1
|
Saengphing T, Sattayawat P, Kalawil T, Suwannarach N, Kumla J, Yamada M, Panbangred W, Rodrussamee N. Improving furfural tolerance in a xylose-fermenting yeast Spathaspora passalidarum CMUWF1-2 via adaptive laboratory evolution. Microb Cell Fact 2024; 23:80. [PMID: 38481222 PMCID: PMC10936021 DOI: 10.1186/s12934-024-02352-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/01/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Spathaspora passalidarum is a yeast with the highly effective capability of fermenting several monosaccharides in lignocellulosic hydrolysates, especially xylose. However, this yeast was shown to be sensitive to furfural released during pretreatment and hydrolysis processes of lignocellulose biomass. We aimed to improve furfural tolerance in a previously isolated S. passalidarum CMUWF1-2, which presented thermotolerance and no detectable glucose repression, via adaptive laboratory evolution (ALE). RESULTS An adapted strain, AF2.5, was obtained from 17 sequential transfers of CMUWF1-2 in YPD broth with gradually increasing furfural concentration. Strain AF2.5 could tolerate higher concentrations of furfural, ethanol and 5-hydroxymethyl furfuraldehyde (HMF) compared with CMUWF1-2 while maintaining the ability to utilize glucose and other sugars simultaneously. Notably, the lag phase of AF2.5 was 2 times shorter than that of CMUWF1-2 in the presence of 2.0 g/l furfural, which allowed the highest ethanol titers to be reached in a shorter period. To investigate more in-depth effects of furfural, intracellular reactive oxygen species (ROS) accumulation was observed and, in the presence of 2.0 g/l furfural, AF2.5 exhibited 3.41 times less ROS accumulation than CMUWF1-2 consistent with the result from nuclear chromatins diffusion, which the cells number of AF2.5 with diffuse chromatins was also 1.41 and 1.24 times less than CMUWF1-2 at 24 and 36 h, respectively. CONCLUSIONS An enhanced furfural tolerant strain of S. passalidarum was achieved via ALE techniques, which shows faster and higher ethanol productivity than that of the wild type. Not only furfural tolerance but also ethanol and HMF tolerances were improved.
Collapse
Affiliation(s)
- Thanyalak Saengphing
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Pachara Sattayawat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Thitisuda Kalawil
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nakarin Suwannarach
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jaturong Kumla
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Mamoru Yamada
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan
- Life Science, Graduate School of Science and Technology for Innovation, Yamaguchi University, Ube, 755-8611, Japan
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | | | - Nadchanok Rodrussamee
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
2
|
Duarte M, Carvalho MJ, de Carvalho NM, Azevedo-Silva J, Mendes A, Ribeiro IP, Fernandes JC, Oliveira ALS, Oliveira C, Pintado M, Amaro A, Madureira AR. Skincare potential of a sustainable postbiotic extract produced through sugarcane straw fermentation by Saccharomyces cerevisiae. Biofactors 2023; 49:1038-1060. [PMID: 37317790 DOI: 10.1002/biof.1975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/14/2023] [Indexed: 06/16/2023]
Abstract
Postbiotics are defined as a "preparation of inanimate microorganisms and/or their components that confers a health benefit on the host." They can be produced by fermentation, using culture media with glucose (carbon source), and lactic acid bacteria of the genus Lactobacillus, and/or yeast, mainly Saccharomyces cerevisiae as fermentative microorganisms. Postbiotics comprise different metabolites, and have important biological properties (antioxidant, anti-inflammatory, etc.), thus their cosmetic application should be considered. During this work, the postbiotics production was carried out by fermentation with sugarcane straw, as a source of carbon and phenolic compounds, and as a sustainable process to obtain bioactive extracts. For the production of postbiotics, a saccharification process was carried out with cellulase at 55°C for 24 h. Fermentation was performed sequentially after saccharification at 30°C, for 72 h, using S. cerevisiae. The cells-free extract was characterized regarding its composition, antioxidant activity, and skincare potential. Its use was safe at concentrations below ~20 mg mL-1 (extract's dry weight in deionized water) for keratinocytes and ~ 7.5 mg mL-1 for fibroblasts. It showed antioxidant activity, with ABTS IC50 of 1.88 mg mL-1 , and inhibited elastase and tyrosinase activities by 83.4% and 42.4%, respectively, at the maximum concentration tested (20 mg mL-1 ). In addition, it promoted the production of cytokeratin 14, and demonstrated anti-inflammatory activity at a concentration of 10 mg mL-1 . In the skin microbiota of human volunteers, the extract inhibited Cutibacterium acnes and the Malassezia genus. Shortly, postbiotics were successfully produced using sugarcane straw, and showed bioactive properties that potentiate their use in cosmetic/skincare products.
Collapse
Affiliation(s)
- Marco Duarte
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Maria João Carvalho
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Nelson Mota de Carvalho
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - João Azevedo-Silva
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Adélia Mendes
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Inês Pinto Ribeiro
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
- Amyris Bio Products Portugal, Unipessoal Lda, Porto, Portugal
| | - João Carlos Fernandes
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Ana L S Oliveira
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Carla Oliveira
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Manuela Pintado
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Ana Amaro
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Ana Raquel Madureira
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| |
Collapse
|
3
|
Takagi H. Molecular mechanisms and highly functional development for stress tolerance of the yeast Saccharomyces cerevisiae. Biosci Biotechnol Biochem 2021; 85:1017-1037. [PMID: 33836532 DOI: 10.1093/bbb/zbab022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/25/2021] [Indexed: 12/25/2022]
Abstract
In response to environmental stress, microorganisms adapt to drastic changes while exerting cellular functions by controlling gene expression, metabolic pathways, enzyme activities, and protein-protein interactions. Microbial cells that undergo a fermentation process are subjected to stresses, such as high temperature, freezing, drying, changes in pH and osmotic pressure, and organic solvents. Combinations of these stresses that continue over long terms often inhibit cells' growth and lead to their death, markedly limiting the useful functions of microorganisms (eg their fermentation ability). Thus, high stress tolerance of cells is required to improve productivity and add value to fermented/brewed foods and biofuels. This review focuses on stress tolerance mechanisms, including l-proline/l-arginine metabolism, ubiquitin system, and transcription factors, and the functional development of the yeast Saccharomyces cerevisiae, which has been used not only in basic science as a model of higher eukaryotes but also in fermentation processes for making alcoholic beverages, food products, and bioethanol.
Collapse
Affiliation(s)
- Hiroshi Takagi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| |
Collapse
|
4
|
Elbakush AE, Güven D. Evaluation of ethanol tolerance in relation to intracellular storage compounds of Saccharomyces cerevisiae using FT-IR spectroscopy. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.11.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
5
|
Yao S, Hao L, Zhou R, Jin Y, Huang J, Wu C. Co-culture with Tetragenococcus halophilus improved the ethanol tolerance of Zygosaccharomyces rouxii by maintaining cell surface properties. Food Microbiol 2021; 97:103750. [PMID: 33653523 DOI: 10.1016/j.fm.2021.103750] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/31/2020] [Accepted: 01/18/2021] [Indexed: 02/08/2023]
Abstract
The accumulation of ethanol has a negative effect on the viability and fermentation performance of microorganisms during the production of fermented foods because of its toxicity. In this study, we investigated the effect of co-culture with Tetragenococcus halophilus on ethanol stress resistance of Zygosaccharomyces rouxii. The result showed that co-culture with T. halophilus promoted cell survival of Z. rouxii under ethanol stress, and the tolerance improved with increasing co-culture time when ethanol content was 8%. Physiological analysis showed that the co-cultured Z. rouxii cells maintained higher intracellular content of trehalose and amino acids including tyrosine, tryptophan, arginine and proline after 8% ethanol stress for 90 min. The membrane integrity analysis and biophysical analysis of the cell surface indicated that the presence of ethanol resulted in cell membrane damage and changes of Young's modulus value and roughness of cell surface. While the co-cultured Z. rouxii cells exhibited better membrane integrity, stiffer and smoother cell surface than single-cultured cells under ethanol stress. As for transcriptomic analyses, the genes involved in unsaturated fatty acid biosynthesis, trehalose biosynthesis, various types of N-glycan biosynthesis, inositol phosphate metabolism, MAPK signaling pathway and tight junction had higher expression in co-cultured Z. rouxii cells with down-regulation of majority of gene expression after stress. And these genes may function in the improvement of ethanol tolerance of Z. rouxii in co-culture.
Collapse
Affiliation(s)
- Shangjie Yao
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Liying Hao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
6
|
Lahue C, Madden AA, Dunn RR, Smukowski Heil C. History and Domestication of Saccharomyces cerevisiae in Bread Baking. Front Genet 2020; 11:584718. [PMID: 33262788 PMCID: PMC7686800 DOI: 10.3389/fgene.2020.584718] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/13/2020] [Indexed: 11/30/2022] Open
Abstract
The yeast Saccharomyces cerevisiae has been instrumental in the fermentation of foods and beverages for millennia. In addition to fermentations like wine, beer, cider, sake, and bread, S. cerevisiae has been isolated from environments ranging from soil and trees, to human clinical isolates. Each of these environments has unique selection pressures that S. cerevisiae must adapt to. Bread dough, for example, requires S. cerevisiae to efficiently utilize the complex sugar maltose; tolerate osmotic stress due to the semi-solid state of dough, high salt, and high sugar content of some doughs; withstand various processing conditions, including freezing and drying; and produce desirable aromas and flavors. In this review, we explore the history of bread that gave rise to modern commercial baking yeast, and the genetic and genomic changes that accompanied this. We illustrate the genetic and phenotypic variation that has been documented in baking strains and wild strains, and how this variation might be used for baking strain improvement. While we continue to improve our understanding of how baking strains have adapted to bread dough, we conclude by highlighting some of the remaining open questions in the field.
Collapse
Affiliation(s)
- Caitlin Lahue
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States
| | - Anne A. Madden
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States
| | - Robert R. Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Caiti Smukowski Heil
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
7
|
Roscini L, Conti A, Casagrande Pierantoni D, Robert V, Corte L, Cardinali G. Do Metabolomics and Taxonomic Barcode Markers Tell the Same Story about the Evolution of Saccharomyces sensu stricto Complex in Fermentative Environments? Microorganisms 2020; 8:microorganisms8081242. [PMID: 32824262 PMCID: PMC7463906 DOI: 10.3390/microorganisms8081242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/08/2020] [Accepted: 08/13/2020] [Indexed: 01/07/2023] Open
Abstract
Yeast taxonomy was introduced based on the idea that physiological properties would help discriminate species, thus assuming a strong link between physiology and taxonomy. However, the instability of physiological characteristics within species configured them as not ideal markers for species delimitation, shading the importance of physiology and paving the way to the DNA-based taxonomy. The hypothesis of reconnecting taxonomy with specific traits from phylogenies has been successfully explored for Bacteria and Archaea, suggesting that a similar route can be traveled for yeasts. In this framework, thirteen single copy loci were used to investigate the predictability of complex Fourier Transform InfaRed spectroscopy (FTIR) and High-performance Liquid Chromatography–Mass Spectrometry (LC-MS) profiles of the four historical species of the Saccharomyces sensu stricto group, both on resting cells and under short-term ethanol stress. Our data show a significant connection between the taxonomy and physiology of these strains. Eight markers out of the thirteen tested displayed high correlation values with LC-MS profiles of cells in resting condition, confirming the low efficacy of FTIR in the identification of strains of closely related species. Conversely, most genetic markers displayed increasing trends of correlation with FTIR profiles as the ethanol concentration increased, according to their role in the cellular response to different type of stress.
Collapse
Affiliation(s)
- Luca Roscini
- Department of Pharmaceutical Sciences, University of Perugia, 06121 Perugia, Italy; (L.R.); (A.C.); (D.C.P.); (G.C.)
| | - Angela Conti
- Department of Pharmaceutical Sciences, University of Perugia, 06121 Perugia, Italy; (L.R.); (A.C.); (D.C.P.); (G.C.)
| | - Debora Casagrande Pierantoni
- Department of Pharmaceutical Sciences, University of Perugia, 06121 Perugia, Italy; (L.R.); (A.C.); (D.C.P.); (G.C.)
| | - Vincent Robert
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands;
| | - Laura Corte
- Department of Pharmaceutical Sciences, University of Perugia, 06121 Perugia, Italy; (L.R.); (A.C.); (D.C.P.); (G.C.)
- Correspondence: ; Tel.: +39-0755856478
| | - Gianluigi Cardinali
- Department of Pharmaceutical Sciences, University of Perugia, 06121 Perugia, Italy; (L.R.); (A.C.); (D.C.P.); (G.C.)
| |
Collapse
|
8
|
Cheng HJ, Sun YH, Chang HW, Cui FF, Xue HJ, Shen YB, Wang M, Luo JM. Compatible solutes adaptive alterations in Arthrobacter simplex during exposure to ethanol, and the effect of trehalose on the stress resistance and biotransformation performance. Bioprocess Biosyst Eng 2020; 43:895-908. [PMID: 31993798 DOI: 10.1007/s00449-020-02286-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 01/10/2020] [Indexed: 01/19/2023]
Abstract
Ethanol-tolerant Arthrobacter simplex is desirable since ethanol facilitates hydrophobic substrates dissolution on an industrial scale. Herein, alterations in compatible solutes were investigated under ethanol stress. The results showed that the amount of trehalose and glycerol increased while that of glutamate and proline decreased. The trehalose protectant role was verified and its concentration was positively related to the degree of cell tolerance. otsA, otsB and treS, three trehalose biosynthesis genes in A. simplex, also enhanced Escherichia coli stress tolerance, but the increased tolerance was dependent on the type and level of the stress. A. simplex strains accumulating trehalose showed a higher productivity in systems containing more ethanol and substrate because of better viability. The underlying mechanisms of trehalose were involved in better cell integrity, higher membrane stability, stronger reactive oxygen species scavenging capacity and higher energy level. Therefore, trehalose was a general protectant and the upregulation of its biosynthesis by genetic modification enhanced cell stress tolerance, consequently promoted productivity.
Collapse
Affiliation(s)
- Hong-Jin Cheng
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 PO Box, No 29, St No13 Tianjin Economic-Technological Development Area (TEDA), Tianjin, 300457, People's Republic of China
| | - Ya-Hua Sun
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 PO Box, No 29, St No13 Tianjin Economic-Technological Development Area (TEDA), Tianjin, 300457, People's Republic of China
| | - Han-Wen Chang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 PO Box, No 29, St No13 Tianjin Economic-Technological Development Area (TEDA), Tianjin, 300457, People's Republic of China
| | - Fang-Fang Cui
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 PO Box, No 29, St No13 Tianjin Economic-Technological Development Area (TEDA), Tianjin, 300457, People's Republic of China
| | - Hai-Jie Xue
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 PO Box, No 29, St No13 Tianjin Economic-Technological Development Area (TEDA), Tianjin, 300457, People's Republic of China
| | - Yan-Bing Shen
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 PO Box, No 29, St No13 Tianjin Economic-Technological Development Area (TEDA), Tianjin, 300457, People's Republic of China
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 PO Box, No 29, St No13 Tianjin Economic-Technological Development Area (TEDA), Tianjin, 300457, People's Republic of China
| | - Jian-Mei Luo
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, 89 PO Box, No 29, St No13 Tianjin Economic-Technological Development Area (TEDA), Tianjin, 300457, People's Republic of China. .,Ministry of Education Key Laboratory of Molecular Microbiology and Technology, Nankai University, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
9
|
Mukai Y, Kamei Y, Liu X, Jiang S, Sugimoto Y, Mat Nanyan NSB, Watanabe D, Takagi H. Proline metabolism regulates replicative lifespan in the yeast Saccharomyces cerevisiae. MICROBIAL CELL 2019; 6:482-490. [PMID: 31646149 PMCID: PMC6780008 DOI: 10.15698/mic2019.10.694] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In many plants and microorganisms, intracellular proline has a protective role against various stresses, including heat-shock, oxidation and osmolarity. Environmental stresses induce cellular senescence in a variety of eukaryotes. Here we showed that intracellular proline regulates the replicative lifespan in the budding yeast Saccharomyces cerevisiae. Deletion of the proline oxidase gene PUT1 and expression of the γ-glutamate kinase mutant gene PRO1-I150T that is less sensitive to feedback inhibition accumulated proline and extended the replicative lifespan of yeast cells. Inversely, disruption of the proline biosynthetic genes PRO1, PRO2, and CAR2 decreased stationary proline level and shortened the lifespan of yeast cells. Quadruple disruption of the proline transporter genes unexpectedly did not change intracellular proline levels and replicative lifespan. Overexpression of the stress-responsive transcription activator gene MSN2 reduced intracellular proline levels by inducing the expression of PUT1, resulting in a short lifespan. Thus, the intracellular proline levels at stationary phase was positively correlated with the replicative lifespan. Furthermore, multivariate analysis of amino acids in yeast mutants deficient in proline metabolism showed characteristic metabolic profiles coincident with longevity: acidic and basic amino acids and branched-chain amino acids positively contributed to the replicative lifespan. These results allude to proline metabolism having a physiological role in maintaining the lifespan of yeast cells.
Collapse
Affiliation(s)
- Yukio Mukai
- Department of Frontier Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829, Japan
| | - Yuka Kamei
- Department of Frontier Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829, Japan
| | - Xu Liu
- Department of Frontier Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829, Japan
| | - Shan Jiang
- Department of Frontier Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829, Japan
| | - Yukiko Sugimoto
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Noreen Suliani Binti Mat Nanyan
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Daisuke Watanabe
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Hiroshi Takagi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
10
|
Proteomics insights into the responses of Saccharomyces cerevisiae during mixed-culture alcoholic fermentation with Lachancea thermotolerans. FEMS Microbiol Ecol 2019; 95:5550729. [DOI: 10.1093/femsec/fiz126] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 08/14/2019] [Indexed: 01/25/2023] Open
Abstract
ABSTRACT
The response of Saccharomyces cerevisiae to cocultivation with Lachancea thermotolerans during alcoholic fermentations has been investigated using tandem mass tag (TMT)-based proteomics. At two key time-points, S. cerevisiae was sorted from single S. cerevisiae fermentations and from mixed fermentations using flow cytometry sorting. Results showed that the purity of sorted S. cerevisiae was above 96% throughout the whole mixed-culture fermentation, thereby validating our sorting methodology. By comparing protein expression of S. cerevisiae with and without L. thermotolerans, 26 proteins were identified as significantly regulated proteins at the early death phase (T1), and 32 significantly regulated proteins were identified at the late death phase (T2) of L. thermotolerans in mixed cultures. At T1, proteins involved in endocytosis, increasing nutrient availability, cell rescue and resistance to stresses were upregulated, and proteins involved in proline synthesis and apoptosis were downregulated. At T2, proteins involved in protein synthesis and stress responses were up- and downregulated, respectively. These data indicate that S. cerevisiae was stressed by the presence of L. thermotolerans at T1, using both defensive and fighting strategies to keep itself in a dominant position, and that it at T2 was relieved from stress, perhaps increasing its enzymatic machinery to ensure better survival.
Collapse
|
11
|
Takagi H. Metabolic regulatory mechanisms and physiological roles of functional amino acids and their applications in yeast. Biosci Biotechnol Biochem 2019; 83:1449-1462. [PMID: 30712454 DOI: 10.1080/09168451.2019.1576500] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In yeast, amino acid metabolism and its regulatory mechanisms vary under different growth environments by regulating anabolic and catabolic processes, including uptake and export, and the metabolic styles form a complicated but robust network. There is also crosstalk with various metabolic pathways, products and signal molecules. The elucidation of metabolic regulatory mechanisms and physiological roles is important fundamental research for understanding life phenomenon. In terms of industrial application, the control of amino acid composition and content is expected to contribute to an improvement in productivity, and to add to the value of fermented foods, alcoholic beverages, bioethanol, and other valuable compounds (proteins and amino acids, etc.). This review article mainly describes our research in constructing yeast strains with high functionality, focused on the metabolic regulatory mechanisms and physiological roles of "functional amino acids", such as l-proline, l-arginine, l-leucine, l-valine, l-cysteine, and l-methionine, found in yeast.
Collapse
Affiliation(s)
- Hiroshi Takagi
- a Division of Biological Science, Graduate School of Science and Technology , Nara Institute of Science and Technology , Nara , Japan
| |
Collapse
|
12
|
Alvim MCT, Vital CE, Barros E, Vieira NM, da Silveira FA, Balbino TR, Diniz RHS, Brito AF, Bazzolli DMS, de Oliveira Ramos HJ, da Silveira WB. Ethanol stress responses of Kluyveromyces marxianus CCT 7735 revealed by proteomic and metabolomic analyses. Antonie van Leeuwenhoek 2019; 112:827-845. [DOI: 10.1007/s10482-018-01214-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/10/2018] [Indexed: 10/27/2022]
|
13
|
Mo W, Wang M, Zhan R, Yu Y, He Y, Lu H. Kluyveromyces marxianus developing ethanol tolerance during adaptive evolution with significant improvements of multiple pathways. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:63. [PMID: 30949239 PMCID: PMC6429784 DOI: 10.1186/s13068-019-1393-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/06/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND Kluyveromyces marxianus, the known fastest-growing eukaryote on the earth, has remarkable thermotolerance and capacity to utilize various agricultural residues to produce low-cost bioethanol, and hence is industrially important to resolve the imminent energy shortage crisis. Currently, the poor ethanol tolerance hinders its operable application in the industry, and it is necessary to improve K. marxianus' ethanol resistance and unravel the underlying systematical mechanisms. However, this has been seldom reported to date. RESULTS We carried out a wild-type haploid K. marxianus FIM1 in adaptive evolution in 6% (v/v) ethanol. After 100-day evolution, the KM-100d population was obtained; its ethanol tolerance increased up to 10% (v/v). Interestingly, DNA analysis and RNA-seq analysis showed that KM-100d yeasts' ethanol tolerance improvement was not due to ploidy change or meaningful mutations, but founded on transcriptional reprogramming in a genome-wide range. Even growth in an ethanol-free medium, many genes in KM-100d maintained their up-regulation. Especially, pathways of ethanol consumption, membrane lipid biosynthesis, anti-osmotic pressure, anti-oxidative stress, and protein folding were generally up-regulated in KM-100d to resist ethanol. Notably, enhancement of the secretory pathway may be the new strategy KM-100d developed to anti-osmotic pressure, instead of the traditional glycerol production way in S. cerevisiae. Inferred from the transcriptome data, besides ethanol tolerance, KM-100d may also develop the ability to resist osmotic, oxidative, and thermic stresses, and this was further confirmed by the cell viability test. Furthermore, under such environmental stresses, KM-100d greatly improved ethanol production than the original strain. In addition, we found that K. marxianus may adopt distinct routes to resist different ethanol concentrations. Trehalose biosynthesis was required for low ethanol, while sterol biosynthesis and the whole secretory pathway were activated for high ethanol. CONCLUSIONS This study reveals that ethanol-driven laboratory evolution could improve K. marxianus' ethanol tolerance via significant up-regulation of multiple pathways including anti-osmotic, anti-oxidative, and anti-thermic processes, and indeed consequently raised ethanol yield in industrial high-temperature and high-ethanol circumstance. Our findings give genetic clues for further rational optimization of K. marxianus' ethanol production, and also partly confirm the positively correlated relationship between yeast's ethanol tolerance and production.
Collapse
Affiliation(s)
- Wenjuan Mo
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, 200438 China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438 China
| | - Mengzhu Wang
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, 200438 China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438 China
| | - Rongrong Zhan
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, 200438 China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438 China
| | - Yao Yu
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, 200438 China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438 China
| | - Yungang He
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032 China
| | - Hong Lu
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, 200438 China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438 China
| |
Collapse
|
14
|
Saini P, Beniwal A, Kokkiligadda A, Vij S. Response and tolerance of yeast to changing environmental stress during ethanol fermentation. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.07.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Luo J, Song Z, Ning J, Cheng Y, Wang Y, Cui F, Shen Y, Wang M. The ethanol-induced global alteration in Arthrobacter simplex and its mutants with enhanced ethanol tolerance. Appl Microbiol Biotechnol 2018; 102:9331-9350. [DOI: 10.1007/s00253-018-9301-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/22/2018] [Accepted: 08/03/2018] [Indexed: 11/27/2022]
|
16
|
Ji H, Lu X, Zong H, Zhuge B. γ-aminobutyric acid accumulation enhances the cell growth of Candida glycerinogenes under hyperosmotic conditions. J GEN APPL MICROBIOL 2018. [PMID: 29526924 DOI: 10.2323/jgam.2017.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
γ-aminobutyric acid (GABA) is an important non-protein amino acid involved in the response to various environmental stresses in plant cells. The objectives of this study was to test the hypothesis that intracellular accumulation of GABA improves osmotic tolerance in the unconventional yeast Candida glycerinogenes. In C. glycerinogenes, the expression of UGA4 encoding GABA-specific permease is highly induced by hyperosmotic stress. Exogenous GABA application enhanced intracellular GABA accumulation and promoted cell growth under hyperosmotic conditions. Overexpression of the glutamate decarboxylase gene GAD1 resulted in an increased intracellular GABA and improvement in cell growth under hyperosmotic conditions. These results indicated that improving intracellular GABA accumulation of C. glycerinogenes, either through exogenous application or cellular synthesis, is available for improving the tolerance to hyperosmotic stress. We demonstrate that GABA accumulation plays an important role in osmotic stress resistance of the unconventional yeast C. glycerinogenes.
Collapse
Affiliation(s)
- Hao Ji
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University
| | - Xinyao Lu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University
| | - Hong Zong
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University
| | - Bin Zhuge
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University
| |
Collapse
|
17
|
|
18
|
Miller KJ, Box WG, Jenkins DM, Boulton CA, Linforth R, Smart KA. Does Generation Number Matter? The Impact of Repitching on Wort Utilization. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2013-1003-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Katherine J. Miller
- Division of Food Sciences, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Wendy G. Box
- Division of Food Sciences, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, LE12 5RD, UK
| | - David M. Jenkins
- Division of Food Sciences, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Christopher A. Boulton
- Division of Food Sciences, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Robert Linforth
- Division of Food Sciences, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Katherine A. Smart
- Division of Food Sciences, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, LE12 5RD, UK
- SABMiller plc, SABMiller House, Woking, Surrey GU21 6HS, UK
| |
Collapse
|
19
|
Gibson BR, Boulton CA, Box WG, Graham NS, Lawrence SJ, Linforth RST, Smart KA. Amino Acid Uptake and Yeast Gene Transcription during Industrial Brewery Fermentation. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2009-0720-01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Brian R. Gibson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| | - Chris A. Boulton
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| | - Wendy G. Box
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| | - Neil S. Graham
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| | - Stephen J. Lawrence
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| | - Robert S. T. Linforth
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| | - Katherine A. Smart
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| |
Collapse
|
20
|
Oshoma CE, Phister TG, Powell CD, Smart KA, Du C. Proline as a Formic Acid Stress Protectant During Fermentation of Glucose to Ethanol bySaccharomycesspp. Ind Biotechnol (New Rochelle N Y) 2017. [DOI: 10.1089/ind.2017.0017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Cyprian E. Oshoma
- Department of Microbiology, University of Benin, Benin City, Nigeria
- Bioenergy and Brewing Science Building School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | | | - Chris D. Powell
- Bioenergy and Brewing Science Building School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | | | - Chenyu Du
- Bioenergy and Brewing Science Building School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
- School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| |
Collapse
|
21
|
Deparis Q, Claes A, Foulquié-Moreno MR, Thevelein JM. Engineering tolerance to industrially relevant stress factors in yeast cell factories. FEMS Yeast Res 2017; 17:3861662. [PMID: 28586408 PMCID: PMC5812522 DOI: 10.1093/femsyr/fox036] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/04/2017] [Indexed: 01/01/2023] Open
Abstract
The main focus in development of yeast cell factories has generally been on establishing optimal activity of heterologous pathways and further metabolic engineering of the host strain to maximize product yield and titer. Adequate stress tolerance of the host strain has turned out to be another major challenge for obtaining economically viable performance in industrial production. Although general robustness is a universal requirement for industrial microorganisms, production of novel compounds using artificial metabolic pathways presents additional challenges. Many of the bio-based compounds desirable for production by cell factories are highly toxic to the host cells in the titers required for economic viability. Artificial metabolic pathways also turn out to be much more sensitive to stress factors than endogenous pathways, likely because regulation of the latter has been optimized in evolution in myriads of environmental conditions. We discuss different environmental and metabolic stress factors with high relevance for industrial utilization of yeast cell factories and the experimental approaches used to engineer higher stress tolerance. Improving stress tolerance in a predictable manner in yeast cell factories should facilitate their widespread utilization in the bio-based economy and extend the range of products successfully produced in large scale in a sustainable and economically profitable way.
Collapse
Affiliation(s)
- Quinten Deparis
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, B-3001 KU Leuven, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Arne Claes
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, B-3001 KU Leuven, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Maria R. Foulquié-Moreno
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, B-3001 KU Leuven, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Johan M. Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, B-3001 KU Leuven, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| |
Collapse
|
22
|
Mahipant G, Paemanee A, Roytrakul S, Kato J, Vangnai AS. The significance of proline and glutamate on butanol chaotropic stress in Bacillus subtilis 168. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:122. [PMID: 28503197 PMCID: PMC5425972 DOI: 10.1186/s13068-017-0811-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 05/04/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Butanol is an intensively used industrial solvent and an attractive alternative biofuel, but the bioproduction suffers from its high toxicity. Among the native butanol producers and heterologous butanol-producing hosts, Bacillus subtilis 168 exhibited relatively higher butanol tolerance. Nevertheless, organic solvent tolerance mechanisms in Bacilli and Gram-positive bacteria have relatively less information. Thus, this study aimed to elucidate butanol stress responses that may involve in unique tolerance of B. subtilis 168 to butanol and other alcohol biocommodities. RESULTS Using comparative proteomics approach and molecular analysis of butanol-challenged B. subtilis 168, 108 butanol-responsive proteins were revealed, and classified into seven groups according to their biological functions. While parts of them may be similar to the proteins reportedly involved in solvent stress response in other Gram-positive bacteria, significant role of proline in the proline-glutamate-arginine metabolism was substantiated. Detection of intracellular proline and glutamate accumulation, as well as glutamate transient conversion during butanol exposure confirmed their necessity, especially proline, for cellular butanol tolerance. Disruption of the particular genes in proline biosynthesis pathways clarified the essential role of the anabolic ProB-ProA-ProI system over the osmoadaptive ProH-ProA-ProJ system for cellular protection in response to butanol exposure. Molecular modifications to increase gene dosage for proline biosynthesis as well as for glutamate acquisition enhanced butanol tolerance of B. subtilis 168 up to 1.8% (vol/vol) under the conditions tested. CONCLUSION This work revealed the important role of proline as an effective compatible solute that is required to protect cells against butanol chaotropic effect and to maintain cellular functions in B. subtilis 168 during butanol exposure. Nevertheless, the accumulation of intracellular proline against butanol stress required a metabolic conversion of glutamate through the specific biosynthetic ProB-ProA-ProI route. Thus, exogenous addition of glutamate, but not proline, enhanced butanol tolerance. These findings serve as a practical knowledge to enhance B. subtilis 168 butanol tolerance, and demonstrate means to engineer the bacterial host to promote higher butanol/alcohol tolerance of B. subtilis 168 for the production of butanol and other alcohol biocommodities.
Collapse
Affiliation(s)
- Gumpanat Mahipant
- Biological Sciences Program, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Atchara Paemanee
- Proteomics Research Laboratory, Genome Institute Biotechnology, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, 12120 Thailand
| | - Sittiruk Roytrakul
- Proteomics Research Laboratory, Genome Institute Biotechnology, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, 12120 Thailand
| | - Junichi Kato
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Hiroshima, 739-8530 Japan
| | - Alisa S. Vangnai
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand
- Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, 10330 Thailand
| |
Collapse
|
23
|
Auesukaree C. Molecular mechanisms of the yeast adaptive response and tolerance to stresses encountered during ethanol fermentation. J Biosci Bioeng 2017; 124:133-142. [PMID: 28427825 DOI: 10.1016/j.jbiosc.2017.03.009] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/16/2017] [Indexed: 12/28/2022]
Abstract
During ethanol fermentation, yeast cells encounter various stresses including sugar substrates-induced high osmolarity, increased ethanol concentration, oxygen metabolism-derived reactive oxygen species (ROS), and elevated temperature. To cope with these fermentation-associated stresses, appropriate adaptive responses are required to prevent stress-induced cellular dysfunctions and to acquire stress tolerances. This review will focus on the cellular effects of these stresses, molecular basis of the adaptive response to each stress, and the cellular mechanisms contributing to stress tolerance. Since a single stress can cause diverse effects, including specific and non-specific effects, both specific and general stress responses are needed for achieving comprehensive protection. For instance, the high-osmolarity glycerol (HOG) pathway and the Yap1/Skn7-mediated pathways are specifically involved in responses to osmotic and oxidative stresses, respectively. On the other hand, due to the common effect of these stresses on disturbing protein structures, the upregulation of heat shock proteins (HSPs) and trehalose is induced upon exposures to all of these stresses. A better understanding of molecular mechanisms underlying yeast tolerance to these fermentation-associated stresses is essential for improvement of yeast stress tolerance by genetic engineering approaches.
Collapse
Affiliation(s)
- Choowong Auesukaree
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok 10400, Thailand.
| |
Collapse
|
24
|
Navarro-Tapia E, Pérez-Torrado R, Querol A. Ethanol Effects Involve Non-canonical Unfolded Protein Response Activation in Yeast Cells. Front Microbiol 2017; 8:383. [PMID: 28326077 PMCID: PMC5339281 DOI: 10.3389/fmicb.2017.00383] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/23/2017] [Indexed: 12/25/2022] Open
Abstract
The unfolded protein response (UPR) is a conserved intracellular signaling pathway that controls transcription of endoplasmic reticulum (ER) homeostasis related genes. Ethanol stress has been recently described as an activator of the UPR response in yeast Saccharomyces cerevisiae, but very little is known about the causes of this activation. Although some authors ensure that the UPR is triggered by the unfolded proteins generated by ethanol in the cell, there are studies which demonstrate that protein denaturation occurs at higher ethanol concentrations than those used to trigger the UPR. Here, we studied UPR after ethanol stress by three different approaches and we concluded that unfolded proteins do not accumulate in the ER under. We also ruled out inositol depletion as an alternative mechanism to activate the UPR under ethanol stress discarding that ethanol effects on the cell decreased inositol levels by different methods. All these data suggest that ethanol, at relatively low concentrations, does not cause unfolded proteins in the yeasts and UPR activation is likely due to other unknown mechanism related with a restructuring of ER membrane due to the effect of ethanol.
Collapse
Affiliation(s)
| | | | - Amparo Querol
- Instituto de Agroquímica y Tecnología de los Alimentos-CSIC Valencia, Spain
| |
Collapse
|
25
|
Protective Effects of Arginine on Saccharomyces cerevisiae Against Ethanol Stress. Sci Rep 2016; 6:31311. [PMID: 27507154 PMCID: PMC4979094 DOI: 10.1038/srep31311] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 07/18/2016] [Indexed: 11/09/2022] Open
Abstract
Yeast cells are challenged by various environmental stresses in the process of industrial fermentation. As the currently main organism for bio-ethanol production, Saccharomyces cerevisiae suffers from ethanol stress. Some amino acids have been reported to be related to yeast tolerance to stresses. Here the relationship between arginine and yeast response to ethanol stress was investigated. Marked inhibitions of ethanol on cell growth, expression of genes involved in arginine biosynthesis and intracellular accumulation of arginine were observed. Furthermore, extracellular addition of arginine can abate the ethanol damage largely. To further confirm the protective effects of arginine on yeast cells, yeast strains with different levels of arginine content were constructed by overexpression of ARG4 involved in arginine biosynthesis or CAR1 encoding arginase. Intracellular arginine was increased by 18.9% or 13.1% respectively by overexpression of ARG4 or disruption of CAR1, which enhanced yeast tolerance to ethanol stress. Moreover, a 41.1% decrease of intracellular arginine was observed in CAR1 overexpressing strain, which made yeast cells keenly sensitive to ethanol. Further investigations indicated that arginine protected yeast cells from ethanol damage by maintaining the integrity of cell wall and cytoplasma membrane, stabilizing the morphology and function of organellae due to low ROS generation.
Collapse
|
26
|
Takagi H, Taguchi J, Kaino T. Proline accumulation protects Saccharomyces cerevisiae cells in stationary phase from ethanol stress by reducing reactive oxygen species levels. Yeast 2016; 33:355-63. [PMID: 26833688 DOI: 10.1002/yea.3154] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 01/22/2016] [Accepted: 01/23/2016] [Indexed: 11/12/2022] Open
Abstract
During fermentation processes, Saccharomyces cerevisiae cells are exposed to multiple stresses, including a high concentration of ethanol that represents toxicity through intracellular reactive oxygen species (ROS) generation. We previously reported that proline protected yeast cells from damage caused by various stresses, such as freezing and ethanol. As an anti-oxidant, proline is suggested to scavenge intracellular ROS. In this study, we examined the role of intracellular proline during ethanol treatment in S. cerevisiae strains that accumulate different concentrations of proline. When cultured in YPD medium, there was a significant accumulation of proline in the put1 mutant strain, which is deficient in proline oxidase, in the stationary phase. Expression of the mutant PRO1 gene, which encodes the γ-glutamyl kinase variant (Asp154Asn or Ile150Thr) with desensitization to feedback inhibition by proline in the put1 mutant strain, showed a prominent increase in proline content as compared with that of the wild-type strain. The oxidation level was clearly increased in wild-type cells after exposure to ethanol, indicating that the generation of ROS occurred. Interestingly, proline accumulation significantly reduces the ROS level and increases the survival rate of yeast cells in the stationary phase under ethanol stress conditions. However, there was not a clear correlation between proline content and survival rate in yeast cells. An appropriate level of intracellular proline in yeast might be important for its stress-protective effect. Hence, the engineering of proline metabolism could be promising for breeding stress-tolerant industrial yeast strains. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Hiroshi Takagi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Junpei Taguchi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Tomohiro Kaino
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
| |
Collapse
|
27
|
Dmytruk KV, Kshanovska BV, Abbas CA, Sibirny A. New methods for positive selection of yeast ethanol overproducing mutants. ACTA ACUST UNITED AC 2016. [DOI: 10.1515/bioeth-2015-0003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AbstractFuel ethanol is an environmentally friendly alternative liquid fuel to the widely used petroleum derived transportation liquid fuels. Since 2007, worldwide fuel ethanol production has increased. Currently ethanol is primarily produced from carbohydrates such as sucrose and starch by fermentation using the yeast Saccharomyces cerevisiae. In this work, new approaches for the selection of S. cerevisiae strains with increased ethanol production from hydrolyzed corn meal are described. An industrial production strain of Saccharomyces cerevisiae AS400 was subjected to positive selection of mutants resistant to toxic concentrations of oxythiamine, trehalose, 3-bromopyruvate, glyoxylic acid, and glucosamine. The selected mutants are characterized by 5-8% increase in ethanol yield (g g-1 of consumed glucose) as compared to the parental industrial ethanol-producing strain. A three-step selection approach that consisted of the use of glyoxylic acid, glucosamine and bromopyruvate resulted in a 12% increase in ethanol yield during fermentation on industrial media. These results indicate that the selected strains are promising candidates for industrial ethanol production.
Collapse
|
28
|
Hu B, Yang YM, Beck DAC, Wang QW, Chen WJ, Yang J, Lidstrom ME, Yang S. Comprehensive molecular characterization of Methylobacterium extorquens AM1 adapted for 1-butanol tolerance. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:84. [PMID: 27069508 PMCID: PMC4827201 DOI: 10.1186/s13068-016-0497-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 03/25/2016] [Indexed: 05/09/2023]
Abstract
BACKGROUND The toxicity of alcohols is one of the major roadblocks of biological fermentation for biofuels production. Methylobacterium extorquens AM1, a facultative methylotrophic α-proteobacterium, has been engineered to generate 1-butanol from cheap carbon feedstocks through a synthetic metabolic pathway. However, M. extorquens AM1 is vulnerable to solvent stress, which impedes further development for 1-butanol production. Only a few studies have reported the general stress response of M. extorquens AM1 to solvent stress. Therefore, it is highly desirable to obtain a strain with ameliorated 1-butanol tolerance and elucidate the molecular mechanism of 1-butnaol tolerance in M. extorquens AM1 for future strain improvement. RESULTS In this work, adaptive laboratory evolution was used as a tool to isolate mutants with 1-butanol tolerance up to 0.5 %. The evolved strains, BHBT3 and BHBT5, demonstrated increased growth rates and higher survival rates with the existence of 1-butanol. Whole genome sequencing revealed a SNP mutation at kefB in BHBT5, which was confirmed to be responsible for increasing 1-butanol tolerance through an allelic exchange experiment. Global metabolomic analysis further discovered that the pools of multiple key metabolites, including fatty acids, amino acids, and disaccharides, were increased in BHBT5 in response to 1-butanol stress. Additionally, the carotenoid synthesis pathway was significantly down-regulated in BHBT5. CONCLUSIONS We successfully screened mutants resistant to 1-butanol and provided insights into the molecular mechanism of 1-butanol tolerance in M. extorquens AM1. This research will be useful for uncovering the mechanism of cellular response of M. extorquens AM1 to solvent stress, and will provide the genetic blueprint for the rational design of a strain of M. extorquens AM1 with increased 1-butanol tolerance in the future.
Collapse
Affiliation(s)
- Bo Hu
- />Department of Chemical Engineering, University of Washington, Seattle, WA USA
- />Industrial Product Division, Intrexon Corporation, South San Francisco, CA 94080 USA
| | - Yi-Ming Yang
- />School of Life Science, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province China
| | - David A. C. Beck
- />Department of Chemical Engineering, University of Washington, Seattle, WA USA
- />eScience Institute, University of Washington, Seattle, WA USA
| | - Qian-Wen Wang
- />Central Laboratory, Qingdao Agricultural University, Qingdao, Shandong Province China
| | - Wen-Jing Chen
- />School of Life Science, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province China
| | - Jing Yang
- />School of Life Science, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province China
| | - Mary E. Lidstrom
- />Department of Chemical Engineering, University of Washington, Seattle, WA USA
- />Department of Microbiology, University of Washington, Seattle, WA 98195-1750 USA
| | - Song Yang
- />School of Life Science, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province China
- />Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| |
Collapse
|
29
|
Dvorak P, Chrast L, Nikel PI, Fedr R, Soucek K, Sedlackova M, Chaloupkova R, de Lorenzo V, Prokop Z, Damborsky J. Exacerbation of substrate toxicity by IPTG in Escherichia coli BL21(DE3) carrying a synthetic metabolic pathway. Microb Cell Fact 2015; 14:201. [PMID: 26691337 PMCID: PMC4687329 DOI: 10.1186/s12934-015-0393-3] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 12/05/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Heterologous expression systems based on promoters inducible with isopropyl-β-D-1-thiogalactopyranoside (IPTG), e.g., Escherichia coli BL21(DE3) and cognate LacI(Q)/P(lacUV5)-T7 vectors, are commonly used for production of recombinant proteins and metabolic pathways. The applicability of such cell factories is limited by the complex physiological burden imposed by overexpression of the exogenous genes during a bioprocess. This burden originates from a combination of stresses that may include competition for the expression machinery, side-reactions due to the activity of the recombinant proteins, or the toxicity of their substrates, products and intermediates. However, the physiological impact of IPTG-induced conditional expression on the recombinant host under such harsh conditions is often overlooked. RESULTS The physiological responses to IPTG of the E. coli BL21(DE3) strain and three different recombinants carrying a synthetic metabolic pathway for biodegradation of the toxic anthropogenic pollutant 1,2,3-trichloropropane (TCP) were investigated using plating, flow cytometry, and electron microscopy. Collected data revealed unexpected negative synergistic effect of inducer of the expression system and toxic substrate resulting in pronounced physiological stress. Replacing IPTG with the natural sugar effector lactose greatly reduced such stress, demonstrating that the effect was due to the original inducer's chemical properties. CONCLUSIONS IPTG is not an innocuous inducer; instead, it exacerbates the toxicity of haloalkane substrate and causes appreciable damage to the E. coli BL21(DE3) host, which is already bearing a metabolic burden due to its content of plasmids carrying the genes of the synthetic metabolic pathway. The concentration of IPTG can be effectively tuned to mitigate this negative effect. Importantly, we show that induction with lactose, the natural inducer of P lac , dramatically lightens the burden without reducing the efficiency of the synthetic TCP degradation pathway. This suggests that lactose may be a better inducer than IPTG for the expression of heterologous pathways in E. coli BL21(DE3).
Collapse
Affiliation(s)
- Pavel Dvorak
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic.
| | - Lukas Chrast
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic.
| | - Pablo I Nikel
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología CNB-CSIC, Cantoblanco, 28049, Madrid, Spain.
| | - Radek Fedr
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic.
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 612 65, Brno, Czech Republic.
| | - Karel Soucek
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic.
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 612 65, Brno, Czech Republic.
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic.
| | - Miroslava Sedlackova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic.
| | - Radka Chaloupkova
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic.
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología CNB-CSIC, Cantoblanco, 28049, Madrid, Spain.
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic.
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic.
| |
Collapse
|
30
|
Metabolic correlation between polyol and energy-storing carbohydrate under osmotic and oxidative stress condition in Moniliella megachiliensis. J Biosci Bioeng 2015; 120:405-10. [DOI: 10.1016/j.jbiosc.2015.02.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 02/19/2015] [Accepted: 02/20/2015] [Indexed: 11/23/2022]
|
31
|
Nakazawa N, Obata Y, Ito K, Oto M, Ito T, Takahashi K. Mechanism of high trehalose accumulation in a spore clone isolated from Shirakami kodama yeast. J GEN APPL MICROBIOL 2014; 60:147-55. [PMID: 25273988 DOI: 10.2323/jgam.60.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The intracellular trehalose levels in Shirakami kodama yeast, a strain of Saccharomyces cerevisiae, isolated in 1997 from leaf mold in the Shirakami Mountains and since used as a commercial baker's yeast, are remarkably high, which presumably is related to its tolerance of freezing and drought conditions. We isolated a spore clone from Shirakami kodama yeast with about 1.7-fold higher intracellular trehalose levels than the parental strain and set out to elucidate how this spore clone can accumulate intracellular trehalose to such a high concentration. The gene for trehalose 6-phosphate synthase, TPS1, was duplicated in this spore clone. Both TPS1 genes contributed to the high level of intracellular trehalose as a 3.4-fold decrease resulted from the disruption of one of the two TPS1 genes. Both Msn2 and Msn4, which bind to stress responsive elements in the promoter region of TPS1, were required for production of high levels of trehalose. Furthermore, the neutral trehalase activity of this spore clone is about 3-fold less than that of the laboratory strain although the gene for neutral trehalase, NTH1, functioned normally. These findings indicate that two TPS1 genes and the low trehalase activity are associated with high trehalose accumulation in this spore clone. The wide range of stresses of which we found the spore clone to be tolerant makes this yeast very attractive for commercial application and for further research into the mechanisms underlying stress responses and trehalose metabolism.
Collapse
Affiliation(s)
- Nobushige Nakazawa
- Department of Biotechnology, Faculty of Bioresource Science, Akita Prefectural University
| | | | | | | | | | | |
Collapse
|
32
|
The relationship of freeze tolerance with intracellular compounds in baker's yeasts. Appl Biochem Biotechnol 2014; 172:3042-53. [PMID: 24482281 DOI: 10.1007/s12010-014-0744-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 01/20/2014] [Indexed: 10/25/2022]
Abstract
Freeze-tolerant baker's yeasts are required for the processing of frozen doughs. The present study was carried out to investigate the cell survival rate after frozen storage and the change of fermentability in dough due to frozen storage, and to discuss quantitatively the relationship of freeze tolerance with intracellular trehalose, amino acids, and glycerol, using six types of baker's yeasts as the test materials. The experimental results showed that the fermentability of yeast cells in frozen dough was strongly correlated with the cell survival rate. The baker's yeast with a higher level of cell survival rate had a larger increase in the total intracellular compound content after frozen storage, and the cell survival rate increased linearly with increasing total intracellular compound content in frozen yeast cells. Trehalose was a primary compound affecting freeze tolerance, followed by glutamic acid, arginine, proline, asparagic acid, and glycerol. The basic information provided by the present study is useful for exploring the freeze-tolerance mechanisms of baker's yeast cells, breeding better freeze-tolerant baker's yeast strains, and developing more effective cryoprotectants.
Collapse
|
33
|
Wang PM, Zheng DQ, Chi XQ, Li O, Qian CD, Liu TZ, Zhang XY, Du FG, Sun PY, Qu AM, Wu XC. Relationship of trehalose accumulation with ethanol fermentation in industrial Saccharomyces cerevisiae yeast strains. BIORESOURCE TECHNOLOGY 2013; 152:371-376. [PMID: 24316480 DOI: 10.1016/j.biortech.2013.11.033] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 11/11/2013] [Accepted: 11/13/2013] [Indexed: 06/02/2023]
Abstract
The protective effect and the mechanisms of trehalose accumulation in industrial Saccharomyces cerevisiae strains were investigated during ethanol fermentation. The engineered strains with more intercellular trehalose achieved significantly higher fermentation rates and ethanol yields than their wild strain ZS during very high gravity (VHG) fermentation, while their performances were not different during regular fermentation. The VHG fermentation performances of these strains were consistent with their growth capacity under osmotic stress and ethanol stress, the key stress factors during VHG fermentation. These results suggest that trehalose accumulation is more important for VHG fermentation of industrial yeast strains than regular one. The differences in membrane integrity and antioxidative capacity of these strains indicated the possible mechanisms of trehalose as a protectant under VHG condition. Therefore, trehalose metabolic engineering may be a useful strategy for improving the VHG fermentation performance of industrial yeast strains.
Collapse
Affiliation(s)
- Pin-Mei Wang
- