1
|
He L, Li C, Chen Z, Huo Y, Zhou B, Xie F. Combined metabolome and transcriptome analysis reveal the mechanism of water stress in Ophiocordyceps sinensis. BMC Genomics 2024; 25:1014. [PMID: 39472792 PMCID: PMC11523607 DOI: 10.1186/s12864-024-10785-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/09/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Ophiocordyceps sinensis (O. sinensis) is the dominant bacterium in the asexual stage of Chinese cordyceps, and its growth usually suffers from water stress. Thus, simulating its ecological growth environment is crucial for artificial cultivation. This study aimed to reveal the mechanism underlying the water stress tolerance of Ophiocordyceps sinensis (O. sinensis) by combining metabolomic and transcriptome analyses to identify crucial pathways related to differentially expressed genes (DEGs) and metabolites (DEMs) involved in the response to water stress. RESULTS Gene coexpression analysis revealed that many genes related to 'betalain biosynthesis', 'tyrosine metabolism', 'linoleic acid metabolism', 'fructose and mannose metabolism', and 'starch and sucrose metabolism' were highly upregulated after 20d-water stress. Metabolomic analysis revealed that many metabolites regulated by these genes in these metabolic pathways were markedly decreased. On the one hand, we surmised that carbohydrate metabolism and the β-oxidation pathway worked cooperatively to generate enough acyl-CoA and then entered the TCA cycle to provide energy when exposed to water stress. On the other hand, the betalain biosynthesis and tyrosine metabolism pathway might play crucial roles in response to water stress in O. sinensis by enhancing cell osmotic potential and producing osmoregulatory substances (betaine) and antioxidant pigments (eumelanin). CONCLUSIONS Overall, our findings provide important information for further exploration of the mechanism underlying the water stress tolerance of O. sinensis for the industrialization of artificial cultivation of Chinese cordyceps.
Collapse
Affiliation(s)
- Li He
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, P. R. China
| | - ChuanYong Li
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, P. R. China
| | - ZhaoHe Chen
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, P. R. China
| | - YanLi Huo
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, P. R. China
| | - Bo Zhou
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, P. R. China
| | - Fang Xie
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, P. R. China.
| |
Collapse
|
2
|
Integrative Multiomics Analysis of the Heat Stress Response of Enterococcus faecium. Biomolecules 2023; 13:biom13030437. [PMID: 36979372 PMCID: PMC10046512 DOI: 10.3390/biom13030437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
A continuous heat-adaptation test was conducted for one Enterococcus faecium (E. faecium) strain wild-type (WT) RS047 to obtain a high-temperature-resistant strain. After domestication, the strain was screened with a significantly higher ability of heat resistance. which is named RS047-wl. Then a multi-omics analysis of transcriptomics and metabolomics was used to analyze the mechanism of the heat resistance of the mutant. A total of 98 differentially expressed genes (DEGs) and 115 differential metabolites covering multiple metabolic processes were detected in the mutant, which indicated that the tolerance of heat resistance was regulated by multiple mechanisms. The changes in AgrB, AgrC, and AgrA gene expressions were involved in quorum-sensing (QS) system pathways, which regulate biofilm formation. Second, highly soluble osmotic substances such as putrescine, spermidine, glycine betaine (GB), and trehalose-6P were accumulated for the membrane transport system. Third, organic acids metabolism and purine metabolism were down-regulated. The findings can provide target genes for subsequent genetic modification of E. faecium, and provide indications for screening heat-resistant bacteria, so as to improve the heat-resistant ability of E. faecium for production.
