation of conjugative transfer of such plasmids is expected to greatly contribute to our understanding of its role in the bioremediation of polluted environments. The present study mainly focused on the conjugation system of NAH7, a well-studied and naphthalene-catabolic IncP-9 plasmid. Our analysis showed that the NAH7 conjugation system uniquely requires, in addition to the conserved components of the type IV secretion system (T4SS), a previously uncharacterized periplasmic protein, MpfK, for successful conjugation. Our findings collectively revealed a unique type of T4SS-associated conjugation system in the IncP-9 plasmids.
Collapse
|
7
|
Nora LC, Westmann CA, Martins‐Santana L, Alves LDF, Monteiro LMO, Guazzaroni M, Silva‐Rocha R. The art of vector engineering: towards the construction of next-generation genetic tools. Microb Biotechnol 2019; 12:125-147. [PMID: 30259693 PMCID: PMC6302727 DOI: 10.1111/1751-7915.13318] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 12/20/2022] Open
Abstract
When recombinant DNA technology was developed more than 40 years ago, no one could have imagined the impact it would have on both society and the scientific community. In the field of genetic engineering, the most important tool developed was the plasmid vector. This technology has been continuously expanding and undergoing adaptations. Here, we provide a detailed view following the evolution of vectors built throughout the years destined to study microorganisms and their peculiarities, including those whose genomes can only be revealed through metagenomics. We remark how synthetic biology became a turning point in designing these genetic tools to create meaningful innovations. We have placed special focus on the tools for engineering bacteria and fungi (both yeast and filamentous fungi) and those available to construct metagenomic libraries. Based on this overview, future goals would include the development of modular vectors bearing standardized parts and orthogonally designed circuits, a task not fully addressed thus far. Finally, we present some challenges that should be overcome to enable the next generation of vector design and ways to address it.
Collapse
Affiliation(s)
- Luísa Czamanski Nora
- Ribeirão Preto Medical SchoolUniversity of São PauloRibeirão Preto, São Paulo14049‐900Brazil
| | - Cauã Antunes Westmann
- Ribeirão Preto Medical SchoolUniversity of São PauloRibeirão Preto, São Paulo14049‐900Brazil
| | | | - Luana de Fátima Alves
- Ribeirão Preto Medical SchoolUniversity of São PauloRibeirão Preto, São Paulo14049‐900Brazil
- School of Philosophy, Science and Letters of Ribeirão PretoUniversity of São PauloRibeirão Preto, São Paulo14049‐900Brazil
| | | | - María‐Eugenia Guazzaroni
- School of Philosophy, Science and Letters of Ribeirão PretoUniversity of São PauloRibeirão Preto, São Paulo14049‐900Brazil
| | - Rafael Silva‐Rocha
- Ribeirão Preto Medical SchoolUniversity of São PauloRibeirão Preto, São Paulo14049‐900Brazil
| |
Collapse
|
8
|
Abstract
Understanding the mechanisms underlying plasmid behavior under conditions of various environments is important to predict the fate of plasmids in nature. Most previous studies on plasmid transfer employed two strains: one as a donor and the other as a recipient. However, in natural environments, there are usually different recipient cells available to which plasmid can be transferred. In this study, to reveal the underlying mechanisms, we assessed the transferability of plasmids from one donor strain to either of two recipient candidates as the most simplified model. We used Pseudomonas putida KT2440 and Pseudomonas resinovorans CA10dm4 as model hosts and pCAR1 (IncP-7), NAH7 (IncP-9), pB10 (IncP-1β), and R388 (IncW) as model plasmids. As expected, in most cases these plasmids were generally transferred more frequently to a recipient of the same species than to a recipient of a different one under conditions of liquid and filter mating, although NAH7 was transferred from P. resinovorans more frequently to P. putida than to P. resinovorans during filter mating. With the exception of pCAR1, which was less affected, the coexistence of other recipients enhanced the preferences of conjugative transfer to the same species. In particular, preferences corresponding to transfer from P. putida to a different recipient (P. resinovorans) were reduced by the presence of a coexisting same recipient (P. putida) during transfer of NAH7 in liquid and transfer of R388 in filter mating. We determined that large cell aggregates and substances secreted into culture supernatant were not responsible for this phenomenon. Overall, the results of this study suggest the existence of unknown factors determining optimal plasmid transfer to native recipients.IMPORTANCE Most previous studies on plasmid conjugal transfer employed experimental setups with two strains: one as a donor and the other as a recipient. However, the results obtained sometimes failed to agree with observations obtained under natural environmental conditions or in a model microcosm using natural soil and water samples. Therefore, we consider that there is a "gap" in our understanding of plasmid behavior in the context of bacterial consortia that exist under the actual environmental conditions. In this study, we clearly showed that the conjugation selectivity of a plasmid can be affected by the recipient candidates existing around the donor strain by the use of a simplified experimental setup with one strain as the donor and two strains as recipients. These phenomena could not be explained by factors known to affect plasmid transfer as suggested by previous studies. Therefore, we suggest the presence of novel elements regulating plasmid transfer within consortia.
Collapse
|
9
|
Alves LDF, Westmann CA, Lovate GL, de Siqueira GMV, Borelli TC, Guazzaroni ME. Metagenomic Approaches for Understanding New Concepts in Microbial Science. Int J Genomics 2018; 2018:2312987. [PMID: 30211213 PMCID: PMC6126073 DOI: 10.1155/2018/2312987] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/21/2018] [Accepted: 07/29/2018] [Indexed: 12/15/2022] Open
Abstract
Over the past thirty years, since the dawn of metagenomic studies, a completely new (micro) universe was revealed, with the potential to have profound impacts on many aspects of the society. Remarkably, the study of human microbiome provided a new perspective on a myriad of human traits previously regarded as solely (epi-) genetically encoded, such as disease susceptibility, immunological response, and social and nutritional behaviors. In this context, metagenomics has established a powerful framework for understanding the intricate connections between human societies and microbial communities, ultimately allowing for the optimization of both human health and productivity. Thus, we have shifted from the old concept of microbes as harmful organisms to a broader panorama, in which the signal of the relationship between humans and microbes is flexible and directly dependent on our own decisions and practices. In parallel, metagenomics has also been playing a major role in the prospection of "hidden" genetic features and the development of biotechnological applications, through the discovery of novel genes, enzymes, pathways, and bioactive molecules with completely new or improved biochemical functions. Therefore, this review highlights the major milestones over the last three decades of metagenomics, providing insights into both its potentialities and current challenges.
