1
|
Soares KO, Da Rocha TF, Hale VL, Vasconcelos PC, do Nascimento LJ, da Silva NMV, Rodrigues AE, de Oliveira CJB. Comparing the impact of landscape on the gut microbiome of Apis mellifera in Atlantic Forest and Caatinga Biomes. Sci Rep 2025; 15:5293. [PMID: 39939365 PMCID: PMC11822208 DOI: 10.1038/s41598-025-85114-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/01/2025] [Indexed: 02/14/2025] Open
Abstract
The composition of the gut microbiota in animals can be influenced by a variety of intrinsic and extrinsic factors in the host, such as diet, physiological state, and genetics. This study aimed to compare the structural composition of the gut microbiota of Apis mellifera bees from two distinct Brazilian biomes, the Atlantic Forest and the Caatinga, using high throughput 16 S rRNA sequencing. We identified a core microbiota composed of seven genera present in all samples: Lactobacillus, Commensalibacter, Rhizobiaceae, Snodgrassella, Gilliamella, Orbaceae and Bifidobacterium. These taxa accounted for 63% of all bacterial genera in the dataset. Interestingly, we observed a significantly differential abundance of the genus Apibacter between bees from the two biomes, with a marked increase in bees from Atlantic Forest. However, the overall variance in the gut structural composition attributable to landscape type, while significant, was relatively low. Notably, none of the members of the core microbiota were differently abundant between the biomes. Understanding the magnitude of landscape-associated effects on the microbiota of bees in different biomes is crucial for the accurate assessment of the impact of anthropogenic factors. These findings provide important insights into the resilience and adaptability of the honey bee gut microbiome across contrasting environments, contributing to the development of conservation and sustainable management strategies for these essential pollinators.
Collapse
Affiliation(s)
- Kilmer Oliveira Soares
- Department of Animal Science, College of Agricultural Sciences (CCA), Federal University of Paraíba (UFPB), Areia, 58397-000, Paraiba, Brazil
| | - Thamara Ferreira Da Rocha
- Department of Animal Science, College of Agricultural Sciences (CCA), Federal University of Paraíba (UFPB), Areia, 58397-000, Paraiba, Brazil
| | - Vanessa L Hale
- Department of Preventive Veterinary Medicine, Ohio State University, Coffey Rd., Columbus, OH, 43210, USA.
| | - Priscylla Carvalho Vasconcelos
- Department of Animal Science, College of Agricultural Sciences (CCA), Federal University of Paraíba (UFPB), Areia, 58397-000, Paraiba, Brazil
| | - Letícia José do Nascimento
- Postgraduate Program in Animal Science at the Federal Rural University of Pernambuco - UFRPE, Recife, Brazil
| | | | - Adriana Evangelista Rodrigues
- Department of Animal Science, College of Agricultural Sciences (CCA), Federal University of Paraíba (UFPB), Areia, 58397-000, Paraiba, Brazil
| | - Celso José Bruno de Oliveira
- Department of Animal Science, College of Agricultural Sciences (CCA), Federal University of Paraíba (UFPB), Areia, 58397-000, Paraiba, Brazil.
| |
Collapse
|
2
|
Porras MF, Raygoza Garay JA, Brought M, López-Londoño T, Chautá A, Crone M, Rajotte EG, Phan N, Joshi NK, Peter K, Biddinger D. Fungicide ingestion reduces net energy gain and microbiome diversity of the solitary mason bee. Sci Rep 2024; 14:3229. [PMID: 38332135 PMCID: PMC10853529 DOI: 10.1038/s41598-024-53935-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 02/06/2024] [Indexed: 02/10/2024] Open
Abstract
Fungicides are frequently used during tree fruit bloom and can threaten insect pollinators. However, little is known about how non-honey bee pollinators such as the solitary bee, Osmia cornifrons, respond to contact and systemic fungicides commonly used in apple production during bloom. This knowledge gap limits regulatory decisions that determine safe concentrations and timing for fungicide spraying. We evaluated the effects of two contact fungicides (captan and mancozeb) and four translaminar/plant systemic fungicides (cyprodinil, myclobutanil, penthiopyrad, and trifloxystrobin) on larval weight gain, survival, sex ratio, and bacterial diversity. This assessment was carried out using chronic oral ingestion bioassays where pollen provisions were treated with three doses based on the currently recommended field use dose (1X), half dose (0.5X), and low dose (0.1X). Mancozeb and penthiopyrad significantly reduced larval weight and survival at all doses. We then sequenced the 16S gene to characterize the larvae bacteriome of mancozeb, the fungicide that caused the highest mortality. We found that larvae fed on mancozeb-treated pollen carried significantly lower bacterial diversity and abundance. Our laboratory results suggest that some of these fungicides can be particularly harmful to the health of O. cornifrons when sprayed during bloom. This information is relevant for future management decisions about the sustainable use of fruit tree crop protection products and informing regulatory processes that aim to protect pollinators.
Collapse
Affiliation(s)
- Mitzy F Porras
- Department of Entomology, The Pennsylvania State University, 501 ASI Bldg, University Park, USA.
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA, 94132, USA.
| | - Juan Antonio Raygoza Garay
- Department of Communication Sciences and Disorders, Holden Comprehensive Cancer Center, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, USA
| | - Malachi Brought
- Department of Entomology, The Pennsylvania State University, 501 ASI Bldg, University Park, USA
| | - Tomas López-Londoño
- Department of Biology, The Pennsylvania State University, 208 Mueller Lab, University Park, PA16802, USA
| | - Alexander Chautá
- Department of Ecology, Cornell University, Ithaca, NY, 14850, USA
| | - Makaylee Crone
- Center for Pollinator Research, Intercollege Graduate Program in Ecology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA16802, USA
| | - Edwin G Rajotte
- Department of Entomology, The Pennsylvania State University, 501 ASI Bldg, University Park, USA
| | - Ngoc Phan
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Neelendra K Joshi
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Kari Peter
- Department of Plant Pathology and Environmental Microbiology, Fruit Research and Extension Center, Pennsylvania State University, 290 University Dr., Biglerville, PA, 17307, USA
| | - David Biddinger
- Department of Entomology, Fruit Research and Extension Center, 290 University Dr., Biglerville, PA, 17307, USA
| |
Collapse
|
3
|
Castelli L, Branchiccela B, Zunino P, Antúnez K. Insights into the effects of sublethal doses of pesticides glufosinate-ammonium and sulfoxaflor on honey bee health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161331. [PMID: 36623662 DOI: 10.1016/j.scitotenv.2022.161331] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Insect pollinators are threatened worldwide, being the exposure to multiple pesticides one of the most important stressor. The herbicide Glyphosate and the insecticide Imidacloprid are among the most used pesticides worldwide, although different studies evidenced their detrimental effects on non-target organisms. The emergence of glyphosate-resistant weeds and the recent ban of imidacloprid in Europe due to safety concerns, has prompted their replacement by new molecules, such as glufosinate-ammonium (GA) and sulfoxaflor (S). GA is a broad-spectrum and non-selective herbicide that inhibits a key enzyme in the metabolism of nitrogen, causing accumulation of lethal levels of ammonia; while sulfoxaflor is an agonist at insect nicotinic acetylcholine receptors (nAChRs) and generates excitatory responses including tremors, paralysis and mortality. Although those molecules are being increasingly used for crop protection, little is known about their effects on non-target organisms. In this study we assessed the impact of chronic and acute exposure to sublethal doses of GA and S on honey bee gut microbiota, immunity and survival. We found GA significantly reduced the number of gut bacteria, and decreased the expression of glucose oxidase, a marker of social immunity. On the other hand, S significantly increased the number of gut bacteria altering the microbiota composition, decreased the expression of lysozyme and increased the expression of hymenoptaecin. These alterations in gut microbiota and immunocompetence may lead to an increased susceptibility to pathogens. Finally, both pesticides shortened honey bee survival and increased the risk of death. Those results evidence the negative impact of GA and S on honey bees, even at single exposition to a low dose, and provide useful information to the understanding of pollinators decline.
