1
|
Kanfra X, Wrede A, Moll J, Heuer H. Nematode-Microbe Complexes in Soils Replanted with Apple. Microorganisms 2022; 10:microorganisms10010157. [PMID: 35056606 PMCID: PMC8780120 DOI: 10.3390/microorganisms10010157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 02/01/2023] Open
Abstract
Apple replant disease is a severe problem in orchards and tree nurseries. Evidence for the involvement of a nematode–microbe disease complex was reported. To search for this complex, plots with a history of apple replanting, and control plots cultivated for the first time with apple were sampled in two fields in two years. Shoot weight drastically decreased with each replanting. Amplicon sequencing of the nematode community and co-extracted fungal and bacterial communities revealed significant differences between replanted and control plots. Free-living nematodes of the genera Aphelenchus and Cephalenchus and an unidentified Dorylaimida were associated with replanted plots, as indicated by linear discriminant analysis effect size. Among the co-extracted fungi and bacteria, Mortierella and Methylotenera were most indicative of replanting. Some genera, mostly Rhabditis, Streptomyces and a fungus belonging to the Chaetomiaceae indicated healthy control plots. Isolating and investigating the putative disease complexes will help to understand and alleviate stress-induced root damage of apple in replanted soil.
Collapse
Affiliation(s)
- Xorla Kanfra
- Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, 38104 Braunschweig, Germany;
| | - Andreas Wrede
- Department of Horticulture, Landwirtschaftskammer Schleswig-Holstein, 25373 Ellerhoop, Germany;
| | - Julia Moll
- Helmholtz Centre for Environmental Research—UFZ, Department of Soil Ecology, 06120 Halle (Saale), Germany;
| | - Holger Heuer
- Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, 38104 Braunschweig, Germany;
- Correspondence:
| |
Collapse
|
2
|
Zhang Y, Li S, Li H, Wang R, Zhang KQ, Xu J. Fungi-Nematode Interactions: Diversity, Ecology, and Biocontrol Prospects in Agriculture. J Fungi (Basel) 2020; 6:E206. [PMID: 33020457 PMCID: PMC7711821 DOI: 10.3390/jof6040206] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 01/27/2023] Open
Abstract
Fungi and nematodes are among the most abundant organisms in soil habitats. They provide essential ecosystem services and play crucial roles for maintaining the stability of food-webs and for facilitating nutrient cycling. As two of the very abundant groups of organisms, fungi and nematodes interact with each other in multiple ways. Here in this review, we provide a broad framework of interactions between fungi and nematodes with an emphasis on those that impact crops and agriculture ecosystems. We describe the diversity and evolution of fungi that closely interact with nematodes, including food fungi for nematodes as well as fungi that feed on nematodes. Among the nematophagous fungi, those that produce specialized nematode-trapping devices are especially interesting, and a great deal is known about their diversity, evolution, and molecular mechanisms of interactions with nematodes. Some of the fungi and nematodes are significant pathogens and pests to crops. We summarize the ecological and molecular mechanisms identified so far that impact, either directly or indirectly, the interactions among phytopathogenic fungi, phytopathogenic nematodes, and crop plants. The potential applications of our understanding to controlling phytophagous nematodes and soilborne fungal pathogens in agricultural fields are discussed.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (S.L.); (H.L.); (R.W.)
| | - Shuoshuo Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (S.L.); (H.L.); (R.W.)
- School of Life Science, Yunnan University, Kunming 650032, China
| | - Haixia Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (S.L.); (H.L.); (R.W.)
- School of Life Science, Yunnan University, Kunming 650032, China
| | - Ruirui Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (S.L.); (H.L.); (R.W.)
- School of Life Science, Yunnan University, Kunming 650032, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (S.L.); (H.L.); (R.W.)
| | - Jianping Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (S.L.); (H.L.); (R.W.)