Collapse
Affiliation(s)
- Luana de Fátima Alves
- Department of Biochemistry, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Cauã Antunes Westmann
- Department of Cell Biology, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Gabriel Lencioni Lovate
- Department of Biochemistry, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Tiago Cabral Borelli
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - María-Eugenia Guazzaroni
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
10
|
Kishida K, Inoue K, Ohtsubo Y, Nagata Y, Tsuda M. Host Range of the Conjugative Transfer System of IncP-9 Naphthalene-Catabolic Plasmid NAH7 and Characterization of Its oriT Region and Relaxase. Appl Environ Microbiol 2017; 83:e02359-16. [PMID: 27742684 PMCID: PMC5165122 DOI: 10.1128/aem.02359-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/06/2016] [Indexed: 12/21/2022] Open
Abstract
NAH7 and pWW0 from gammaproteobacterial Pseudomonas putida strains are IncP-9 conjugative plasmids that carry the genes for degradation of naphthalene and toluene, respectively. Although such genes on these plasmids are well-characterized, experimental investigation of their conjugation systems remains at a primitive level. To clarify these conjugation systems, in this study, we investigated the NAH7-encoded conjugation system by (i) analyzing the origin of its conjugative transfer (oriT)-containing region and its relaxase, which specifically nicks within the oriT region for initiation of transfer, and (ii) comparing the conjugation systems between NAH7 and pWW0. The NAH7 oriT (oriTN) region was located within a 430-bp fragment, and the strand-specific nicking (nic) site and its upstream sequences that were important for efficient conjugation in the oriTN region were identified. Unlike many other relaxases, the NAH7 relaxase exhibited unique features in its ability to catalyze, in a conjugation-independent manner, the site-specific intramolecular recombination between two copies of the oriTN region, between two copies of the pWW0 oriT (oriTW) region (which is clearly different from the oriTN region), and between the oriTN and oriTW regions. The pWW0 relaxase, which is also clearly different from the NAH7 relaxase, was strongly suggested to have the ability to conjugatively and efficiently mobilize the oriTN-containing plasmid. Such a plasmid was, in the presence of the NAH7Δnic derivative, conjugatively transferable to alphaproteobacterial and betaproteobacterial strains in which the NAH7 replication machinery is nonfunctional, indicating that the NAH7 conjugation system has a broader host range than its replication system. IMPORTANCE Various studies have strongly suggested an important contribution of conjugative transfer of catabolic plasmids to the rapid and wide dissemination of the plasmid-loaded degradation genes to microbial populations. Degradation genes on such plasmids are often loaded on transposons, which can be inserted into the genomes of the recipient bacterial strains where the transferred plasmids cannot replicate. The aim was to advance detailed molecular knowledge of the determinants of host range for plasmids. This aim is expected to be easily and comprehensively achieved using an experimental strategy in which the oriT region is connected with a plasmid that has a broad host range of replication. Using such a strategy in this study, we showed that (i) the NAH7 oriT-relaxase system has unique properties that are significantly different from other well-studied systems and (ii) the host range of the NAH7 conjugation system is broader than previously thought.
Collapse
Affiliation(s)
- Kouhei Kishida
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Kei Inoue
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yoshiyuki Ohtsubo
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yuji Nagata
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Masataka Tsuda
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
11
|
Yanagida K, Sakuda A, Suzuki-Minakuchi C, Shintani M, Matsui K, Okada K, Nojiri H. Comparisons of the transferability of plasmids pCAR1, pB10, R388, and NAH7 among Pseudomonas putida at different cell densities. Biosci Biotechnol Biochem 2016; 80:1020-3. [DOI: 10.1080/09168451.2015.1127131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Abstract
The transferability of plasmids pCAR1, pB10, R388, and NAH7 was compared using the same donor-recipient system at different cell density combinations in liquid or on a solid surface. pCAR1 was efficiently transferred in liquid, whereas the other plasmids were preferentially transferred on a solid surface. Difference of liquid or solid affected the transfer frequency especially at lower cell densities.