Collapse
Affiliation(s)
- Loreley Castelli
- Laboratorio de Microbiología y Salud de las Abejas, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avda. Italia 3318, Montevideo 11600, Uruguay
| | - Belén Branchiccela
- Sección Apicultura, Instituto Nacional de Investigación Agropecuaria, Colonia 70006, Uruguay
| | - Pablo Zunino
- Laboratorio de Microbiología y Salud de las Abejas, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avda. Italia 3318, Montevideo 11600, Uruguay
| | - Karina Antúnez
- Laboratorio de Microbiología y Salud de las Abejas, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avda. Italia 3318, Montevideo 11600, Uruguay.
| |
Collapse
|
4
|
Philips JG, Martin-Avila E, Robold AV. Horizontal gene transfer from genetically modified plants - Regulatory considerations. Front Bioeng Biotechnol 2022; 10:971402. [PMID: 36118580 PMCID: PMC9471246 DOI: 10.3389/fbioe.2022.971402] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Gene technology regulators receive applications seeking permission for the environmental release of genetically modified (GM) plants, many of which possess beneficial traits such as improved production, enhanced nutrition and resistance to drought, pests and diseases. The regulators must assess the risks to human and animal health and to the environment from releasing these GM plants. One such consideration, of many, is the likelihood and potential consequence of the introduced or modified DNA being transferred to other organisms, including people. While such gene transfer is most likely to occur to sexually compatible relatives (vertical gene transfer), horizontal gene transfer (HGT), which is the acquisition of genetic material that has not been inherited from a parent, is also a possibility considered during these assessments. Advances in HGT detection, aided by next generation sequencing, have demonstrated that HGT occurrence may have been previously underestimated. In this review, we provide updated evidence on the likelihood, factors and the barriers for the introduced or modified DNA in GM plants to be horizontally transferred into a variety of recipients. We present the legislation and frameworks the Australian Gene Technology Regulator adheres to with respect to the consideration of risks posed by HGT. Such a perspective may generally be applicable to regulators in other jurisdictions as well as to commercial and research organisations who develop GM plants.
Collapse
|
5
|
Parker MT, Kunjapur AM. Deployment of Engineered Microbes: Contributions to the Bioeconomy and Considerations for Biosecurity. Health Secur 2021; 18:278-296. [PMID: 32816583 DOI: 10.1089/hs.2020.0010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Engineering at microscopic scales has an immense effect on the modern bioeconomy. Microbes contribute to such disparate markets as chemical manufacturing, fuel production, crop optimization, and pharmaceutical synthesis, to name a few. Due to new and emerging synthetic biology technologies, and the sophistication and control afforded by them, we are on the brink of deploying engineered microbes to not only enhance traditional applications but also to introduce these microbes to sectors, contexts, and formats not previously attempted. In microbially managed medicine, microbial engineering holds promise for increasing efficacy, improving tissue penetration, and sustaining treatment. In the environment, the most effective areas for deployment are in the management of crops and protection of ecosystems. However, caution is warranted before introducing engineered organisms to new environments where they may proliferate without control and could cause unforeseen effects. We summarize ideas and data that can inform identification and assessment of the risks that these tools present to ensure that realistic hazards are described and unrealistic ones do not hinder advancement. Further, because modes of containment are crucial complements to deployment, we describe the state of the art in microbial biocontainment strategies, current gaps, and how these gaps might be addressed through technological advances in synthetic engineering. Collectively, this work highlights engineered microbes as a foundational and expanding facet of the bioeconomy, projects their utility in upcoming deployments outside the laboratory, and identifies knowns and unknowns that will be necessary considerations and points of focus in this endeavor.
Collapse
Affiliation(s)
- Michael T Parker
- Michael T. Parker, PhD, is an Assistant Dean, Office of the Dean, Georgetown University, Washington, DC. Aditya M. Kunjapur, PhD, is an Assistant Professor, Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| | - Aditya M Kunjapur
- Michael T. Parker, PhD, is an Assistant Dean, Office of the Dean, Georgetown University, Washington, DC. Aditya M. Kunjapur, PhD, is an Assistant Professor, Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| |
Collapse
|
6
|
Lerner A, Matthias T, Aminov R. Potential Effects of Horizontal Gene Exchange in the Human Gut. Front Immunol 2017; 8:1630. [PMID: 29230215 PMCID: PMC5711824 DOI: 10.3389/fimmu.2017.01630] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/09/2017] [Indexed: 01/02/2023] Open
Abstract
Many essential functions of the human body are dependent on the symbiotic microbiota, which is present at especially high numbers and diversity in the gut. This intricate host-microbe relationship is a result of the long-term coevolution between the two. While the inheritance of mutational changes in the host evolution is almost exclusively vertical, the main mechanism of bacterial evolution is horizontal gene exchange. The gut conditions, with stable temperature, continuous food supply, constant physicochemical conditions, extremely high concentration of microbial cells and phages, and plenty of opportunities for conjugation on the surfaces of food particles and host tissues, represent one of the most favorable ecological niches for horizontal gene exchange. Thus, the gut microbial system genetically is very dynamic and capable of rapid response, at the genetic level, to selection, for example, by antibiotics. There are many other factors to which the microbiota may dynamically respond including lifestyle, therapy, diet, refined food, food additives, consumption of pre- and probiotics, and many others. The impact of the changing selective pressures on gut microbiota, however, is poorly understood. Presumably, the gut microbiome responds to these changes by genetic restructuring of gut populations, driven mainly via horizontal gene exchange. Thus, our main goal is to reveal the role played by horizontal gene exchange in the changing landscape of the gastrointestinal microbiome and potential effect of these changes on human health in general and autoimmune diseases in particular.
Collapse
Affiliation(s)
- Aaron Lerner
- B. Rappaport School of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- AESKU.KIPP Institute, Wendelsheim, Germany
| | | | - Rustam Aminov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- School of Medicine & Dentistry, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
7
|
Shinozuka H, Hettiarachchige IK, Shinozuka M, Cogan NOI, Spangenberg GC, Cocks BG, Forster JW, Sawbridge TI. Horizontal transfer of a ß-1,6-glucanase gene from an ancestral species of fungal endophyte to a cool-season grass host. Sci Rep 2017; 7:9024. [PMID: 28831055 PMCID: PMC5567365 DOI: 10.1038/s41598-017-07886-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/10/2017] [Indexed: 11/22/2022] Open
Abstract
Molecular characterisation has convincingly demonstrated some types of horizontal gene transfer in eukaryotes, but nuclear gene transfer between distantly related eukaryotic groups appears to have been rare. For angiosperms (flowering plants), nuclear gene transfer events identified to date have been confined to genes originating from prokaryotes or other plant species. In this report, evidence for ancient horizontal transfer of a fungal nuclear gene, encoding a ß-1,6-glucanase enzyme for fungal cell wall degradation, into an angiosperm lineage is presented for the first time. The gene was identified from de novo sequencing and assembly of the genome and transcriptome of perennial ryegrass, a cool-season grass species. Molecular analysis confirmed the presence of the complete gene in the genome of perennial ryegrass. No corresponding sequence was found in other plant species, apart from members of the Poeae sub-tribes Loliinae and Dactylidinae. Evidence suggests that a common ancestor of the two sub-tribes acquired the gene from a species ancestral to contemporary grass-associated fungal endophytes around 9-13 million years ago. This first report of horizontal transfer of a nuclear gene from a taxonomically distant eukaryote to modern flowering plants provides evidence for a novel adaptation mechanism in angiosperms.
Collapse
Affiliation(s)
- Hiroshi Shinozuka
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, La Trobe University, Bundoora, Victoria, 3083, Australia.
- Dairy Futures Cooperative Research Centre, Bundoora, Australia.
| | - Inoka K Hettiarachchige
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, La Trobe University, Bundoora, Victoria, 3083, Australia
- Dairy Futures Cooperative Research Centre, Bundoora, Australia
| | - Maiko Shinozuka
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, La Trobe University, Bundoora, Victoria, 3083, Australia
- Dairy Futures Cooperative Research Centre, Bundoora, Australia
| | - Noel O I Cogan
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, La Trobe University, Bundoora, Victoria, 3083, Australia
- Dairy Futures Cooperative Research Centre, Bundoora, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - German C Spangenberg
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, La Trobe University, Bundoora, Victoria, 3083, Australia
- Dairy Futures Cooperative Research Centre, Bundoora, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Benjamin G Cocks
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, La Trobe University, Bundoora, Victoria, 3083, Australia
- Dairy Futures Cooperative Research Centre, Bundoora, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - John W Forster
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, La Trobe University, Bundoora, Victoria, 3083, Australia
- Dairy Futures Cooperative Research Centre, Bundoora, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Timothy I Sawbridge
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, La Trobe University, Bundoora, Victoria, 3083, Australia
- Dairy Futures Cooperative Research Centre, Bundoora, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| |
Collapse
|
8
|
Khan KA, Ansari MJ, Al-Ghamdi A, Nuru A, Harakeh S, Iqbal J. Investigation of gut microbial communities associated with indigenous honey bee ( Apis mellifera jemenitica) from two different eco-regions of Saudi Arabia. Saudi J Biol Sci 2017; 24:1061-1068. [PMID: 28663705 PMCID: PMC5478369 DOI: 10.1016/j.sjbs.2017.01.055] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/24/2017] [Accepted: 01/24/2017] [Indexed: 01/01/2023] Open
Abstract
The microbial communities associated with the alimentary tract of honey bees are very important as they help with food digestion, provide essential nutrients, protect the host from pathogens, detoxify harmful molecules, and increase host immunity. In this study, the structural diversity of the gut microbial communities of native honey bees, Apis mellifera jemenitica from two different geographical regions (Riyadh and Al-Baha) of Saudi Arabia was analyzed by culture-dependent methods and 16S ribosomal RNA (rRNA) gene sequencing. In this study, 100 bacterial isolates were cultivated and phylogenetic analyses grouped them into three phyla: Proteobacteria, Firmicutes, and Actinobacteria. Bacteria in the phylum Proteobacteria were the most dominant (17 species), followed by Firmicutes (13 species) and Actinobacteria (4 species). Some of the identified bacteria (Citrobacter sp., Providencia vermicola, Exiguobacterium acetylicum, and Planomicrobium okeanokoites) were reported for the first time in the genus Apis, while others identified bacteria belonged to the genera Proteus, Enterobacter, Bacillus, Morganella, Lactobacillus, and Fructobacillus. To the best of our knowledge, this is the first study on the gut microbiota of the local honey bees in Saudi Arabia.
Collapse
Affiliation(s)
- Khalid Ali Khan
- Bee Research Chair, Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Javed Ansari
- Bee Research Chair, Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad Al-Ghamdi
- Bee Research Chair, Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Adgaba Nuru
- Bee Research Chair, Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Steve Harakeh
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia.,Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, King Abdulaziz University Hospital (KAUH), Faculty of Medicine, KAU, KSA
| | - Javaid Iqbal
- Bee Research Chair, Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
No effect of Bt Cry1Ie toxin on bacterial diversity in the midgut of the Chinese honey bees, Apis cerana cerana (Hymenoptera, Apidae). Sci Rep 2017; 7:41688. [PMID: 28139751 PMCID: PMC5282592 DOI: 10.1038/srep41688] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/23/2016] [Indexed: 01/19/2023] Open
Abstract
Cry1Ie protein derived from Bacillus thuringiensis (Bt) has been proposed as a promising candidate for the development of a new Bt-maize variety to control maize pests in China. We studied the response of the midgut bacterial community of Apis cerana cerana to Cry1Ie toxin under laboratory conditions. Newly emerged bees were fed one of the following treatments for 15 and 30 days: three concentrations of Cry1Ie toxin (20 ng/mL, 200 ng/mL, and 20 μg/mL) in sugar syrup, pure sugar syrup as a negative control and 48 ng/mL imidacloprid as a positive control. The relative abundance of 16S rRNA genes was measured by Quantitative Polymerase Chain Reaction and no apparent differences were found among treatments for any of these counts at any time point. Furthermore, the midgut bacterial structure and compositions were determined using high-throughput sequencing targeting the V3-V4 regions of the 16S rDNA. All core honey bee intestinal bacterial genera such as Lactobacillus, Bifidobacterium, Snodgrassella, and Gilliamella were detected, and no significant changes were found in the species diversity and richness for any bacterial taxa among treatments at different time points. These results suggest that Cry1Ie toxin may not affect gut bacterial communities of Chinese honey bees.
Collapse
|
10
|
Abstract
The gut microbiota can have profound effects on hosts, but the study of these relationships in humans is challenging. The specialized gut microbial community of honey bees is similar to the mammalian microbiota, as both are mostly composed of host-adapted, facultatively anaerobic and microaerophilic bacteria. However, the microbial community of the bee gut is far simpler than the mammalian microbiota, being dominated by only nine bacterial species clusters that are specific to bees and that are transmitted through social interactions between individuals. Recent developments, which include the discovery of extensive strain-level variation, evidence of protective and nutritional functions, and reports of eco-physiological or disease-associated perturbations to the microbial community, have drawn attention to the role of the microbiota in bee health and its potential as a model for studying the ecology and evolution of gut symbionts.
Collapse
Affiliation(s)
- Waldan K Kwong
- Department of Integrative Biology, University of Texas, Austin, Texas 78712, USA
| | - Nancy A Moran
- Department of Integrative Biology, University of Texas, Austin, Texas 78712, USA
| |
Collapse
|
11
|
Jia HR, Geng LL, Li YH, Wang Q, Diao QY, Zhou T, Dai PL. The effects of Bt Cry1Ie toxin on bacterial diversity in the midgut of Apis mellifera ligustica (Hymenoptera: Apidae). Sci Rep 2016; 6:24664. [PMID: 27090812 PMCID: PMC4835784 DOI: 10.1038/srep24664] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 04/04/2016] [Indexed: 01/19/2023] Open
Abstract
The honey bee has been regarded as a key species in the environmental risk assessment of biotech crops. Here, the potential adverse effects of Cry1Ie toxin on the midgut bacteria of the worker bees (Apis mellifera ligustica) were investigated under laboratory conditions. Newly emerged bees were fed with different concentrations of Cry1Ie toxin syrups (20 ng/mL, 200 ng/mL, and 20 μg/mL), pure sugar syrup, and 48 ppb of imidacloprid syrups, then sampled after 15 and 30 d. We characterized the dominant midgut bacteria and compared the composition and structure of the midgut bacterial community in all samples using the Illumina MiSeq platform targeting the V3–V4 regions of 16S rDNA. No significant differences in the diversity of the midgut bacteria were observed between the five treatments. This work was the first to show the effects of Cry1Ie toxin on honey bees, and our study provided a theoretical basis for the biosafety assessment of transgenic Cry1Ie maize.
Collapse
Affiliation(s)
- Hui-Ru Jia
- Ministry Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Li-Li Geng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yun-He Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qiang Wang
- Ministry Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Qing-Yun Diao
- Ministry Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Ting Zhou
- Ministry Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Ping-Li Dai
- Ministry Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| |
Collapse
|
12
|
Lu L, Guo J, Li S, Li A, Zhang L, Liu Z, Luo X. Influence of Phytase Transgenic Corn on the Intestinal Microflora and the Fate of Transgenic DNA and Protein in Digesta and Tissues of Broilers. PLoS One 2015; 10:e0143408. [PMID: 26599444 PMCID: PMC4657888 DOI: 10.1371/journal.pone.0143408] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 11/04/2015] [Indexed: 11/19/2022] Open
Abstract
An experiment was conducted to investigate the effect of phytase transgenic corn (PTC) on intestinal microflora, and the fate of transgenic DNA and protein in the digesta and tissues of broilers. A total of 160 1-day-old Arbor Acres commercial male broilers were randomly assigned to 20 cages (8 chicks per cage) with 10 cages (replicates) for each treatment. Birds were fed with a diet containing either PTC (54.0% during 1–21 days and 61.0% during 22–42 days) or non-transgenic isogenic control corn (CC) for a duration of 42 days. There were no significant differences (P>0.05) between birds fed with the PTC diets and those fed with the CC diets in the quantities of aerobic bacteria, anaerobic bacteria, colibacillus and lactobacilli, or microbial diversities in the contents of ileum and cecum. Transgenic phyA2 DNA was not detected, but phyA2 protein was detected in the digesta of duodenum and jejunum of broilers fed with the PTC diets. Both transgenic phyA2 DNA and protein fragments were not found in the digesta of the ileum and rectum, heart, liver, kidney, and breast or thigh muscles of broilers fed with the PTC diets. It was concluded that PTC had no adverse effect on the quantity and diversity of gut microorganisms; Transgenic phyA2 DNA or protein was rapidly degraded in the intestinal tract and was not transferred to the tissues of broilers.
Collapse
Affiliation(s)
- Lin Lu
- Mineral Nutrition Research Division, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiang Guo
- Mineral Nutrition Research Division, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sufen Li
- Department of Animal Science, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Ang Li
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liyang Zhang
- Mineral Nutrition Research Division, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenhua Liu
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Xugang Luo
- Mineral Nutrition Research Division, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
13
|
Meeus I, Parmentier L, Billiet A, Maebe K, Van Nieuwerburgh F, Deforce D, Wäckers F, Vandamme P, Smagghe G. 16S rRNA Amplicon Sequencing Demonstrates that Indoor-Reared Bumblebees (Bombus terrestris) Harbor a Core Subset of Bacteria Normally Associated with the Wild Host. PLoS One 2015; 10:e0125152. [PMID: 25923917 PMCID: PMC4414509 DOI: 10.1371/journal.pone.0125152] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 03/10/2015] [Indexed: 11/19/2022] Open
Abstract
A MiSeq multiplexed 16S rRNA amplicon sequencing of the gut microbiota of wild and indoor-reared Bombus terrestris (bumblebees) confirmed the presence of a core set of bacteria, which consisted of Neisseriaceae (Snodgrassella), Orbaceae (Gilliamella), Lactobacillaceae (Lactobacillus), and Bifidobacteriaceae (Bifidobacterium). In wild B. terrestris we detected several non-core bacteria having a more variable prevalence. Although Enterobacteriaceae are unreported by non next-generation sequencing studies, it can become a dominant gut resident. Furthermore the presence of some non-core lactobacilli were associated with the relative abundance of bifidobacteria. This association was not observed in indoor-reared bumblebees lacking the non-core bacteria, but having a more standardized microbiota compared to their wild counterparts. The impact of the bottleneck microbiota of indoor-reared bumblebees when they are used in the field for pollination purpose is discussed.
Collapse
Affiliation(s)
- Ivan Meeus
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Laurian Parmentier
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Annelies Billiet
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Kevin Maebe
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium
| | - Felix Wäckers
- Biobest NV, Ilse Velden 18, B-2260, Westerlo, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 3, B-9000, Ghent, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| |
Collapse
|
14
|
Li L, Praet J, Borremans W, Nunes OC, Manaia CM, Cleenwerck I, Meeus I, Smagghe G, De Vuyst L, Vandamme P. Bombella intestini gen. nov., sp. nov., an acetic acid bacterium isolated from bumble bee crop. Int J Syst Evol Microbiol 2015; 65:267-273. [DOI: 10.1099/ijs.0.068049-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the frame of a bumble bee gut microbiota study, acetic acid bacteria (AAB) were isolated using a combination of direct isolation methods and enrichment procedures. MALDI-TOF MS profiling of the isolates and a comparison of these profiles with profiles of established AAB species identified most isolates as
Asaia astilbis
or as ‘Commensalibacter intestini’, except for two isolates (R-52486 and LMG 28161T) that showed an identical profile. A nearly complete 16S rRNA gene sequence of strain LMG 28161T was determined and showed the highest pairwise similarity to
Saccharibacter floricola
S-877T (96.5 %), which corresponded with genus level divergence in the family
Acetobacteraceae
. Isolate LMG 28161T was subjected to whole-genome shotgun sequencing; a 16S–23S rRNA internal transcribed spacer (ITS) sequence as well as partial sequences of the housekeeping genes dnaK, groEL and rpoB were extracted for phylogenetic analyses. The obtained data confirmed that this isolate is best classified into a new genus in the family
Acetobacteraceae
. The DNA G+C content of strain LMG 28161T was 54.9 mol%. The fatty acid compositions of isolates R-52486 and LMG 28161T were similar to those of established AAB species [with C18 : 1ω7c (43.1 %) as the major component], but the amounts of fatty acids such as C19 : 0 cyclo ω8c, C14 : 0 and C14 : 0 2-OH enabled to differentiate them. The major ubiquinone was Q-10. Both isolates could also be differentiated from the known genera of AAB by means of biochemical characteristics, such as their inability to oxidize ethanol to acetic acid, negligible acid production from melibiose, and notable acid production from d-fructose, sucrose and d-mannitol. In addition, they produced 2-keto-d-gluconate, but not 5-keto-d-gluconate from d-glucose. Therefore, the name Bombella intestini gen nov., sp. nov. is proposed for this new taxon, with LMG 28161T ( = DSM 28636T = R-52487T) as the type strain of the type species.
Collapse
Affiliation(s)
- Leilei Li
- Laboratory of Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Jessy Praet
- Laboratory of Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Wim Borremans
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Olga C. Nunes
- LEPAE – Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
| | - Célia M. Manaia
- CBQF – Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4200-072 Porto, Portugal
| | - Ilse Cleenwerck
- BCCM/LMG Bacteria Collection, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Ivan Meeus
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Belgium
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| |
Collapse
|
15
|
Nielsen KM, Bøhn T, Townsend JP. Detecting rare gene transfer events in bacterial populations. Front Microbiol 2014; 4:415. [PMID: 24432015 PMCID: PMC3882822 DOI: 10.3389/fmicb.2013.00415] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 12/16/2013] [Indexed: 11/23/2022] Open
Abstract
Horizontal gene transfer (HGT) enables bacteria to access, share, and recombine genetic variation, resulting in genetic diversity that cannot be obtained through mutational processes alone. In most cases, the observation of evolutionary successful HGT events relies on the outcome of initially rare events that lead to novel functions in the new host, and that exhibit a positive effect on host fitness. Conversely, the large majority of HGT events occurring in bacterial populations will go undetected due to lack of replication success of transformants. Moreover, other HGT events that would be highly beneficial to new hosts can fail to ensue due to lack of physical proximity to the donor organism, lack of a suitable gene transfer mechanism, genetic compatibility, and stochasticity in tempo-spatial occurrence. Experimental attempts to detect HGT events in bacterial populations have typically focused on the transformed cells or their immediate offspring. However, rare HGT events occurring in large and structured populations are unlikely to reach relative population sizes that will allow their immediate identification; the exception being the unusually strong positive selection conferred by antibiotics. Most HGT events are not expected to alter the likelihood of host survival to such an extreme extent, and will confer only minor changes in host fitness. Due to the large population sizes of bacteria and the time scales involved, the process and outcome of HGT are often not amenable to experimental investigation. Population genetic modeling of the growth dynamics of bacteria with differing HGT rates and resulting fitness changes is therefore necessary to guide sampling design and predict realistic time frames for detection of HGT, as it occurs in laboratory or natural settings. Here we review the key population genetic parameters, consider their complexity and highlight knowledge gaps for further research.
Collapse
Affiliation(s)
- Kaare M Nielsen
- Department of Pharmacy, Faculty of Health Sciences, University of Tromsø Tromsø, Norway ; GenØk-Centre for Biosafety, The Science Park Tromsø, Norway
| | - Thomas Bøhn
- Department of Pharmacy, Faculty of Health Sciences, University of Tromsø Tromsø, Norway ; GenØk-Centre for Biosafety, The Science Park Tromsø, Norway
| | - Jeffrey P Townsend
- Department of Biostatistics, Yale University New Haven, CT, USA ; Program in Computational Biology and Bioinformatics, Yale University New Haven, CT, USA ; Program in Microbiology, Yale University New Haven, CT, USA
| |
Collapse
|
16
|
Microbial ecology of the hive and pollination landscape: bacterial associates from floral nectar, the alimentary tract and stored food of honey bees (Apis mellifera). PLoS One 2013; 8:e83125. [PMID: 24358254 PMCID: PMC3866269 DOI: 10.1371/journal.pone.0083125] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 10/30/2013] [Indexed: 01/29/2023] Open
Abstract
Nearly all eukaryotes are host to beneficial or benign bacteria in their gut lumen, either vertically inherited, or acquired from the environment. While bacteria core to the honey bee gut are becoming evident, the influence of the hive and pollination environment on honey bee microbial health is largely unexplored. Here we compare bacteria from floral nectar in the immediate pollination environment, different segments of the honey bee (Apis mellifera) alimentary tract, and food stored in the hive (honey and packed pollen or “beebread”). We used cultivation and sequencing to explore bacterial communities in all sample types, coupled with culture-independent analysis of beebread. We compare our results from the alimentary tract with both culture-dependent and culture-independent analyses from previous studies. Culturing the foregut (crop), midgut and hindgut with standard media produced many identical or highly similar 16S rDNA sequences found with 16S rDNA clone libraries and next generation sequencing of 16S rDNA amplicons. Despite extensive culturing with identical media, our results do not support the core crop bacterial community hypothesized by recent studies. We cultured a wide variety of bacterial strains from 6 of 7 phylogenetic groups considered core to the honey bee hindgut. Our results reveal that many bacteria prevalent in beebread and the crop are also found in floral nectar, suggesting frequent horizontal transmission. From beebread we uncovered a variety of bacterial phylotypes, including many possible pathogens and food spoilage organisms, and potentially beneficial bacteria including Lactobacillus kunkeei, Acetobacteraceae and many different groups of Actinobacteria. Contributions of these bacteria to colony health may include general hygiene, fungal and pathogen inhibition and beebread preservation. Our results are important for understanding the contribution to pollinator health of both environmentally vectored and core microbiota, and the identification of factors that may affect bacterial detection and transmission, colony food storage and disease susceptibility.
Collapse
|
17
|
Gao C, Ren X, Mason AS, Liu H, Xiao M, Li J, Fu D. Horizontal gene transfer in plants. Funct Integr Genomics 2013; 14:23-9. [PMID: 24132513 DOI: 10.1007/s10142-013-0345-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 10/03/2013] [Accepted: 10/07/2013] [Indexed: 01/12/2023]
Abstract
Horizontal gene transfer (HGT) describes the transmission of genetic material across species boundaries. HGT often occurs in microbic and eukaryotic genomes. However, the pathways by which HGTs occur in multicellular eukaryotes, especially in plants, are not well understood. We systematically summarized more than ten possible pathways for HGT. The intimate contact which frequently occurs in parasitism, symbiosis, pathogen, epiphyte, entophyte, and grafting interactions could promote HGTs between two species. Besides these direct transfer methods, genes can be exchanged with a vector as a bridge: possible vectors include pollen, fungi, bacteria, viruses, viroids, plasmids, transposons, and insects. HGT, especially when involving horizontal transfer of transposable elements, is recognized as a significant force propelling genomic variation and biological innovation, playing an important functional and evolutionary role in both eukaryotic and prokaryotic genomes. We proposed possible mechanisms by which HGTs can occur, which is useful in understanding the genetic information exchange among distant species or distant cellular components.
Collapse
Affiliation(s)
- Caihua Gao
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
18
|
Hendriksma HP, Küting M, Härtel S, Näther A, Dohrmann AB, Steffan-Dewenter I, Tebbe CC. Effect of stacked insecticidal Cry proteins from maize pollen on nurse bees (Apis mellifera carnica) and their gut bacteria. PLoS One 2013; 8:e59589. [PMID: 23533634 PMCID: PMC3606186 DOI: 10.1371/journal.pone.0059589] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 02/15/2013] [Indexed: 11/18/2022] Open
Abstract
Honey bee pollination is a key ecosystem service to nature and agriculture. However, biosafety research on genetically modified crops rarely considers effects on nurse bees from intact colonies, even though they receive and primarily process the largest amount of pollen. The objective of this study was to analyze the response of nurse bees and their gut bacteria to pollen from Bt maize expressing three different insecticidal Cry proteins (Cry1A.105, Cry2Ab2, and Cry3Bb1). Naturally Cry proteins are produced by bacteria (Bacillus thuringiensis). Colonies of Apis mellifera carnica were kept during anthesis in flight cages on field plots with the Bt maize, two different conventionally bred maize varieties, and without cages, 1-km outside of the experimental maize field to allow ad libitum foraging to mixed pollen sources. During their 10-days life span, the consumption of Bt maize pollen had no effect on their survival rate, body weight and rates of pollen digestion compared to the conventional maize varieties. As indicated by ELISA-quantification of Cry1A.105 and Cry3Bb1, more than 98% of the recombinant proteins were degraded. Bacterial population sizes in the gut were not affected by the genetic modification. Bt-maize, conventional varieties and mixed pollen sources selected for significantly different bacterial communities which were, however, composed of the same dominant members, including Proteobacteria in the midgut and Lactobacillus sp. and Bifidobacterium sp. in the hindgut. Surprisingly, Cry proteins from natural sources, most likely B. thuringiensis, were detected in bees with no exposure to Bt maize. The natural occurrence of Cry proteins and the lack of detectable effects on nurse bees and their gut bacteria give no indication for harmful effects of this Bt maize on nurse honey bees.
Collapse
Affiliation(s)
- Harmen P. Hendriksma
- Department of Animal Ecology and Tropical Biology, Biocentre, University of Würzburg, Würzburg, Germany
| | - Meike Küting
- Thünen Institute of Biodiversity, Federal Research Institute for Rural Areas, Forestry and Fisheries, Braunschweig, Germany
| | - Stephan Härtel
- Department of Animal Ecology and Tropical Biology, Biocentre, University of Würzburg, Würzburg, Germany
| | - Astrid Näther
- Thünen Institute of Biodiversity, Federal Research Institute for Rural Areas, Forestry and Fisheries, Braunschweig, Germany
| | - Anja B. Dohrmann
- Thünen Institute of Biodiversity, Federal Research Institute for Rural Areas, Forestry and Fisheries, Braunschweig, Germany
| | - Ingolf Steffan-Dewenter
- Department of Animal Ecology and Tropical Biology, Biocentre, University of Würzburg, Würzburg, Germany
| | - Christoph C. Tebbe
- Thünen Institute of Biodiversity, Federal Research Institute for Rural Areas, Forestry and Fisheries, Braunschweig, Germany
- * E-mail:
| |
Collapse
|
19
|
Li J, Qin H, Wu J, Sadd BM, Wang X, Evans JD, Peng W, Chen Y. The prevalence of parasites and pathogens in Asian honeybees Apis cerana in China. PLoS One 2012; 7:e47955. [PMID: 23144838 PMCID: PMC3492380 DOI: 10.1371/journal.pone.0047955] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 09/18/2012] [Indexed: 11/18/2022] Open
Abstract
Pathogens and parasites represent significant threats to the health and well-being of honeybee species that are key pollinators of agricultural crops and flowers worldwide. We conducted a nationwide survey to determine the occurrence and prevalence of pathogens and parasites in Asian honeybees, Apis cerana, in China. Our study provides evidence of infections of A. cerana by pathogenic Deformed wing virus (DWV), Black queen cell virus (BQCV), Nosema ceranae, and C. bombi species that have been linked to population declines of European honeybees, A. mellifera, and bumble bees. However, the prevalence of DWV, a virus that causes widespread infection in A. mellifera, was low, arguably a result of the greater ability of A. cerana to resist the ectoprasitic mite Varroa destructor, an efficient vector of DWV. Analyses of microbial communities from the A. cerana digestive tract showed that Nosema infection could have detrimental effects on the gut microbiota. Workers infected by N. ceranae tended to have lower bacterial quantities, with these differences being significant for the Bifidobacterium and Pasteurellaceae bacteria groups. The results of this nationwide screen show that parasites and pathogens that have caused serious problems in European honeybees can be found in native honeybee species kept in Asia. Environmental changes due to new agricultural practices and globalization may facilitate the spread of pathogens into new geographic areas. The foraging behavior of pollinators that are in close geographic proximity likely have played an important role in spreading of parasites and pathogens over to new hosts. Phylogenetic analyses provide insights into the movement and population structure of these parasites, suggesting a bidirectional flow of parasites among pollinators. The presence of these parasites and pathogens may have considerable implications for an observed population decline of Asian honeybees.
Collapse
Affiliation(s)
- Jilian Li
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Science, Beijing, China
| | - Haoran Qin
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Science, Beijing, China
| | - Jie Wu
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Science, Beijing, China
| | - Ben M. Sadd
- Experimental Ecology, Institute of Integrative Biology, ETH Zürich Universitätstrasse, Zürich, Switzerland
| | - Xiuhong Wang
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Science, Beijing, China
| | - Jay D. Evans
- United States Department of Agriculture (USDA) – Agricultural Research Service (ARS) Bee Research Laboratory, Beltsville, Maryland, United States of America
| | - Wenjun Peng
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Science, Beijing, China
- * E-mail: (WP); (YC)
| | - Yanping Chen
- United States Department of Agriculture (USDA) – Agricultural Research Service (ARS) Bee Research Laboratory, Beltsville, Maryland, United States of America
- * E-mail: (WP); (YC)
| |
Collapse
|
20
|
EFSA Panel on Genetically Modified Organisms (GMO). Scientific Opinion on application (EFSA-GMO-BE-2010-81) for the placing on the market of genetically modified herbicide-tolerant oilseed rape Ms8, Rf3 and Ms8 × Rf3 for food containing or consisting of, and food produced from or containing ingredients pro. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.2875] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
21
|
Townsend JP, Bøhn T, Nielsen KM. Assessing the probability of detection of horizontal gene transfer events in bacterial populations. Front Microbiol 2012; 3:27. [PMID: 22363321 PMCID: PMC3282476 DOI: 10.3389/fmicb.2012.00027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Accepted: 01/16/2012] [Indexed: 11/23/2022] Open
Abstract
Experimental approaches to identify horizontal gene transfer (HGT) events of non-mobile DNA in bacteria have typically relied on detection of the initial transformants or their immediate offspring. However, rare HGT events occurring in large and structured populations are unlikely to be detected in a short time frame. Population genetic modeling of the growth dynamics of bacterial genotypes is therefore necessary to account for natural selection and genetic drift during the time lag and to predict realistic time frames for detection with a given sampling design. Here we draw on statistical approaches to population genetic theory to construct a cohesive probabilistic framework for investigation of HGT of exogenous DNA into bacteria. In particular, the stochastic timing of rare HGT events is accounted for. Integrating over all possible event timings, we provide an equation for the probability of detection, given that HGT actually occurred. Furthermore, we identify the key variables determining the probability of detecting HGT events in four different case scenarios that are representative of bacterial populations in various environments. Our theoretical analysis provides insight into the temporal aspects of dissemination of genetic material, such as antibiotic resistance genes or transgenes present in genetically modified organisms. Due to the long time scales involved and the exponential growth of bacteria with differing fitness, quantitative analyses incorporating bacterial generation time, and levels of selection, such as the one presented here, will be a necessary component of any future experimental design and analysis of HGT as it occurs in natural settings.
Collapse
Affiliation(s)
- Jeffrey P Townsend
- Department of Ecology and Evolutionary Biology, Yale University New Haven, CT, USA
| | | | | |
Collapse
|
22
|
McFrederick QS, Wcislo WT, Taylor DR, Ishak HD, Dowd SE, Mueller UG. Environment or kin: whence do bees obtain acidophilic bacteria? Mol Ecol 2012; 21:1754-68. [PMID: 22340254 DOI: 10.1111/j.1365-294x.2012.05496.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
As honey bee populations decline, interest in pathogenic and mutualistic relationships between bees and microorganisms has increased. Honey bees and bumble bees appear to have a simple intestinal bacterial fauna that includes acidophilic bacteria. Here, we explore the hypothesis that sweat bees can acquire acidophilic bacteria from the environment. To quantify bacterial communities associated with two species of North American and one species of Neotropical sweat bees, we conducted 16S rDNA amplicon 454 pyrosequencing of bacteria associated with the bees, their brood cells and their nests. Lactobacillus spp. were the most abundant bacteria in many, but not all, of the samples. To determine whether bee-associated lactobacilli can also be found in the environment, we reconstructed the phylogenetic relationships of the genus Lactobacillus. Previously described groups that associate with Bombus and Apis appeared relatively specific to these genera. Close relatives of several bacteria that have been isolated from flowers, however, were isolated from bees. Additionally, all three sweat bee species associated with lactobacilli related to flower-associated lactobacilli. These data suggest that there may be at least two different means by which bees acquire putative probiotics. Some lactobacilli appear specific to corbiculate apids, possibly because they are largely maternally inherited (vertically transmitted). Other lactobacilli, however, may be regularly acquired from environmental sources such as flowers. Sweat bee-associated lactobacilli were found to be abundant in the pollen and frass inside the nests of halictids, suggesting that they could play a role in suppressing the growth of moulds and other spoilage organisms.
Collapse
Affiliation(s)
- Quinn S McFrederick
- Section of Integrative Biology, University of Texas at Austin, 2401 Speedway Drive #C0930. Austin, TX 78712, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Establishment of characteristic gut bacteria during development of the honeybee worker. Appl Environ Microbiol 2012; 78:2830-40. [PMID: 22307297 DOI: 10.1128/aem.07810-11] [Citation(s) in RCA: 387] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Previous surveys have shown that adult honeybee (Apis mellifera) workers harbor a characteristic gut microbiota that may play a significant role in bee health. For three major phylotypes within this microbiota, we have characterized distributions and abundances across the life cycle and among gut organs. These distinctive phylotypes, called Beta, Firm-5, and Gamma-1 (BFG), were assayed using quantitative PCR, fluorescent in situ hybridization (FISH) microscopy, and the experimental manipulation of inoculation routes within developing bees. Adult workers (9 to 30 days posteclosion) contained a large BFG microbiota with a characteristic distribution among gut organs. The crop and midgut were nearly devoid of these phylotypes, while the ileum and rectum together contained more than 95% of the total BFG microbiota. The ileum contained a stratified community in which the Beta and Gamma-1 phylotypes dominated, filling the longitudinal folds of this organ. Deep sequencing of 16S rRNA genes showed clear differences among communities in midgut, ileum, and rectum. In contrast with older workers, larvae and newly emerged workers contain few or no bacteria, and their major food source, bee bread, lacks most characteristic phylotypes. In experiments aimed at determining the route of inoculation, newly emerged workers (NEWs) sometimes acquired the typical phylotypes through contact with older workers, contact with the hive, and emergence from the brood cell; however, transmission was patchy in these assays. Our results outline a colonization pattern for the characteristic phylotypes through A. mellifera ontogeny. We propose the names "Candidatus Snodgrassella alvi" and "Candidatus Gilliamella apicola" for the Beta and Gamma-1 phylotypes, respectively.
Collapse
|
24
|
Aminov RI. Horizontal gene exchange in environmental microbiota. Front Microbiol 2011; 2:158. [PMID: 21845185 PMCID: PMC3145257 DOI: 10.3389/fmicb.2011.00158] [Citation(s) in RCA: 383] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 07/11/2011] [Indexed: 01/21/2023] Open
Abstract
Horizontal gene transfer (HGT) plays an important role in the evolution of life on the Earth. This view is supported by numerous occasions of HGT that are recorded in the genomes of all three domains of living organisms. HGT-mediated rapid evolution is especially noticeable among the Bacteria, which demonstrate formidable adaptability in the face of recent environmental changes imposed by human activities, such as the use of antibiotics, industrial contamination, and intensive agriculture. At the heart of the HGT-driven bacterial evolution and adaptation are highly sophisticated natural genetic engineering tools in the form of a variety of mobile genetic elements (MGEs). The main aim of this review is to give a brief account of the occurrence and diversity of MGEs in natural ecosystems and of the environmental factors that may affect MGE-mediated HGT.
Collapse
Affiliation(s)
- Rustam I Aminov
- Rowett Institute of Nutrition and Health, University of Aberdeen Aberdeen, UK
| |
Collapse
|
25
|
Abstract
AbstractBacteria and fungi from pristine soil, never exposed to glufosinate herbicide, were isolated and analyzed for glufosinate tolerance. Seven of the 15 tested isolates were sensitive to 1 mM glufosinate (an active ingredient of many nonselective contact herbicides), 5 were resistant to 4 mM glufosinate and 3 even to 8 mM glufosinate in liquid medium. None of the isolated microorganisms carried the gene for glufosinate resistance bar (bialaphos resistance) in its genome and at least in some of glufosinate-resistant isolates the increased glutamine synthetase level was detected as a possible resistance mechanism. The transfer of the bar glufosinate resistance gene from transgenic maize Bt 176 into glufosinate-sensitive soil bacterium Bacillus pumilus S1 was not detected under the laboratory conditions by a classical plate count method and PCR. The ecological risk of potential bar gene transfer from genetically modified plants into soil microcosms under natural circumstances is discussed.
Collapse
|
26
|
Abstract
Recent research in microbe-insect symbiosis has shown that acetic acid bacteria (AAB) establish symbiotic relationships with several insects of the orders Diptera, Hymenoptera, Hemiptera, and Homoptera, all relying on sugar-based diets, such as nectars, fruit sugars, or phloem sap. To date, the fruit flies Drosophila melanogaster and Bactrocera oleae, mosquitoes of the genera Anopheles and Aedes, the honey bee Apis mellifera, the leafhopper Scaphoideus titanus, and the mealybug Saccharicoccus sacchari have been found to be associated with the bacterial genera Acetobacter, Gluconacetobacter, Gluconobacter, Asaia, and Saccharibacter and the novel genus Commensalibacter. AAB establish symbiotic associations with the insect midgut, a niche characterized by the availability of diet-derived carbohydrates and oxygen and by an acidic pH, selective factors that support AAB growth. AAB have been shown to actively colonize different insect tissues and organs, such as the epithelia of male and female reproductive organs, the Malpighian tubules, and the salivary glands. This complex topology of the symbiosis indicates that AAB possess the keys for passing through body barriers, allowing them to migrate to different organs of the host. Recently, AAB involvement in the regulation of innate immune system homeostasis of Drosophila has been shown, indicating a functional role in host survival. All of these lines of evidence indicate that AAB can play different roles in insect biology, not being restricted to the feeding habit of the host. The close association of AAB and their insect hosts has been confirmed by the demonstration of multiple modes of transmission between individuals and to their progeny that include vertical and horizontal transmission routes, comprising a venereal one. Taken together, the data indicate that AAB represent novel secondary symbionts of insects.
Collapse
|
27
|
Patil PB, Zeng Y, Coursey T, Houston P, Miller I, Chen S. Isolation and characterization of a Nocardiopsis sp. from honeybee guts. FEMS Microbiol Lett 2010; 312:110-8. [DOI: 10.1111/j.1574-6968.2010.02104.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
28
|
Effect of Transgenic Cotton with cry1Ac Gene on Intestinal Bacterial Community of Apis mellifera ligustica*. ACTA ACUST UNITED AC 2010. [DOI: 10.3724/sp.j.1145.2010.00211] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
|
30
|
Icoz I, Andow D, Zwahlen C, Stotzky G. Is the Cry1Ab protein from Bacillus thuringiensis (Bt) taken up by plants from soils previously planted with Bt corn and by carrot from hydroponic culture? BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2009; 83:48-58. [PMID: 19444360 DOI: 10.1007/s00128-009-9760-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Accepted: 04/24/2009] [Indexed: 05/27/2023]
Abstract
The uptake of the insecticidal Cry1Ab protein from Bacillus thuringiensis (Bt) by various crops from soils on which Bt corn had previously grown was determined. In 2005, the Cry1Ab protein was detected by Western blot in tissues (leaves plus stems) of basil, carrot, kale, lettuce, okra, parsnip, radish, snap bean, and soybean but not in tissues of beet and spinach and was estimated by enzyme-linked immunosorbent assay (ELISA) to be 0.05 +/- 0.003 ng g(-1) of fresh plant tissue in basil, 0.02 +/- 0.014 ng g(-1) in okra, and 0.34 +/- 0.176 ng g(-1) in snap bean. However, the protein was not detected by ELISA in carrot, kale, lettuce, parsnip, radish, and soybean or in the soils by Western blot. In 2006, the Cry1Ab protein was detected by Western blot in tissues of basil, carrot, kale, radish, snap bean, and soybean from soils on which Bt corn had been grown the previous year and was estimated by ELISA to be 0.02 +/- 0.014 ng g(-1) of fresh plant tissue in basil, 0.19 +/- 0.060 ng g(-1) in carrot, 0.05 +/- 0.018 ng g(-1) in kale, 0.04 +/- 0.022 ng g(-1) in radish, 0.53 +/- 0.170 ng g(-1) in snap bean, and 0.15 +/- 0.071 ng g(-1) in soybean. The Cry1Ab protein was also detected by Western blot in tissues of basil, carrot, kale, radish, and snap bean but not of soybean grown in soil on which Bt corn had not been grown since 2002; the concentration was estimated by ELISA to be 0.03 +/- 0.021 ng g(-1) in basil, 0.02 +/- 0.008 ng g(-1) in carrot, 0.04 +/- 0.017 ng g(-1) in kale, 0.02 +/- 0.012 ng g(-1) in radish, 0.05 +/- 0.004 ng g(-1) in snap bean, and 0.09 +/- 0.015 ng g(-1) in soybean. The protein was detected by Western blot in 2006 in most soils on which Bt corn had or had not been grown since 2002. The Cry1Ab protein was detected by Western blot in leaves plus stems and in roots of carrot after 56 days of growth in sterile hydroponic culture to which purified Cry1Ab protein had been added and was estimated by ELISA to be 0.08 +/- 0.021 and 0.60 +/- 0.148 ng g(-1) of fresh leaves plus stems and roots, respectively. No Cry1Ab protein was detected in the tissues of carrot grown in hydroponic culture to which no Cry1Ab protein had been added. Because of the different results obtained with different commercial Western blot (i.e., from Envirologix and Agdia) and ELISA kits (i.e., from Envirologix, Agdia, and Abraxis), it is not clear whether the presence of the Cry1Ab protein in the tissues of some plants under field condition and in carrot in sterile hydroponic culture was the result of the uptake of the protein by the plants or of the accuracy and sensitivity of the different commercial kits used. More detailed studies with additional techniques are obviously needed to confirm the uptake of Cry proteins from soil by plants subsequently planted after a Bt crop.
Collapse
Affiliation(s)
- I Icoz
- Laboratory of Microbial Ecology, Department of Biology, New York University, New York, NY 10003, USA
| | | | | | | |
Collapse
|
31
|
Brinkmann N, Martens R, Tebbe CC. Origin and diversity of metabolically active gut bacteria from laboratory-bred larvae of Manduca sexta (Sphingidae, Lepidoptera, Insecta). Appl Environ Microbiol 2008; 74:7189-96. [PMID: 18849461 PMCID: PMC2592924 DOI: 10.1128/aem.01464-08] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 10/02/2008] [Indexed: 01/28/2023] Open
Abstract
Cultivation-independent analyses based on genetic profiling of partial bacterial 16S rRNA genes by PCR-single-strand conformation polymorphism (PCR-SSCP), reverse transcriptase (RT)-PCR-SSCP of the 16S rRNA itself, and stable isotope probing (SIP), followed by RT-PCR-SSCP, were applied to characterize the diversity of metabolically active bacteria in the larval gut of Manduca sexta bred on tobacco leaves under greenhouse conditions. For SIP, hatching larvae were fed with leaves from tobacco plants grown in a (13)CO(2)-enriched atmosphere. Dominant SSCP bands were sequenced and phylogenetically analyzed. Only one major gut colonizer, an Enterococcus relative, was detected; it occurred in the heavy RNA fraction, demonstrating its metabolic activity, and it originated from eggs, where its metabolic activity was also indicated by rRNA-based SSCP profiles. In contrast, a Citrobacter sedlakii relative was detected on eggs by DNA-SSCP, but rRNA-SSCP and SIP-rRNA-SSCP were negative, suggesting that these bacterial cells were inactive. A Burkholderia relative was dominant and metabolically active on the tobacco leaves but inactive inside the gut, where it was also quantitatively reduced, as suggested by lower band intensities in the DNA-based SSCP profiles. SIP-RNA-SSCP detected another metabolically active gut bacterium (Enterobacter sp.) and more bacteria in the light RNA fraction, indicating low or no metabolic activity of the latter inside the gut. We conclude that the larval gut supported only a low diversity of metabolically active bacteria.
Collapse
Affiliation(s)
- Nicole Brinkmann
- Institut für Biodiversität, Johann Heinrich von Thünen-Institut (vTI), Braunschweig, Germany
| | | | | |
Collapse
|
32
|
Ahuja M, Punekar NS. Phosphinothricin resistance in Aspergillus niger and its utility as a selectable transformation marker. Fungal Genet Biol 2008; 45:1103-10. [PMID: 18479949 DOI: 10.1016/j.fgb.2008.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 03/28/2008] [Accepted: 04/01/2008] [Indexed: 10/22/2022]
Abstract
Aspergillus niger is moderately susceptible to inhibition by phosphinothricin (PPT)-a potent inhibitor of glutamine synthetase. This growth inhibition was relieved by L-glutamine. PPT inhibited A. niger glutamine synthetase in vitro (K(I), 54 microM) and the inhibition was competitive with L-glutamate. The bar gene, imparting resistance to PPT, was successfully exploited as a dominant marker to transform this fungus. Very high PPT concentrations were required in the overlay for selection. Apart from bar transformants, colonies spontaneously resistant to PPT were frequently encountered on selection media. Reasons for such spontaneous resistance, albeit of moderate growth phenotype, were sought using one such isolate (SRPPT). The SRPPT isolate showed a 2-3-fold decrease in its glutamate uptake rate. Elevated external glutamate levels further suppressed the PPT-induced growth inhibition. Cellular entry of PPT could be through the L-glutamate uptake system thereby accounting for the observed spontaneous resistant phenotype. These results were useful in the fine-tuning of bar-selection in A. niger.
Collapse
Affiliation(s)
- Manmeet Ahuja
- Biotechnology Group, School of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | | |
Collapse
|