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
3
|
Haarith D, Bushley KE, Chen S. Fungal communities associated with Heterodera glycines and their potential in biological control: a current update. J Nematol 2020; 52:1-17. [PMID: 32180383 PMCID: PMC7266048 DOI: 10.21307/jofnem-2020-022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Indexed: 11/11/2022] Open
Abstract
The soybean cyst nematode (SCN) is the most important pest on soybean, a major crop worldwide. The SCN is considered both parasitic and pathogenic as it derives nutrition from the host and manipulates host physiology to do so. Currently, there are no commercially available chemicals that are specific, environmentally safe and cost effective to control SCN levels. Crop rotation, use of host resistance and other cultural practices remain the main management strategies. The need for bioprospecting other methods of controlling SCN is paramount, and fungi show promise in that respect. Several studies have evaluated fungi and fungal products as biocontrol options against plant-parasitic nematodes. This review discusses fungal genera isolated from the SCN with potential for use as biocontrol agents and the effects of their secondary metabolites on various stages of SCN development. The review also summarizes efforts to control SCN using soil amendments that could potentially impact fungal communities in the soil. The soybean cyst nematode (SCN) is the most important pest on soybean, a major crop worldwide. The SCN is considered both parasitic and pathogenic as it derives nutrition from the host and manipulates host physiology to do so. Currently, there are no commercially available chemicals that are specific, environmentally safe and cost effective to control SCN levels. Crop rotation, use of host resistance and other cultural practices remain the main management strategies. The need for bioprospecting other methods of controlling SCN is paramount, and fungi show promise in that respect. Several studies have evaluated fungi and fungal products as biocontrol options against plant-parasitic nematodes. This review discusses fungal genera isolated from the SCN with potential for use as biocontrol agents and the effects of their secondary metabolites on various stages of SCN development. The review also summarizes efforts to control SCN using soil amendments that could potentially impact fungal communities in the soil.
Collapse
Affiliation(s)
- Deepak Haarith
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
| | - Kathryn E. Bushley
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108
| | - Senyu Chen
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
| |
Collapse
|
4
|
Kumar KK. Fungi: A Bio-resource for the Control of Plant Parasitic Nematodes. Fungal Biol 2020. [DOI: 10.1007/978-3-030-48474-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Toju H, Tanaka Y. Consortia of anti-nematode fungi and bacteria in the rhizosphere of soybean plants attacked by root-knot nematodes. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181693. [PMID: 31032023 PMCID: PMC6458363 DOI: 10.1098/rsos.181693] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/21/2019] [Indexed: 06/01/2023]
Abstract
Cyst and root-knot nematodes are major risk factors of agroecosystem management, often causing devastating impacts on crop production. The use of microbes that parasitize or prey on nematodes has been considered as a promising approach for suppressing phytopathogenic nematode populations. However, effects and persistence of those biological control agents often vary substantially depending on regions, soil characteristics and agricultural practices: more insights into microbial community processes are required to develop reproducible control of nematode populations. By performing high-throughput sequencing profiling of bacteria and fungi, we examined how root and soil microbiomes differ between benign and nematode-infected plant individuals in a soybean field in Japan. Results indicated that various taxonomic groups of bacteria and fungi occurred preferentially on the soybean individuals infected by root-knot nematodes or those uninfected by nematodes. Based on a network analysis of potential microbe-microbe associations, we further found that several fungal taxa potentially preying on nematodes (Dactylellina (Orbiliales), Rhizophydium (Rhizophydiales), Clonostachys (Hypocreales), Pochonia (Hypocreales) and Purpureocillium (Hypocreales)) co-occurred in the soybean rhizosphere at a small spatial scale. This study suggests how 'consortia' of anti-nematode microbes can derive from indigenous (resident) microbiomes, providing basic information for managing anti-nematode microbial communities in agroecosystems.