Collapse
|
3
|
de Lima JGS, Lanza DCF. 2A and 2A-like Sequences: Distribution in Different Virus Species and Applications in Biotechnology. Viruses 2021; 13:v13112160. [PMID: 34834965 PMCID: PMC8623073 DOI: 10.3390/v13112160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 01/20/2023] Open
Abstract
2A is an oligopeptide sequence that mediates a ribosome “skipping” effect and can mediate a co-translation cleavage of polyproteins. These sequences are widely distributed from insect to mammalian viruses and could act by accelerating adaptive capacity. These sequences have been used in many heterologous co-expression systems because they are versatile tools for cleaving proteins of biotechnological interest. In this work, we review and update the occurrence of 2A/2A-like sequences in different groups of viruses by screening the sequences available in the National Center for Biotechnology Information database. Interestingly, we reported the occurrence of 2A-like for the first time in 69 sequences. Among these, 62 corresponded to positive single-stranded RNA species, six to double stranded RNA viruses, and one to a negative-sense single-stranded RNA virus. The importance of these sequences for viral evolution and their potential in biotechnological applications are also discussed.
Collapse
Affiliation(s)
- Juliana G. S. de Lima
- Applied Molecular Biology Lab—LAPLIC, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal 59064-720, Brazil;
- Postgraduate Program in Biochemistry, Federal University of Rio Grande do Norte, Natal 59064-720, Brazil
| | - Daniel C. F. Lanza
- Applied Molecular Biology Lab—LAPLIC, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal 59064-720, Brazil;
- Postgraduate Program in Biochemistry, Federal University of Rio Grande do Norte, Natal 59064-720, Brazil
- Correspondence: ; Tel.: +55-84-3215-3416; Fax: +55-84-3215-3415
| |
Collapse
|
4
|
Improving Regulation of Enzymatic and Non-Enzymatic Antioxidants and Stress-Related Gene Stimulation in Cucumber mosaic cucumovirus-Infected Cucumber Plants Treated with Glycine Betaine, Chitosan and Combination. Molecules 2020; 25:molecules25102341. [PMID: 32429524 PMCID: PMC7288169 DOI: 10.3390/molecules25102341] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
Cucumber mosaic cucumovirus (CMV) is a deadly plant virus that results in crop-yield losses with serious economic consequences. In recent years, environmentally friendly components have been developed to manage crop diseases as alternatives to chemical pesticides, including the use of natural compounds such as glycine betaine (GB) and chitosan (CHT), either alone or in combination. In the present study, the leaves of the cucumber plants were foliar-sprayed with GB and CHT—either alone or in combination—to evaluate their ability to induce resistance against CMV. The results showed a significant reduction in disease severity and CMV accumulation in plants treated with GB and CHT, either alone or in combination, compared to untreated plants (challenge control). In every treatment, growth indices, leaf chlorophylls content, phytohormones (i.e., indole acetic acid, gibberellic acid, salicylic acid and jasmonic acid), endogenous osmoprotectants (i.e., proline, soluble sugars and glycine betaine), non-enzymatic antioxidants (i.e., ascorbic acid, glutathione and phenols) and enzymatic antioxidants (i.e., superoxide dismutase, peroxidase, polyphenol oxidase, catalase, lipoxygenase, ascorbate peroxidase, glutathione reductase, chitinase and β-1,3 glucanase) of virus-infected plants were significantly increased. On the other hand, malondialdehyde and abscisic acid contents have been significantly reduced. Based on a gene expression study, all treated plants exhibited increased expression levels of some regulatory defense genes such as PR1 and PAL1. In conclusion, the combination of GB and CHT is the most effective treatment in alleviated virus infection. To our knowledge, this is the first report to demonstrate the induction of systemic resistance against CMV by using GB.
Collapse
|
5
|
Efimova VS, Isaeva LV, Makeeva DS, Rubtsov MA, Novikova LA. Expression of Cholesterol Hydroxylase/Lyase System Proteins in Yeast S. cerevisiae Cells as a Self-Processing Polyprotein. Mol Biotechnol 2018; 59:394-406. [PMID: 28799023 DOI: 10.1007/s12033-017-0028-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
2A peptide discovered in Picornaviridae is capable of self-cleavage providing an opportunity to carry out synthesis of several proteins using one transcript. Dissociation in the 2A sequence during translation leads to the individual proteins formation. We constructed cDNA including genes of the bovine cholesterol hydroxylase/lyase (CHL) system proteins-cytochrome P450scc (CYP11A1), adrenodoxin (Adx) and adrenodoxin reductase (AdR), that are fused into a single ORF using FMDV 2A nucleotide sequences. The constructed vectors direct the expression of cDNA encoding polyprotein P450scc-2A-Adx-2A-AdR (CHL-2A) in Escherichia coli and Saccharomyces cerevisiae. The induced bacterial cells exhibit a high level of CHL-2A expression, but polyprotein is not cleaved at the FMDV sites. In yeast S. cerevisiae, the discrete proteins P450scc-2A, Adx-2A and AdR are expressed. Moreover, a significant proportion of AdR and Adx is present in a fusion Adx-2A-AdR. Thus, the first 2A linker provides an efficient cleavage of the polyprotein, while the second 2A linker demonstrates lower efficiency. Cholesterol hydroxylase/lyase activity registered in the recombinant yeast cell homogenate indicates that the catalytically active CHL system is present in these cells. Consequently, for the first time the mammalian system of cytochrome P450 has been successfully reconstructed in yeast cells through expressing the self-processing polyprotein.
Collapse
Affiliation(s)
- Vera S Efimova
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, 1/12, Moscow, Russia, 119234. .,LIA 1066 French-Russian Joint Cancer Research Laboratory, Villejuif, France. .,LIA 1066 French-Russian Joint Cancer Research Laboratory, Moscow, Russia.
| | - Ludmila V Isaeva
- Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Desislava S Makeeva
- Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail A Rubtsov
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, 1/12, Moscow, Russia, 119234.,LIA 1066 French-Russian Joint Cancer Research Laboratory, Villejuif, France.,Department of Biochemistry, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,Strategic Management Department, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,LIA 1066 French-Russian Joint Cancer Research Laboratory, Moscow, Russia
| | - Ludmila A Novikova
- Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
6
|
Qin L, Jiang X, Dong Z, Huang J, Chen X. Identification of two integration sites in favor of transgene expression in Trichoderma reesei. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:142. [PMID: 29796083 PMCID: PMC5956788 DOI: 10.1186/s13068-018-1139-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/02/2018] [Indexed: 05/28/2023]
Abstract
BACKGROUND The ascomycete fungus Trichoderma reesei was widely used as a biotechnological workhorse for production of cellulases and recombinant proteins due to its large capacity of protein secretion. Transgenesis by random integration of a gene of interest (GOI) into the genome of T. reesei can generate series of strains that express different levels of the indicated transgene. The insertion site of the GOI plays an important role in the ultimate production of the targeted proteins. However, so far no systematic studies have been made to identify transgene integration loci for optimal expression of the GOI in T. reesei. Currently, only the locus of exocellobiohydrolases I encoding gene (cbh1) is widely used as a promising integration site to lead to high expression level of the GOI. No additional sites associated with efficient gene expression have been characterized. RESULTS To search for gene integration sites that benefit for the secreted expression of GOI, the food-and-mouth disease virus 2A protein was applied for co-expression of an Aspergillus niger lipA gene and Discosoma sp. DsRed1 gene in T. reesei, by random integration of the expression cassette into the genome. We demonstrated that the fluorescent intensity of RFP (red fluorescent protein) inside of the cell was well correlated with the secreted lipase yields, based on which, we successfully developed a high-throughput screening method to screen strains with relatively higher secreted expression of the GOI (in this study, lipase). The copy number and the insertion sites of the transgene were investigated among the selected highly expressed strains. Eventually, in addition to cbh1 gene locus, two other genome insertion loci that efficiently facilitate gene expression in T. reesei were identified. CONCLUSIONS We have successfully developed a high-throughput screening method to screen strains with optimal expression of the indicated secreted proteins in T. reesei. Moreover, we identified two optimal genome loci for transgene expression, which could provide new approach to modulate gene expression levels while retaining the indicated promoter and culture conditions.