Collapse
Affiliation(s)
- Kosuke Yanagida
- Biotechnology Research Center, The University of Tokyo , Tokyo, Japan
| | - Ayako Sakuda
- Biotechnology Research Center, The University of Tokyo , Tokyo, Japan
| | | | - Masaki Shintani
- Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University , Hamamatsu, Japan
| | - Kazuhiro Matsui
- Biotechnology Research Center, The University of Tokyo , Tokyo, Japan
| | - Kazunori Okada
- Biotechnology Research Center, The University of Tokyo , Tokyo, Japan
| | - Hideaki Nojiri
- Biotechnology Research Center, The University of Tokyo , Tokyo, Japan
| |
Collapse
|
12
|
Lee S, Takahashi Y, Oura H, Suzuki-Minakuchi C, Okada K, Yamane H, Nomura N, Nojiri H. Effects of carbazole-degradative plasmid pCAR1 on biofilm morphology in Pseudomonas putida KT2440. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:261-271. [PMID: 26743211 DOI: 10.1111/1758-2229.12376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/31/2015] [Accepted: 12/31/2015] [Indexed: 06/05/2023]
Abstract
Bacteria typically form biofilms under natural conditions. To elucidate the effect of the carriage of carbazole-degradative plasmid pCAR1 on biofilm formation by host bacteria, we compared the biofilm morphology, using confocal laser scanning microscopy, of three pCAR1-free and pCAR1-carrying Pseudomonas hosts: P. putida KT2440, P. aeruginosa PAO1 and P. fluorescens Pf0-1. Although pCAR1 did not significantly affect biofilm formation by PAO1 or Pf0-1, pCAR1-carrying KT2440 became filamentous and formed flat biofilms, whereas pCAR1-free KT2440 formed mushroom-like biofilms. pCAR1 contains three genes encoding nucleoid-associated proteins (NAPs), namely, Pmr, Pnd and Phu. The enhanced filamentous morphology was observed in two double mutants [KT2440(pCAR1ΔpmrΔpnd) and KT2440(pCAR1ΔpmrΔphu)], suggesting that these NAPs are involved in modulating the filamentous phenotype. Transcriptome analyses of the double mutants identified 32 candidate genes that may be involved in filamentation of KT2440. Overexpression of PP_2193 in KT2440 induced filamentation and overexpression of PP_0308 or PP_0309 in KT2440(pCAR1) enhanced filamentation of cells over time. This suggests that pCAR1 induces development of an abnormal filamentous morphology by KT2440 via a process involving overexpression of several genes, such as PP_2193. In addition, pCAR1-encoded NAPs partly suppress too much filamentation of KT2440(pCAR1) by repressing transcription of some genes, such as PP_0308 and PP_0309.
Collapse
Affiliation(s)
- Seunguk Lee
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yurika Takahashi
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hiromu Oura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Chiho Suzuki-Minakuchi
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kazunori Okada
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hisakazu Yamane
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Nobuhiko Nomura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Hideaki Nojiri
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
13
|
|
14
|
Abstract
The survival capacity of microorganisms in a contaminated environment is limited by the concentration and/or toxicity of the pollutant. Through evolutionary processes, some bacteria have developed or acquired mechanisms to cope with the deleterious effects of toxic compounds, a phenomenon known as tolerance. Common mechanisms of tolerance include the extrusion of contaminants to the outer media and, when concentrations of pollutants are low, the degradation of the toxic compound. For both of these approaches, plasmids that encode genes for the degradation of contaminants such as toluene, naphthalene, phenol, nitrobenzene, and triazine or are involved in tolerance toward organic solvents and heavy metals, play an important role in the evolution and dissemination of these catabolic pathways and efflux pumps. Environmental plasmids are often conjugative and can transfer their genes between different strains; furthermore, many catabolic or efflux pump genes are often associated with transposable elements, making them one of the major players in bacterial evolution. In this review, we will briefly describe catabolic and tolerance plasmids and advances in the knowledge and biotechnological applications of these plasmids.
Collapse
|
15
|
Ufarté L, Laville É, Duquesne S, Potocki-Veronese G. Metagenomics for the discovery of pollutant degrading enzymes. Biotechnol Adv 2015; 33:1845-54. [DOI: 10.1016/j.biotechadv.2015.10.009] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 11/16/2022]
|
16
|
van der Helm E, Geertz-Hansen HM, Genee HJ, Malla S, Sommer MOA. deFUME: Dynamic exploration of functional metagenomic sequencing data. BMC Res Notes 2015; 8:328. [PMID: 26227142 PMCID: PMC4520277 DOI: 10.1186/s13104-015-1281-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/15/2015] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Functional metagenomic selections represent a powerful technique that is widely applied for identification of novel genes from complex metagenomic sources. However, whereas hundreds to thousands of clones can be easily generated and sequenced over a few days of experiments, analyzing the data is time consuming and constitutes a major bottleneck for experimental researchers in the field. FINDINGS Here we present the deFUME web server, an easy-to-use web-based interface for processing, annotation and visualization of functional metagenomics sequencing data, tailored to meet the requirements of non-bioinformaticians. The web-server integrates multiple analysis steps into one single workflow: read assembly, open reading frame prediction, and annotation with BLAST, InterPro and GO classifiers. Analysis results are visualized in an online dynamic web-interface. CONCLUSION The deFUME webserver provides a fast track from raw sequence to a comprehensive visual data overview that facilitates effortless inspection of gene function, clustering and distribution. The webserver is available at cbs.dtu.dk/services/deFUME/and the source code is distributed at github.com/EvdH0/deFUME.
Collapse
Affiliation(s)
- Eric van der Helm
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2970, Hørsholm, Denmark.
| | - Henrik Marcus Geertz-Hansen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2970, Hørsholm, Denmark.
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, 2800, Lyngby, Denmark.
- Novozymes A/S, 2880, Bagsværd, Denmark.
| | - Hans Jasper Genee
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2970, Hørsholm, Denmark.
| | - Sailesh Malla
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2970, Hørsholm, Denmark.
| | - Morten Otto Alexander Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2970, Hørsholm, Denmark.
- Department of Systems Biology, Technical University of Denmark, 2800, Lyngby, Denmark.
| |
Collapse
|
17
|
Ufarté L, Potocki-Veronese G, Laville É. Discovery of new protein families and functions: new challenges in functional metagenomics for biotechnologies and microbial ecology. Front Microbiol 2015; 6:563. [PMID: 26097471 PMCID: PMC4456863 DOI: 10.3389/fmicb.2015.00563] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/21/2015] [Indexed: 12/30/2022] Open
Abstract
The rapid expansion of new sequencing technologies has enabled large-scale functional exploration of numerous microbial ecosystems, by establishing catalogs of functional genes and by comparing their prevalence in various microbiota. However, sequence similarity does not necessarily reflect functional conservation, since just a few modifications in a gene sequence can have a strong impact on the activity and the specificity of the corresponding enzyme or the recognition for a sensor. Similarly, some microorganisms harbor certain identified functions yet do not have the expected related genes in their genome. Finally, there are simply too many protein families whose function is not yet known, even though they are highly abundant in certain ecosystems. In this context, the discovery of new protein functions, using either sequence-based or activity-based approaches, is of crucial importance for the discovery of new enzymes and for improving the quality of annotation in public databases. This paper lists and explores the latest advances in this field, along with the challenges to be addressed, particularly where microfluidic technologies are concerned.
Collapse
Affiliation(s)
- Lisa Ufarté
- Université de Toulouse, Institut National des Sciences Appliquées (INSA), Université Paul Sabatier (UPS), Institut National Polytechnique (INP), Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP) , Toulouse, France ; INRA - UMR792 Ingénierie des Systèmes Biologiques et des Procédés , Toulouse, France ; CNRS, UMR5504 , Toulouse, France
| | - Gabrielle Potocki-Veronese
- Université de Toulouse, Institut National des Sciences Appliquées (INSA), Université Paul Sabatier (UPS), Institut National Polytechnique (INP), Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP) , Toulouse, France ; INRA - UMR792 Ingénierie des Systèmes Biologiques et des Procédés , Toulouse, France ; CNRS, UMR5504 , Toulouse, France
| | - Élisabeth Laville
- Université de Toulouse, Institut National des Sciences Appliquées (INSA), Université Paul Sabatier (UPS), Institut National Polytechnique (INP), Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP) , Toulouse, France ; INRA - UMR792 Ingénierie des Systèmes Biologiques et des Procédés , Toulouse, France ; CNRS, UMR5504 , Toulouse, France
| |
Collapse
|
18
|
Li X, Top EM, Wang Y, Brown CJ, Yao F, Yang S, Jiang Y, Li H. The broad-host-range plasmid pSFA231 isolated from petroleum-contaminated sediment represents a new member of the PromA plasmid family. Front Microbiol 2015; 5:777. [PMID: 25628616 PMCID: PMC4290620 DOI: 10.3389/fmicb.2014.00777] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/18/2014] [Indexed: 11/13/2022] Open
Abstract
A self-transmissible broad-host-range (BHR) plasmid pSFA231 was isolated from petroleum-contaminated sediment in Shen-fu wastewater irrigation zone, China, using the triparental mating exogenous plasmid capture method. Based on its complete sequence the plasmid has a size of 41.5 kb and codes for 50 putative open reading frames (orfs), 29 of which represent genes involved in replication, partitioning and transfer functions of the plasmid. Phylogenetic analysis grouped pSFA231 into the newly defined PromA plasmid family, which currently includes five members. Further comparative genomic analysis shows that pSFA231 shares the common backbone regions with the other PromA plasmids, i.e., genes involved in replication, maintenance and control, and conjugative transfer. Nevertheless, phylogenetic divergence was found in specific gene products. We propose to divide the PromA group into two subgroups, PromA-α (pMRAD02, pSB102) and PromA-β (pMOL98, pIPO2T, pSFA231, pTer331), based on the splits network analysis of the RepA protein. Interestingly, a cluster of hypothetical orfs located between parA and traA of pSFA231 shows high similarity with the corresponding regions on pMOL98, pIPO2T, and pTer331, suggesting these hypothetical orfs may represent “essential” plasmid backbone genes for the PromA-β subgroup. Alternatively, they may also be accessory genes that were first acquired and then stayed as the plasmid diverged. Our study increases the available collection of complete genome sequences of BHR plasmids, and since pSFA231 is the only characterized PromA plasmid from China, our findings also enhance our understanding of the genetic diversity of this plasmid group in different parts of the world.
Collapse
Affiliation(s)
- Xiaobin Li
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences Shenyang, China ; College of Resources and Environment, University of Chinese Academy of Sciences Beijing, China
| | - Eva M Top
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho Moscow, ID, USA
| | - Yafei Wang
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences Shenyang, China
| | - Celeste J Brown
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho Moscow, ID, USA
| | - Fei Yao
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences Shenyang, China ; College of Resources and Environment, University of Chinese Academy of Sciences Beijing, China
| | - Shan Yang
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences Shenyang, China
| | - Yong Jiang
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences Shenyang, China
| | - Hui Li
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences Shenyang, China
| |
Collapse
|
19
|
Isolation of oxygenase genes for indigo-forming activity from an artificially polluted soil metagenome by functional screening using Pseudomonas putida strains as hosts. Appl Microbiol Biotechnol 2015; 99:4453-70. [DOI: 10.1007/s00253-014-6322-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/08/2014] [Accepted: 12/12/2014] [Indexed: 10/24/2022]
|
20
|
Narihiro T, Suzuki A, Yoshimune K, Hori T, Hoshino T, Yumoto I, Yokota A, Kimura N, Kamagata Y. The combination of functional metagenomics and an oil-fed enrichment strategy revealed the phylogenetic diversity of lipolytic bacteria overlooked by the cultivation-based method. Microbes Environ 2014; 29:154-61. [PMID: 24859309 PMCID: PMC4103521 DOI: 10.1264/jsme2.me14002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Metagenomic screening and conventional cultivation have been used to exploit microbial lipolytic enzymes in nature. We used an indigenous forest soil (NS) and oil-fed enriched soil (OS) as microbial and genetic resources. Thirty-four strains (17 each) of lipolytic bacteria were isolated from the NS and OS microcosms. These isolates were classified into the (sub)phyla Betaproteobacteria, Gammaproteobacteria, Firmicutes, and Actinobacteria, all of which are known to be the main microbial resources of commercially available lipolytic enzymes. Seven and 39 lipolytic enzymes were successfully retrieved from the metagenomic libraries of the NS and OS microcosms, respectively. The screening efficiency (a ratio of positive lipolytic clones to the total number of environmental clones) was markedly higher in the OS microcosm than in the NS microcosm. Moreover, metagenomic clones encoding the lipolytic enzymes associated with Alphaproteobacteria, Deltaproteobacteria, Acidobacteria, Armatimonadetes, and Planctomycetes and hitherto-uncultivated microbes were recovered from these libraries. The results of the present study indicate that functional metagenomics can be effectively used to capture as yet undiscovered lipolytic enzymes that have eluded the cultivation-based method, and these combined approaches may be able to provide an overview of lipolytic organisms potentially present in nature.
Collapse
Affiliation(s)
- Takashi Narihiro
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Oliveira V, Gomes NCM, Almeida A, Silva AMS, Simões MMQ, Smalla K, Cunha Â. Hydrocarbon contamination and plant species determine the phylogenetic and functional diversity of endophytic degrading bacteria. Mol Ecol 2013; 23:1392-1404. [DOI: 10.1111/mec.12559] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vanessa Oliveira
- Department of Biology & Center for Environmental and Marine Studies (CESAM); University of Aveiro; Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Newton C. M. Gomes
- Department of Biology & Center for Environmental and Marine Studies (CESAM); University of Aveiro; Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Adelaide Almeida
- Department of Biology & Center for Environmental and Marine Studies (CESAM); University of Aveiro; Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Artur M. S. Silva
- Department of Chemistry & QOPNA; University of Aveiro; Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Mário M. Q. Simões
- Department of Chemistry & QOPNA; University of Aveiro; Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Kornelia Smalla
- Julius Kühn-Institut - Federal Research Centre for Cultivated Plants (JKI); Department of Epidemiology and Pathogen Diagnostics; Messeweg 11-12 38104 Braunschweig Germany
| | - Ângela Cunha
- Department of Biology & Center for Environmental and Marine Studies (CESAM); University of Aveiro; Campus Universitário de Santiago 3810-193 Aveiro Portugal
| |
Collapse
|
22
|
Nyyssönen M, Tran HM, Karaoz U, Weihe C, Hadi MZ, Martiny JBH, Martiny AC, Brodie EL. Coupled high-throughput functional screening and next generation sequencing for identification of plant polymer decomposing enzymes in metagenomic libraries. Front Microbiol 2013; 4:282. [PMID: 24069019 PMCID: PMC3779933 DOI: 10.3389/fmicb.2013.00282] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 09/02/2013] [Indexed: 12/13/2022] Open
Abstract
Recent advances in sequencing technologies generate new predictions and hypotheses about the functional roles of environmental microorganisms. Yet, until we can test these predictions at a scale that matches our ability to generate them, most of them will remain as hypotheses. Function-based mining of metagenomic libraries can provide direct linkages between genes, metabolic traits and microbial taxa and thus bridge this gap between sequence data generation and functional predictions. Here we developed high-throughput screening assays for function-based characterization of activities involved in plant polymer decomposition from environmental metagenomic libraries. The multiplexed assays use fluorogenic and chromogenic substrates, combine automated liquid handling and use a genetically modified expression host to enable simultaneous screening of 12,160 clones for 14 activities in a total of 170,240 reactions. Using this platform we identified 374 (0.26%) cellulose, hemicellulose, chitin, starch, phosphate and protein hydrolyzing clones from fosmid libraries prepared from decomposing leaf litter. Sequencing on the Illumina MiSeq platform, followed by assembly and gene prediction of a subset of 95 fosmid clones, identified a broad range of bacterial phyla, including Actinobacteria, Bacteroidetes, multiple Proteobacteria sub-phyla in addition to some Fungi. Carbohydrate-active enzyme genes from 20 different glycoside hydrolase (GH) families were detected. Using tetranucleotide frequency (TNF) binning of fosmid sequences, multiple enzyme activities from distinct fosmids were linked, demonstrating how biochemically-confirmed functional traits in environmental metagenomes may be attributed to groups of specific organisms. Overall, our results demonstrate how functional screening of metagenomic libraries can be used to connect microbial functionality to community composition and, as a result, complement large-scale metagenomic sequencing efforts.
Collapse
Affiliation(s)
- Mari Nyyssönen
- Ecology Department, Earth Sciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Inoue K, Miyazaki R, Ohtsubo Y, Nagata Y, Tsuda M. Inhibitory effect ofPseudomonas putidanitrogen-related phosphotransferase system on conjugative transfer of IncP-9 plasmid fromEscherichia coli. FEMS Microbiol Lett 2013; 345:102-9. [DOI: 10.1111/1574-6968.12188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 05/06/2013] [Accepted: 05/29/2013] [Indexed: 11/30/2022] Open
Affiliation(s)
- Kei Inoue
- Department of Environmental Life Sciences; Graduate School of Life Sciences; Tohoku University; Sendai; Japan
| | - Ryo Miyazaki
- Department of Environmental Life Sciences; Graduate School of Life Sciences; Tohoku University; Sendai; Japan
| | - Yoshiyuki Ohtsubo
- Department of Environmental Life Sciences; Graduate School of Life Sciences; Tohoku University; Sendai; Japan
| | - Yuji Nagata
- Department of Environmental Life Sciences; Graduate School of Life Sciences; Tohoku University; Sendai; Japan
| | - Masataka Tsuda
- Department of Environmental Life Sciences; Graduate School of Life Sciences; Tohoku University; Sendai; Japan
| |
Collapse
|
24
|
Ito M, Sato I, Ishizaka M, Yoshida SI, Koitabashi M, Yoshida S, Tsushima S. Bacterial cytochrome P450 system catabolizing the Fusarium toxin deoxynivalenol. Appl Environ Microbiol 2013; 79:1619-28. [PMID: 23275503 PMCID: PMC3591976 DOI: 10.1128/aem.03227-12] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 12/20/2012] [Indexed: 11/20/2022] Open
Abstract
Deoxynivalenol (DON) is a natural toxin of fungi that cause Fusarium head blight disease of wheat and other small-grain cereals. DON accumulates in infected grains and promotes the spread of the infection on wheat, posing serious problems to grain production. The elucidation of DON-catabolic genes and enzymes in DON-degrading microbes will provide new approaches to decrease DON contamination. Here, we report a cytochrome P450 system capable of catabolizing DON in Sphingomonas sp. strain KSM1, a DON-utilizing bacterium newly isolated from lake water. The P450 gene ddnA was cloned through an activity-based screening of a KSM1 genomic library. The genes of its redox partner candidates (flavin adenine dinucleotide [FAD]-dependent ferredoxin reductase and mitochondrial-type [2Fe-2S] ferredoxin) were not found adjacent to ddnA; the redox partner candidates were further cloned separately based on conserved motifs. The DON-catabolic activity was reconstituted in vitro in an electron transfer chain comprising the three enzymes and NADH, with a catalytic efficiency (k(cat)/K(m)) of 6.4 mM(-1) s(-1). The reaction product was identified as 16-hydroxy-deoxynivalenol. A bioassay using wheat seedlings revealed that the hydroxylation dramatically reduced the toxicity of DON to wheat. The enzyme system showed similar catalytic efficiencies toward nivalenol and 3-acetyl deoxynivalenol, toxins that frequently cooccur with DON. These findings identify an enzyme system that catabolizes DON, leading to reduced phytotoxicity to wheat.
Collapse
Affiliation(s)
| | | | | | - Shin-ichiro Yoshida
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Sendai, Japan
| | | | | | - Seiya Tsushima
- Natural Resources Inventory Center, National Institute for Agro-Environmental Sciences, Ibaraki, Japan
| |
Collapse
|
25
|
|
26
|
Paliwal V, Puranik S, Purohit HJ. Integrated perspective for effective bioremediation. Appl Biochem Biotechnol 2011; 166:903-24. [PMID: 22198863 DOI: 10.1007/s12010-011-9479-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 11/29/2011] [Indexed: 10/14/2022]
Abstract
Identification of factors which can influence the natural attenuation process with available microbial genetic capacities can support the bioremediation which has been viewed as the safest procedure to combat with anthropogenic compounds in ecosystems. With the advent of molecular techniques, assimilatory capacity of an ecosystem can be defined with changing community dynamics, and if required, the essential genetic potential can be met through bioaugmentation. At the same time, intensification of microbial processes with nutrient balancing, expressing and enhancing the degradative capacities, could reduce the time frame of restoration of the ecosystem. The new concept of ecosystems biology has added greatly to conceptualize the networking of the evolving microbiota of the niche that helps in effective application of bioremediation tools to manage pollutants as additional carbon source.
Collapse
Affiliation(s)
- Vasundhara Paliwal
- Environmental Genomics Division, National Environmental Engineering Research Institute, CSIR, Nehru Marg, Nagpur 440020, India
| | | | | |
Collapse
|
27
|
Shintani M, Takahashi Y, Yamane H, Nojiri H. The behavior and significance of degradative plasmids belonging to Inc groups in Pseudomonas within natural environments and microcosms. Microbes Environ 2011; 25:253-65. [PMID: 21576880 DOI: 10.1264/jsme2.me10155] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Over the past few decades, degradative plasmids have been isolated from bacteria capable of degrading a variety of both natural and man-made compounds. Degradative plasmids belonging to three incompatibility (Inc) groups in Pseudomonas (IncP-1, P-7, and P-9) have been well studied in terms of their replication, maintenance, and capacity for conjugative transfer. The host ranges of these plasmids are determined by replication or conjugative transfer systems. The host range of IncP-1 is broad, that of IncP-9 is intermediate, and that of IncP-7 is narrow. To understand the behavior of these plasmids and their hosts in various environments, the survivability of inocula, stability or transferability, and efficiency of biodegradation in environments and microcosms have been monitored. The biodegradation and plasmid transfer in various environments have been observed for all three groups, although the kinds of transconjugants differed with the Inc groups. In some cases, the deletion and amplification of catabolic genes acted to reduce the production of toxic catabolic intermediates, or to increase the activity on a particular catabolic pathway. The combination of degradative genes, the plasmid backbone of each Inc group, and the host of the plasmids is key to the degraders adapting to various hosts or to heterogeneous environments.
Collapse
Affiliation(s)
- Masaki Shintani
- Bioresource Center, Japan Collection of Microorganisms (BRC-JCM), Riken, 2–1 Hirosawa, Wako, Saitama 351–0198, Japan
| | | | | | | |
Collapse
|
28
|
Abstract
This article summarizes general design principles for functional metagenomics. The focus is on Escherichia coli as an expression host, although alternative host-vector systems are discussed in relation to optimizing gene recovery in activity-based screens. Examples of DNA isolation and enrichment approaches, library construction and phenotypic read-out are described with special emphasis on the use of high throughput technologies for rapid isolation of environmental clones encoding phenotypic traits of interest.
Collapse
Affiliation(s)
- Marcus Taupp
- Department of Microbiology & Immunology, University of British Columbia, Canada
| | | | | |
Collapse
|
29
|
Abstract
We describe how wide host-range cloning vectors can lead to more flexible and effective procedures to isolate novel genes by screening metagenomic libraries in a range of bacterial hosts, not just the conventionally used Escherichia coli. We give examples of various wide host-range plasmid, cosmid, and BAC cloning vectors and the types of genes and activities that have been successfully obtained to date. We present a detailed protocol that involves the construction and screening of a metagenomic library comprising fragments of bacterial DNA, obtained from a wastewater treatment plant and cloned in a wide host-range cosmid. We also consider future prospects and how techniques and tools can be improved.
Collapse
Affiliation(s)
- Margaret Wexler
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, UK
| | | |
Collapse
|
30
|
Biodegradation: gaining insight through proteomics. Biodegradation 2010; 21:861-79. [DOI: 10.1007/s10532-010-9361-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 04/13/2010] [Indexed: 10/19/2022]
|
31
|
Functional metagenomics for enzyme discovery: challenges to efficient screening. Curr Opin Biotechnol 2009; 20:616-22. [DOI: 10.1016/j.copbio.2009.09.010] [Citation(s) in RCA: 244] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 09/18/2009] [Accepted: 09/25/2009] [Indexed: 11/17/2022]
|
32
|
Heinaru E, Vedler E, Jutkina J, Aava M, Heinaru A. Conjugal transfer and mobilization capacity of the completely sequenced naphthalene plasmid pNAH20 from multiplasmid strain Pseudomonas fluorescens PC20. FEMS Microbiol Ecol 2009; 70:563-74. [PMID: 19744238 DOI: 10.1111/j.1574-6941.2009.00763.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The complete 83 042-bp nucleotide sequence of the IncP-9 naphthalene degradation plasmid pNAH20 from Pseudomonas fluorescens PC20 exhibits striking similarity in size and sequence to another naphthalene (NAH) plasmid pDTG1. However, the positions of insertion sequence (IS) elements significantly alter both catabolic and backbone functions provided by the two plasmids. In pDTG1, insertion of a pCAR1 ISPre1-like element disrupts expression of the lower naphthalene operon and this strain utilizes the chromosomal pathway for complete naphthalene degradation. In pNAH20, this operon is intact and functional. The transfer frequency of pNAH20 is 100 times higher than that of pDTG1 probably due to insertion of the pCAR1 ISPre2-like element into the mpfR gene coding for a putative repressor of the mpf operon responsible for mating pilus formation. We also demonstrate in situ plasmid transfer - we isolated a rhizosphere transconjugant strain of pNAH20, P. fluorescens NS8. The plasmid pNS8, a derivative of pNAH20, lacks the ability to self-transfer as a result of an additional insertion event of ISPre2-like element that disrupts the gene coding for VirB2-like major pilus protein MpfA. The characteristics of the strain PC20 and the conjugal transfer/mobilization capacity of pNAH20 (or its backbone) make this strain/plasmid a potentially successful tool for bioremediation applications.
Collapse
Affiliation(s)
- Eeva Heinaru
- Institute of Molecular and Cell Biology, Tartu University, Tartu, Estonia
| | | | | | | | | |
Collapse
|
33
|
Pandey J, Chauhan A, Jain RK. Integrative approaches for assessing the ecological sustainability ofin situbioremediation. FEMS Microbiol Rev 2009; 33:324-75. [PMID: 19178567 DOI: 10.1111/j.1574-6976.2008.00133.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
34
|
Suzuki H, Sota M, Brown CJ, Top EM. Using Mahalanobis distance to compare genomic signatures between bacterial plasmids and chromosomes. Nucleic Acids Res 2008; 36:e147. [PMID: 18953039 PMCID: PMC2602791 DOI: 10.1093/nar/gkn753] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Plasmids are ubiquitous mobile elements that serve as a pool of many host beneficial traits such as antibiotic resistance in bacterial communities. To understand the importance of plasmids in horizontal gene transfer, we need to gain insight into the ‘evolutionary history’ of these plasmids, i.e. the range of hosts in which they have evolved. Since extensive data support the proposal that foreign DNA acquires the host's nucleotide composition during long-term residence, comparison of nucleotide composition of plasmids and chromosomes could shed light on a plasmid's evolutionary history. The average absolute dinucleotide relative abundance difference, termed δ-distance, has been commonly used to measure differences in dinucleotide composition, or ‘genomic signature’, between bacterial chromosomes and plasmids. Here, we introduce the Mahalanobis distance, which takes into account the variance–covariance structure of the chromosome signatures. We demonstrate that the Mahalanobis distance is better than the δ-distance at measuring genomic signature differences between plasmids and chromosomes of potential hosts. We illustrate the usefulness of this metric for proposing candidate long-term hosts for plasmids, focusing on the virulence plasmids pXO1 from Bacillus anthracis, and pO157 from Escherichia coli O157:H7, as well as the broad host range multi-drug resistance plasmid pB10 from an unknown host.
Collapse
Affiliation(s)
- Haruo Suzuki
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | | | | | | |
Collapse
|
35
|
Rajendhran J, Gunasekaran P. Strategies for accessing soil metagenome for desired applications. Biotechnol Adv 2008; 26:576-90. [PMID: 18786627 DOI: 10.1016/j.biotechadv.2008.08.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 08/03/2008] [Accepted: 08/05/2008] [Indexed: 11/27/2022]
Abstract
Most of the microorganisms in nature are inaccessible as they are uncultivable in the laboratory. Metagenomic approaches promise the accessibility of the genetic resources and their potential applications. Genetic resources from terrestrial environments can be accessed by exploring the soil metagenome. Soil metagenomic analyses are usually initiated by the isolation of environmental DNAs. Several methods have been described for the direct isolation of environmental DNAs from soil and sediments. Application of metagenomics largely depends on the construction of genomic DNA libraries and subsequent high-throughput sequencing or library screening. Thus, obtaining large quantities of pure cloneable DNA from the environment is a prerequisite. This review discusses the recent developments related to efficient extraction and purification of soil metagenome highlighting the considerations for various metagenomic applications.
Collapse
Affiliation(s)
- J Rajendhran
- Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai-625 021, India
| | | |
Collapse
|
36
|
Characterization of the traD operon of naphthalene-catabolic plasmid NAH7: a host-range modifier in conjugative transfer. J Bacteriol 2008; 190:6281-9. [PMID: 18676671 DOI: 10.1128/jb.00709-08] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas putida G7 carries a naphthalene-catabolic and self-transmissible plasmid, NAH7, which belongs to the IncP-9 incompatibility group. Adjacent to the putative origin of conjugative transfer (oriT) of NAH7 are three genes, traD, traE, and traF, whose functions and roles in conjugation were previously unclear. These three genes were transcribed monocistronically and thus were designated the traD operon. Mutation of the three genes in the traD operon resulted in 10- to 10(5)-fold decreases in the transfer frequencies of the plasmids from Pseudomonas to Pseudomonas and Escherichia coli and from E. coli to E. coli. On the other hand, the traD operon was essential for the transfer of NAH7 from E. coli to Pseudomonas strains. These results indicated that the traD operon is a host-range modifier in the conjugative transfer of NAH7. The TraD, TraE, and TraF proteins were localized in the cytoplasm, periplasm, and membrane, respectively, in strain G7 cells. Our use of a bacterial two-hybrid assay system showed that TraE interacted in vivo with other essential components for conjugative transfer, including TraB (coupling protein), TraC (relaxase), and MpfH (a channel subunit in the mating pair formation system).
Collapse
|
37
|
Peng RH, Xiong AS, Xue Y, Fu XY, Gao F, Zhao W, Tian YS, Yao QH. Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol Rev 2008; 32:927-55. [PMID: 18662317 DOI: 10.1111/j.1574-6976.2008.00127.x] [Citation(s) in RCA: 405] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread in various ecosystems and are pollutants of great concern due to their potential toxicity, mutagenicity and carcinogenicity. Because of their hydrophobic nature, most PAHs bind to particulates in soil and sediments, rendering them less available for biological uptake. Microbial degradation represents the major mechanism responsible for the ecological recovery of PAH-contaminated sites. The goal of this review is to provide an outline of the current knowledge of microbial PAH catabolism. In the past decade, the genetic regulation of the pathway involved in naphthalene degradation by different gram-negative and gram-positive bacteria was studied in great detail. Based on both genomic and proteomic data, a deeper understanding of some high-molecular-weight PAH degradation pathways in bacteria was provided. The ability of nonligninolytic and ligninolytic fungi to transform or metabolize PAH pollutants has received considerable attention, and the biochemical principles underlying the degradation of PAHs were examined. In addition, this review summarizes the information known about the biochemical processes that determine the fate of the individual components of PAH mixtures in polluted ecosystems. A deeper understanding of the microorganism-mediated mechanisms of catalysis of PAHs will facilitate the development of new methods to enhance the bioremediation of PAH-contaminated sites.
Collapse
Affiliation(s)
- Ri-He Peng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Insertion sequence-based cassette PCR: cultivation-independent isolation of γ-hexachlorocyclohexane-degrading genes from soil DNA. Appl Microbiol Biotechnol 2008; 79:627-32. [DOI: 10.1007/s00253-008-1463-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 03/14/2008] [Accepted: 03/18/2008] [Indexed: 10/22/2022]
|
39
|
Abstract
Antibiotics are an essential part of modern medicine. The emergence of antibiotic-resistant mutants among bacteria is seemingly inevitable, and results, within a few decades, in decreased efficacy and withdrawal of the antibiotic from widespread usage. The traditional answer to this problem has been to introduce new antibiotics that kill the resistant mutants. Unfortunately, after more than 50 years of success, the pharmaceutical industry is now producing too few antibiotics, particularly against Gram-negative organisms, to replace antibiotics that are no longer effective for many types of infection. This paper reviews possible new ways to discover novel antibiotics. The genomics route has proven to be target rich, but has not led to the introduction of a marketed antibiotic as yet. Non-culturable bacteria may be an alternative source of new antibiotics. Bacteriophages have been shown to be antibacterial in animals, and may find use in specific infectious diseases. Developing new antibiotics that target non-multiplying bacteria is another approach that may lead to drugs that reduce the emergence of antibiotic resistance and increase patient compliance by shortening the duration of antibiotic therapy. These new discovery routes have given rise to compounds that are in preclinical development, but, with one exception, have not yet entered clinical trials. For the time being, the majority of new antibiotics that reach the marketplace are likely to be structural analogues of existing families of antibiotics or new compounds, both natural and non-natural which are screened in a conventional way against live multiplying bacteria.
Collapse
|
40
|
Schlüter A, Szczepanowski R, Pühler A, Top EM. Genomics of IncP-1 antibiotic resistance plasmids isolated from wastewater treatment plants provides evidence for a widely accessible drug resistance gene pool. FEMS Microbiol Rev 2007; 31:449-77. [PMID: 17553065 DOI: 10.1111/j.1574-6976.2007.00074.x] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The dramatic spread of antibiotic resistance is a crisis in the treatment of infectious diseases that affect humans. Several studies suggest that wastewater treatment plants (WWTP) are reservoirs for diverse mobile antibiotic resistance elements. This review summarizes findings derived from genomic analysis of IncP-1 resistance plasmids isolated from WWTP bacteria. Plasmids that belong to the IncP-1 group are self-transmissible, and transfer to and replicate in a wide range of hosts. Their backbone functions are described with respect to their impact on vegetative replication, stable maintenance and inheritance, mobility and plasmid control. Accessory genetic modules, mainly representing mobile genetic elements, are integrated in-between functional plasmid backbone modules. These elements carry determinants conferring resistance to nearly all clinically relevant antimicrobial drug classes, to heavy metals, and quaternary ammonium compounds used as disinfectants. All plasmids analysed here contain integrons that potentially facilitate integration, exchange and dissemination of resistance gene cassettes. Comparative genomics of accessory modules located on plasmids from WWTP and corresponding modules previously identified in other bacterial genomes revealed that animal, human and plant pathogens and other bacteria isolated from different habitats share a common pool of resistance determinants.
Collapse
Affiliation(s)
- Andreas Schlüter
- Fakultät für Biologie, Lehrstuhl für Genetik, Universität Bielefeld, Bielefeld, Germany
| | | | | | | |
Collapse
|