Collapse
Affiliation(s)
- Hirokazu Toju
- Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2133, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Yu Tanaka
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo, Kyoto 606-8502, Japan
| |
Collapse
|
6
|
Chen D, Wang D, Xu C, Chen C, Li J, Wu W, Huang X, Xie H. Nematicidal protease genes screened from a soil metagenomic library to control Radopholus similis mediated by Pseudomonas fluorescens pf36. Appl Microbiol Biotechnol 2018; 102:3301-3314. [DOI: 10.1007/s00253-018-8869-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/25/2018] [Accepted: 02/10/2018] [Indexed: 12/01/2022]
|
7
|
RNA-Seq reveals the molecular mechanism of trapping and killing of root-knot nematodes by nematode-trapping fungi. World J Microbiol Biotechnol 2017; 33:65. [DOI: 10.1007/s11274-017-2232-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 02/17/2017] [Indexed: 12/22/2022]
|
8
|
Tzean Y, Chou TH, Hsiao CC, Shu PY, Walton JD, Tzean SS. Cloning and characterization of cuticle-degrading serine protease from nematode-trapping fungus Arthrobotrys musiformis. MYCOSCIENCE 2016. [DOI: 10.1016/j.myc.2015.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Acevedo-Ramírez PMDC, Figueroa-Castillo JA, Ulloa-Arvizú R, Martínez-García LG, Guevara-Flores A, Rendón JL, Valero-Coss RO, Mendoza-de Gives P, Quiroz-Romero H. Proteolytic activity of extracellular products from Arthrobotrys musiformis and their effect in vitro against Haemonchus contortus infective larvae. Vet Rec Open 2015; 2:e000103. [PMID: 26392902 PMCID: PMC4567159 DOI: 10.1136/vetreco-2014-000103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 02/05/2015] [Accepted: 03/03/2015] [Indexed: 11/29/2022] Open
Abstract
Arthrobotrys musiformis is a nematophagous fungus with potential for the biological control of Haemonchus contortus larvae. This study aimed to identify and demonstrate the proteolytic activity of extracellular products from A musiformis cultured in a liquid medium against H contortus infective larvae. A musiformis was cultured on a solid medium and further grown in a liquid medium, which was then processed through ion exchange and hydrophobic interaction chromatography. The proteolytic activity of the purified fraction was assayed with either gelatin or bovine serum albumin as substrate. Optimum proteolytic activity was observed at pH 8 and a temperature of 37°C. Results obtained with specific inhibitors suggest the enzyme belongs to the serine-dependent protease family. The purified fraction concentrate from A musiformis was tested against H contortus infective larvae. A time-dependent effect was observed with 77 per cent immobility after 48 hours incubation, with alteration of the sheath. It is concluded that Amusiformis is a potential candidate for biological control because of its resistant structures and also because of its excretion of extracellular products such as proteases. The present study contributes to the identification of one of the in vitro mechanisms of action of Amusiformis, namely the extracellular production of proteases against H contortus infective larvae. More investigations should be undertaken into how these products could be used to decrease the nematode population in sheep flocks under field conditions, thereby improving animal health while simultaneously diminishing the human and environmental impact of chemical-based drugs.