Collapse
Affiliation(s)
- Lina Qin
- National and Local Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Qishan Campus, No.1 Keji Road, Shangjie, Minhou, Fuzhou, 350117 Fujian China
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, 350117 Fujian China
| | - Xianzhang Jiang
- National and Local Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Qishan Campus, No.1 Keji Road, Shangjie, Minhou, Fuzhou, 350117 Fujian China
| | - Zhiyang Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Jianzhong Huang
- National and Local Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Qishan Campus, No.1 Keji Road, Shangjie, Minhou, Fuzhou, 350117 Fujian China
| | - Xiuzhen Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
7
|
Schwarzhans JP, Luttermann T, Geier M, Kalinowski J, Friehs K. Towards systems metabolic engineering in Pichia pastoris. Biotechnol Adv 2017; 35:681-710. [DOI: 10.1016/j.biotechadv.2017.07.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 12/30/2022]
|
8
|
Yang X, Cheng A, Wang M, Jia R, Sun K, Pan K, Yang Q, Wu Y, Zhu D, Chen S, Liu M, Zhao XX, Chen X. Structures and Corresponding Functions of Five Types of Picornaviral 2A Proteins. Front Microbiol 2017; 8:1373. [PMID: 28785248 PMCID: PMC5519566 DOI: 10.3389/fmicb.2017.01373] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 07/06/2017] [Indexed: 11/27/2022] Open
Abstract
Among the few non-structural proteins encoded by the picornaviral genome, the 2A protein is particularly special, irrespective of structure or function. During the evolution of the Picornaviridae family, the 2A protein has been highly non-conserved. We believe that the 2A protein in this family can be classified into at least five distinct types according to previous studies. These five types are (A) chymotrypsin-like 2A, (B) Parechovirus-like 2A, (C) hepatitis-A-virus-like 2A, (D) Aphthovirus-like 2A, and (E) 2A sequence of the genus Cardiovirus. We carried out a phylogenetic analysis and found that there was almost no homology between each type. Subsequently, we aligned the sequences within each type and found that the functional motifs in each type are highly conserved. These different motifs perform different functions. Therefore, in this review, we introduce the structures and functions of these five types of 2As separately. Based on the structures and functions, we provide suggestions to combat picornaviruses. The complexity and diversity of the 2A protein has caused great difficulties in functional and antiviral research. In this review, researchers can find useful information on the 2A protein and thus conduct improved antiviral research.
Collapse
Affiliation(s)
- Xiaoyao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Kunfeng Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Kangcheng Pan
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| | - Xiaoyue Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural UniversityChengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural UniversityChengdu, China
| |
Collapse
|
9
|
de Amorim Araújo J, Ferreira TC, Rubini MR, Duran AGG, De Marco JL, de Moraes LMP, Torres FAG. Coexpression of cellulases in Pichia pastoris as a self-processing protein fusion. AMB Express 2015; 5:84. [PMID: 26698316 PMCID: PMC4689727 DOI: 10.1186/s13568-015-0170-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/11/2015] [Indexed: 02/06/2023] Open
Abstract
The term cellulase refers to any component of the enzymatic complex produced by some fungi, bacteria and protozoans which act serially or synergistically to catalyze the cleavage of cellulosic materials. Cellulases have been widely used in many industrial applications ranging from food industry to the production of second generation ethanol. In an effort to develop new strategies to minimize the costs of enzyme production we describe the development of a Pichia pastoris strain able to coproduce two different cellulases. For that purpose the eglII (endoglucanase II) and cbhII (cellobiohydrolase II) genes from Trichoderma reesei were fused in-frame separated by the self-processing 2A peptide sequence from the foot-and-mouth disease virus. The protein fusion construct was placed under the control of the strong inducible AOX1 promoter. Analysis of culture supernatants from methanol-induced yeast transformants showed that the protein fusion was effectively processed. Enzymatic assay showed that the processed enzymes were fully functional with the same catalytic properties of the individual enzymes produced separately. Furthermore, when combined both enzymes acted synergistically on filter paper to produce cellobiose as the main end-product. Based on these results we propose that P. pastoris should be considered as an alternative platform for the production of cellulases at competitive costs.