Collapse
Affiliation(s)
- Perla María Del Carmen Acevedo-Ramírez
- Facultad de Medicina Veterinaria y Zootecnia , Universidad Nacional Autónoma de México, Col. Universidad Nacional Autónoma de México , Coyoacán, Distrito Federal , México
| | - Juan Antonio Figueroa-Castillo
- Facultad de Medicina Veterinaria y Zootecnia , Universidad Nacional Autónoma de México, Col. Universidad Nacional Autónoma de México , Coyoacán, Distrito Federal , México
| | - Raúl Ulloa-Arvizú
- Facultad de Medicina Veterinaria y Zootecnia , Universidad Nacional Autónoma de México, Col. Universidad Nacional Autónoma de México , Coyoacán, Distrito Federal , México
| | - Luz Gisela Martínez-García
- Facultad de Medicina , Universidad Nacional Autónoma de México, Av. Universidad 3000, Col. Universidad Nacional Autónoma de México , Coyoacán, Distrito Federal , México
| | - Alberto Guevara-Flores
- Facultad de Medicina , Universidad Nacional Autónoma de México, Av. Universidad 3000, Col. Universidad Nacional Autónoma de México , Coyoacán, Distrito Federal , México
| | - Juan Luis Rendón
- Facultad de Medicina , Universidad Nacional Autónoma de México, Av. Universidad 3000, Col. Universidad Nacional Autónoma de México , Coyoacán, Distrito Federal , México
| | - Rosa Ofelia Valero-Coss
- Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Cenid-Pavet. Carretera Federal Cuernavaca-Cuautla , Jiutepec, Morelos , México
| | - Pedro Mendoza-de Gives
- Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Cenid-Pavet. Carretera Federal Cuernavaca-Cuautla , Jiutepec, Morelos , México
| | - Héctor Quiroz-Romero
- Facultad de Medicina Veterinaria y Zootecnia , Universidad Nacional Autónoma de México, Col. Universidad Nacional Autónoma de México , Coyoacán, Distrito Federal , México
| |
Collapse
|
10
|
Destructin-1 is a collagen-degrading endopeptidase secreted by Pseudogymnoascus destructans, the causative agent of white-nose syndrome. Proc Natl Acad Sci U S A 2015; 112:7478-83. [PMID: 25944934 DOI: 10.1073/pnas.1507082112] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pseudogymnoascus destructans is the causative agent of white-nose syndrome, a disease that has caused the deaths of millions of bats in North America. This psychrophilic fungus proliferates at low temperatures and targets hibernating bats, resulting in their premature arousal from stupor with catastrophic consequences. Despite the impact of white-nose syndrome, little is known about the fungus itself or how it infects its mammalian host. P. destructans is not amenable to genetic manipulation, and therefore understanding the proteins involved in infection requires alternative approaches. Here, we identify hydrolytic enzymes secreted by P. destructans, and use a novel and unbiased substrate profiling technique to define active peptidases. These experiments revealed that endopeptidases are the major proteolytic activities secreted by P. destructans, and that collagen, the major structural protein in mammals, is actively degraded by the secretome. A serine endopeptidase, hereby-named Destructin-1, was subsequently identified, and a recombinant form overexpressed and purified. Biochemical analysis of Destructin-1 showed that it mediated collagen degradation, and a potent inhibitor of peptidase activity was identified. Treatment of P. destructans-conditioned media with this antagonist blocked collagen degradation and facilitated the detection of additional secreted proteolytic activities, including aminopeptidases and carboxypeptidases. These results provide molecular insights into the secretome of P. destructans, and identify serine endopeptidases that have the clear potential to facilitate tissue invasion and pathogenesis in the mammalian host.
Collapse
|
11
|
Cruz DG, Costa LM, Rocha LO, Retamal CA, Vieira RAM, Seabra SH, Silva CP, DaMatta RA, Santos CP. Serine proteases activity is important for the interaction of nematophagous fungus Duddingtonia flagrans with infective larvae of trichostrongylides and free-living nematodes Panagrellus spp. Fungal Biol 2015; 119:672-8. [PMID: 26228558 DOI: 10.1016/j.funbio.2015.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 11/26/2022]
Abstract
The nematode-trapping fungus Duddingtonia flagrans has been studied as a possible control method for gastrointestinal nematodes of livestock animals. These fungi capture and infect the nematode by cuticle penetration, immobilization, and digestion of the internal contents. It has been suggested that this sequence of events occurs by a combination of physical and enzymatical activities. The aim of this study was to investigate the participation of proteolytic enzymatic activity during the interaction of the nematophagous fungus D. flagrans with infective larvae of trichostrongylides and the free-living nematode Panagrellus spp. Protease inhibitors used interfered in the predatory activity of D. flagrans. However, only PMSF significantly reduced the mean number of Panagrellus spp. captured by D. flagrans in comparison with the control. The experiment with fluorogenic substrate showed that maximum urokinase activity during the interaction of the fungus with the infective larvae of trichostrongylides or Panagrellus spp. occurred within 7 or 1 h of incubation, respectively. The protease activity, especially of the serine class, may be important during the interaction between the fungus and nematodes.
Collapse
Affiliation(s)
- Daniela G Cruz
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Avenida Alberto Lamego, 2000, Parque Califórnia, CEP 28013602, Campos dos Goytacazes, Rio de Janeiro, Brazil; Laboratório de Tecnologia em Bioquímica e Microscopia, Centro de Ciências Biológicas e da Saúde, Centro Universitário Estadual da Zona Oeste, Avenida Manuel Caldeira de Alvarenga, 1203, Campo Grande, Rio de Janeiro, RJ, CEP 23070-200, Brazil
| | - Luana M Costa
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Avenida Alberto Lamego, 2000, Parque Califórnia, CEP 28013602, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Letícia O Rocha
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Avenida Alberto Lamego, 2000, Parque Califórnia, CEP 28013602, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Claudio A Retamal
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Avenida Alberto Lamego, 2000, Parque Califórnia, CEP 28013602, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Ricardo A M Vieira
- Laboratório de Zootecnia e Nutrição Animal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Avenida Alberto Lamego, 2000, Parque Califórnia, CEP 28013602, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Sergio H Seabra
- Laboratório de Tecnologia em Bioquímica e Microscopia, Centro de Ciências Biológicas e da Saúde, Centro Universitário Estadual da Zona Oeste, Avenida Manuel Caldeira de Alvarenga, 1203, Campo Grande, Rio de Janeiro, RJ, CEP 23070-200, Brazil
| | - Carlos P Silva
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Reitor João David Ferreira Lima, s/n, Trindade, CEP 88040-900, Florianópolis, Santa Catarina, Brazil
| | - Renato A DaMatta
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Avenida Alberto Lamego, 2000, Parque Califórnia, CEP 28013602, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Clóvis P Santos
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Avenida Alberto Lamego, 2000, Parque Califórnia, CEP 28013602, Campos dos Goytacazes, Rio de Janeiro, Brazil.
| |
Collapse
|
12
|
Li J, Zou C, Xu J, Ji X, Niu X, Yang J, Huang X, Zhang KQ. Molecular mechanisms of nematode-nematophagous microbe interactions: basis for biological control of plant-parasitic nematodes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2015; 53:67-95. [PMID: 25938277 DOI: 10.1146/annurev-phyto-080614-120336] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plant-parasitic nematodes cause significant damage to a broad range of vegetables and agricultural crops throughout the world. As the natural enemies of nematodes, nematophagous microorganisms offer a promising approach to control the nematode pests. Some of these microorganisms produce traps to capture and kill the worms from the outside. Others act as internal parasites to produce toxins and virulence factors to kill the nematodes from within. Understanding the molecular basis of microbe-nematode interactions provides crucial insights for developing effective biological control agents against plant-parasitic nematodes. Here, we review recent advances in our understanding of the interactions between nematodes and nematophagous microorganisms, with a focus on the molecular mechanisms by which nematophagous microorganisms infect nematodes and on the nematode defense against pathogenic attacks. We conclude by discussing several key areas for future research and development, including potential approaches to apply our recent understandings to develop effective biocontrol strategies.
Collapse
Affiliation(s)
- Juan Li
- Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, 650091, China;
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Nematicidal enzymes from microorganisms and their applications. Appl Microbiol Biotechnol 2013; 97:7081-95. [DOI: 10.1007/s00253-013-5045-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/05/2013] [Accepted: 06/07/2013] [Indexed: 01/07/2023]
|
14
|
Yang J, Yu Y, Li J, Zhu W, Geng Z, Jiang D, Wang Y, Zhang KQ. Characterization and functional analyses of the chitinase-encoding genes in the nematode-trapping fungus Arthrobotrys oligospora. Arch Microbiol 2013; 195:453-62. [PMID: 23661195 DOI: 10.1007/s00203-013-0894-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/08/2013] [Accepted: 04/11/2013] [Indexed: 01/17/2023]
Abstract
Nematode-trapping fungi can secrete many extracellular hydrolytic enzymes such as serine proteases and chitinases to digest and penetrate nematode/egg-cuticles. However, little is known about the structure and function of chitinases in these fungi. In this study, 16 ORFs encoding putative chitinases, which all belong to glycoside hydrolase (GH) family 18, were identified from the Arthrobotrys oligospora genome. Bioinformatics analyses showed that these 16 putative chitinases differ in their functional domains, molecular weights and pI. Phylogenetic analysis grouped these A. oligospora chitinases into four clades: clades I, II, III and IV, respectively, including an A. oligospora-specific subclade (Clade IV-B) that contained high-molecular weight chitinases (≥100 kDa). Transcriptional analysis of A. oligospora chitinases suggested that the expression of most chitinases was repressed by carbon starvation, and all chitinases were up-regulated under nitrogen starvation. However, chitinase AO-190 was up-regulated under carbon and/or nitrogen starvation. Moreover, several chitinases (such as AO-59, AO-190 and AO-801) were up-regulated in the presence of chitinous substrates or a plant pathogenic fungus, indicating that they could play a role in biocontrol applications of A. oligospora. Our results provided a basis for further understanding the functions, diversities and evolutionary relationships between chitinase genes in nematode-trapping fungi.
Collapse
Affiliation(s)
- Jinkui Yang
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, Kunming 650091, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Purification and characterization of a new alkaline serine protease from the thermophilic fungus Myceliophthora sp. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.08.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Niu XM, Zhang KQ. Arthrobotrys oligospora: a model organism for understanding the interaction between fungi and nematodes. Mycology 2011. [DOI: 10.1080/21501203.2011.562559] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Xue-Mei Niu
- a Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education , Yunnan University , Kunming, 650091, China
| | - Ke-Qin Zhang
- a Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education , Yunnan University , Kunming, 650091, China
| |
Collapse
|
17
|
Cloning, expression, and characterization of serine protease from thermophilic fungus Thermoascus aurantiacus var. levisporus. J Microbiol 2011; 49:121-9. [DOI: 10.1007/s12275-011-9355-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 09/02/2010] [Indexed: 10/18/2022]
|
18
|
Zou CG, Tao N, Liu WJ, Yang JK, Huang XW, Liu XY, Tu HH, Gan ZW, Zhang KQ. Regulation of subtilisin-like protease prC expression by nematode cuticle in the nematophagous fungus Clonostachys rosea. Environ Microbiol 2010; 12:3243-52. [DOI: 10.1111/j.1462-2920.2010.02296.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Zou CG, Xu YF, Liu WJ, Zhou W, Tao N, Tu HH, Huang XW, Yang JK, Zhang KQ. Expression of a serine protease gene prC is up-regulated by oxidative stress in the fungus Clonostachys rosea: implications for fungal survival. PLoS One 2010; 5:e13386. [PMID: 20976223 PMCID: PMC2954792 DOI: 10.1371/journal.pone.0013386] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 09/20/2010] [Indexed: 01/07/2023] Open
Abstract
Background Soil fungi face a variety of environmental stresses such as UV light, high temperature, and heavy metals. Adaptation of gene expression through transcriptional regulation is a key mechanism in fungal response to environmental stress. In Saccharomyces cerevisiae, the transcription factors Msn2/4 induce stress-mediated gene expression by binding to the stress response element. Previous studies have demonstrated that the expression of extracellular proteases is up-regulated in response to heat shock in fungi. However, the physiological significance of regulation of these extracellular proteases by heat shock remains unclear. The nematophagous fungus Clonostachys rosea can secret an extracellular serine protease PrC during the infection of nematodes. Since the promoter of prC has three copies of the stress response element, we investigated the effect of environmental stress on the expression of prC. Methodology/Principal Findings Our results demonstrated that the expression of prC was up-regulated by oxidants (H2O2 or menadione) and heat shock, most likely through the stress response element. After oxidant treatment or heat shock, the germination of conidia in the wild type strain was significantly higher than that in the prC mutant strain in the presence of nematode cuticle. Interestingly, the addition of nematode cuticle significantly attenuated the production of reactive oxygen species (ROS) induced by oxidants and heat shock in the wild type strain, but not in prC mutant strain. Moreover, low molecule weight (<3 kD) degradation products of nematode cuticle suppressed the inhibitory effect of conidial germination induced by oxidants and heat shock. Conclusions/Significance These results indicate that PrC plays a protective role in oxidative stress in C. rosea. PrC degrades the nematode cuticle to produce degradation products, which in turn offer a protective effect against oxidative stress by scavenging ROS. Our study reveals a novel strategy for fungi to adapt to environmental stress.
Collapse
Affiliation(s)
- Cheng-Gang Zou
- Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, China
| | - Yong-Fang Xu
- Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, China
- Center for Human Reproduction, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Wen-Jing Liu
- Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, China
| | - Wei Zhou
- Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, China
| | - Nan Tao
- Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, China
| | - Hui-Hui Tu
- Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, China
| | - Xiao-Wei Huang
- Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, China
| | - Jin-Kui Yang
- Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, China
| | - Ke-Qin Zhang
- Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, China
- * E-mail:
| |
Collapse
|
20
|
Li AN, Li DC. Cloning, expression and characterization of the serine protease gene from Chaetomium thermophilum. J Appl Microbiol 2010; 106:369-80. [PMID: 19200305 DOI: 10.1111/j.1365-2672.2008.04042.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS Microbial proteases play an essential role in scientific research and commercial applications. This study is to clone, sequence, and express a thermostable protease gene from the thermophilic fungi Chaetomium thermophilum and to generate yeast strains expressing C. thermophilum protease suitable for industrial applications. METHODS AND RESULTS Degenerate primers were designed based on the conserved domain of other identified serine proteases and cDNA fragment of C. thermophilum gene pro was obtained through reverse transcriptase-polymerase chain reaction (RT-PCR). The full-length cDNA of 2007 bp was generated using RACE amplification. The cDNA contains an open reading frame of 1596 bp encoding 532 amino acids. Sequence analysis of the deduced amino acid sequence revealed high homology with the catalytic domains of the subtilisin serine proteases. The C. thermophilum gene pro was expressed in Escherichia coli BL21 (DE3) and Pichia pastoris, respectively and soluble protein was obtained in P. pastoris. The expressed protease was secreted into the culture medium by the yeast in a functional active form and the purified recombinant protease exhibits optimum catalytic activity at pH 8.0 and 60 degrees C. The enzyme is stable at 60 degrees C. The integration of gene pro into P. pastoris genome is stable after 10 generations and the yeast transformants showed a consistent protease expression. CONCLUSIONS Gene pro encoding a serine protease from C. thermophilum was cloned, sequenced, and overexpressed successfully in P. pastoris. The expressed protease was purified and the properties of the recombinant protease are characterized. SIGNIFICANCE AND IMPACT OF THE STUDY Chaetomium thermophilum is a soil-borne thermophilic fungus and the protease cloned from it is stable in a high temperature and a wide rage of pH. The overexpression of the enzyme in a mesophilic micro-organism offers a potential value for scientific research and commercial applications.
Collapse
Affiliation(s)
- A-N Li
- Department of Environmental Biology, Shandong Agricultural University, Taian, Shandong, China
| | | |
Collapse
|
21
|
Li J, Yu L, Yang J, Dong L, Tian B, Yu Z, Liang L, Zhang Y, Wang X, Zhang K. New insights into the evolution of subtilisin-like serine protease genes in Pezizomycotina. BMC Evol Biol 2010; 10:68. [PMID: 20211028 PMCID: PMC2848655 DOI: 10.1186/1471-2148-10-68] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 03/09/2010] [Indexed: 11/28/2022] Open
Abstract
Background Subtilisin-like serine proteases play an important role in pathogenic fungi during the penetration and colonization of their hosts. In this study, we perform an evolutionary analysis of the subtilisin-like serine protease genes of subphylum Pezizomycotina to find if there are similar pathogenic mechanisms among the pathogenic fungi with different life styles, which utilize subtilisin-like serine proteases as virulence factors. Within Pezizomycotina, nematode-trapping fungi are unique because they capture soil nematodes using specialized trapping devices. Increasing evidence suggests subtilisin-like serine proteases from nematode-trapping fungi are involved in the penetration and digestion of nematode cuticles. Here we also conduct positive selection analysis on the subtilisin-like serine protease genes from nematode-trapping fungi. Results Phylogenetic analysis of 189 subtilisin-like serine protease genes from Pezizomycotina suggests five strongly-supported monophyletic clades. The subtilisin-like serine protease genes previously identified or presumed as endocellular proteases were clustered into one clade and diverged the earliest in the phylogeny. In addition, the cuticle-degrading protease genes from entomopathogenic and nematode-parasitic fungi were clustered together, indicating that they might have overlapping pathogenic mechanisms against insects and nematodes. Our experimental bioassays supported this conclusion. Interestingly, although they both function as cuticle-degrading proteases, the subtilisin-like serine protease genes from nematode-trapping fungi and nematode-parasitic fungi were not grouped together in the phylogenetic tree. Our evolutionary analysis revealed evidence for positive selection on the subtilisin-like serine protease genes of the nematode-trapping fungi. Conclusions Our study provides new insights into the evolution of subtilisin-like serine protease genes in Pezizomycotina. Pezizomycotina subtilisins most likely evolved from endocellular to extracellular proteases. The entomopathogenic and nematode-parasitic fungi likely share similar properties in parasitism. In addition, our data provided better understanding about the duplications and subsequent functional divergence of subtilisin-like serine protease genes in Pezizomycotina. The evidence of positive selection detected in the subtilisin-like serine protease genes of nematode-trapping fungi in the present study suggests that the subtilisin-like serine proteases may have played important roles during the evolution of pathogenicity of nematode-trapping fungi against nematodes.
Collapse
Affiliation(s)
- Juan Li
- Laboratory for Conservation and Utilization of Bio-resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, 650091, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Huang X, Liu J, Ding J, He Q, Xiong R, Zhang K. The investigation of nematocidal activity in Stenotrophomonas maltophilia G2 and characterization of a novel virulence serine protease. Can J Microbiol 2009; 55:934-42. [DOI: 10.1139/w09-045] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Gram-negative bacterium Stenotrophomonas maltophilia G2 was isolated from a soil sample and was found to have high nematotoxic activity against a free-living nematode, Panagrellus redivivus, and a plant-parasitic nematode, Bursaphelenchus xylophilus . The analysis of virulence factors revealed that although the small molecular metabolites participated in nematode killing, the crude extracellular protein extract from the bacterial culture supernatant contributed significantly to its nematocidal activity. An extracellular protease was purified by chromatography, and its effects on degrading purified nematode cuticle and killing living nematodes were confirmed experimentally. Characterization of this purified protease revealed that the application of phenylmethylsulphonyl fluoride, an inhibitor of serine proteases, could completely abolish its proteolytic activity. The results from N-terminal amino acid sequencing showed no similarity with any known serine protease in S. maltophilia, suggesting a novel virulence serine protease was obtained. Our study is the first to show the nematocidal activity of S. maltophilia, and we identified a novel serine protease as an important pathogenicity factor.
Collapse
Affiliation(s)
- Xiaowei Huang
- Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, PR China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Junwei Liu
- Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, PR China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Junmei Ding
- Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, PR China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Qiusheng He
- Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, PR China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Rui Xiong
- Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, PR China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Keqin Zhang
- Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, PR China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|