Collapse
|
10
|
Geier M, Fauland P, Vogl T, Glieder A. Compact multi-enzyme pathways in P. pastoris. Chem Commun (Camb) 2015; 51:1643-6. [DOI: 10.1039/c4cc08502g] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
2A peptides enabling the coordinate expression of nine genes in P. pastoris represent a valuable tool for pathway construction and engineering.
Collapse
Affiliation(s)
- Martina Geier
- Austrian Centre of Industrial Biotechnology (ACIB GmbH)
- 8010 Graz
- Austria
| | - Pia Fauland
- Austrian Centre of Industrial Biotechnology (ACIB GmbH)
- 8010 Graz
- Austria
| | - Thomas Vogl
- Institute of Molecular Biotechnology
- NAWI Graz & DK Molecular Enzymology
- 8010 Graz
- Austria
| | - Anton Glieder
- Institute of Molecular Biotechnology
- NAWI Graz & DK Molecular Enzymology
- 8010 Graz
- Austria
| |
Collapse
|
11
|
Brazier-Hicks M, Edwards R. Metabolic engineering of the flavone-C-glycoside pathway using polyprotein technology. Metab Eng 2013; 16:11-20. [PMID: 23246521 DOI: 10.1016/j.ymben.2012.11.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 09/06/2012] [Accepted: 11/06/2012] [Indexed: 11/17/2022]
Abstract
C-Glycosylated flavonoids are biologically active plant natural products linked to dietary health benefits. We have used polyprotein expression technology to reconstruct part of the respective biosynthetic pathway in tobacco and yeast, such that dihydrochalcone and flavanone precursors are directly converted to C-glycosides. The polyprotein system developed facilitated the simple and efficient co-expression of pathway enzymes requiring different sub-cellular localization in both plants and yeast. The pathway to flavone-C-glucosides comprised a flavanone 2-hydroxylase (F2H), co-expressed with a C-glucosyltransferase (CGT). While pathway engineering in tobacco resulted in only minor C-glycoside formation, when fed with the flavanone naringenin, yeast transformed with the F2H-CGT polyprotein construct produced high concentrations of 2-hydroxynaringenin-C-glucoside in the medium. These fermentation products could then be readily chemically converted to the respective flavone-C-glucosides. The efficiency of the biosynthesis was optimal when both the F2H and CGT were obtained from the same species (rice). These results confirm the coupled roles of the F2H and CGT in producing C-glucosides in vivo, with the use of the polyprotein expression system in yeast offering a useful system to optimize the synthesis of these natural products in quantities suitable for dietary studies.
Collapse
Affiliation(s)
- Melissa Brazier-Hicks
- Centre for Novel Agriculture Products, Department of Biology, University of York, York YO10 5DD, UK
| | | |
Collapse
|
12
|
Sun YF, Lin Y, Zhang JH, Zheng SP, Ye YR, Liang XX, Han SY. Double Candida antarctica lipase B co-display on Pichia pastoris cell surface based on a self-processing foot-and-mouth disease virus 2A peptide. Appl Microbiol Biotechnol 2012; 96:1539-50. [PMID: 22797600 DOI: 10.1007/s00253-012-4264-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 06/19/2012] [Accepted: 06/22/2012] [Indexed: 01/16/2023]
Abstract
To develop a high efficiency Candida antarctica lipase B (CALB) yeast display system, we linked two CALB genes fused with Sacchromyces cerevisiae cell wall protein genes, the Sed1 and the 3'-terminal half of Sag1, separately by a 2A peptide of foot-and-mouth disease virus (FMDV) in a single open reading frame. The CALB copy number of recombinant strain KCSe2ACSa that harbored the ORF was identified, and the quantity of CALB displayed on the cell surface and the enzyme activity of the strain were measured. The results showed that the fusion of multiple genes linked by 2A peptide was translated into two independent proteins displayed on the cell surface of stain KCSe2ACSa. Judging from the data of immunolabeling assay, stain KCSe2ACSa displayed 94 % CALB-Sed1p compared with stain KCSe1 that harbored a single copy CALB-Sed1 and 64 % CALB-Sag1p compared with stain KCSa that harbored a single copy CALB-Sag1 on its surface. Besides, strain KCSe2ACSa possessed 170 % hydrolytic activity and 155 % synthetic activity compared with strain KCSe1 as well as 144 % hydrolytic activity and 121 % synthetic activity compared with strain KCSa. Strain KCSe2ACSa even owned 124 % hydrolytic activity compared with strain KCSe2 that harbored two copies CALB-Sed1. The heterogeneous glycosylphosphatidylinositol-anchored proteins co-displaying yeast system mediated by FMDV 2A peptide was shown to be an effective method for improving the efficiency of enzyme-displaying yeast biocatalysts.
Collapse
Affiliation(s)
- Yu-Fei Sun
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Higher Education Mega Center, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
13
|
Sui Y, Liu J, Wisniewski M, Droby S, Norelli J, Hershkovitz V. Pretreatment of the yeast antagonist, Candida oleophila, with glycine betaine increases oxidative stress tolerance in the microenvironment of apple wounds. Int J Food Microbiol 2012; 157:45-51. [DOI: 10.1016/j.ijfoodmicro.2012.04.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 04/10/2012] [Accepted: 04/15/2012] [Indexed: 12/31/2022]
|
14
|
Glycine betaine improves oxidative stress tolerance and biocontrol efficacy of the antagonistic yeast Cystofilobasidium infirmominiatum. Int J Food Microbiol 2011; 146:76-83. [DOI: 10.1016/j.ijfoodmicro.2011.02.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 01/25/2011] [Accepted: 02/07/2011] [Indexed: 11/20/2022]
|
15
|
Coexpression of double or triple copies of the rabies virus glycoprotein gene using a ‘self-cleaving’ 2A peptide-based replication-defective human adenovirus serotype 5 vector. Biologicals 2010; 38:586-93. [DOI: 10.1016/j.biologicals.2010.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 06/17/2010] [Accepted: 06/23/2010] [Indexed: 02/05/2023] Open
|
16
|
Roongsawang N, Promdonkoy P, Wongwanichpokhin M, Sornlake W, Puseenam A, Eurwilaichitr L, Tanapongpipat S. Coexpression of fungal phytase and xylanase utilizing the cis-acting hydrolase element in Pichia pastoris. FEMS Yeast Res 2010; 10:909-16. [DOI: 10.1111/j.1567-1364.2010.00669.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
17
|
Recombinant Sindbis virus vectors designed to express protective antigen of Bacillus anthracis protect animals from anthrax and display synergy with ciprofloxacin. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:1696-9. [PMID: 19759250 DOI: 10.1128/cvi.00173-09] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recombinant Sindbis viruses were engineered to express alternative forms of the protective antigen (PA) of Bacillus anthracis. The recombinant viruses induced PA-specific immunoglobulin G and neutralizing antibodies in Swiss Webster mice. Vaccination with the recombinant viruses induced immunity that offered some protection from a lethal Ames strain spore challenge and synergized the protective effects of ciprofloxacin.
Collapse
|
18
|
Endosperm-specific expression of tyramine N-hydroxycinnamoyltransferase and tyrosine decarboxylase from a single self-processing polypeptide produces high levels of tyramine derivatives in rice seeds. Biotechnol Lett 2009; 31:911-5. [DOI: 10.1007/s10529-009-9951-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 02/06/2009] [Indexed: 10/21/2022]
|
19
|
Luke GA, Escuin H, Felipe PD, Ryan MD. 2A to the Fore – Research, Technology and Applications. Biotechnol Genet Eng Rev 2009; 26:223-60. [DOI: 10.5661/bger-26-223] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Park M, Kang K, Park S, Kim YS, Ha SH, Lee SW, Ahn MJ, Bae JM, Back K. Expression of serotonin derivative synthetic genes on a single self-processing polypeptide and the production of serotonin derivatives in microbes. Appl Microbiol Biotechnol 2008; 81:43-9. [DOI: 10.1007/s00253-008-1634-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2008] [Revised: 07/28/2008] [Accepted: 07/30/2008] [Indexed: 11/28/2022]
|
21
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2008. [DOI: 10.1002/yea.1460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|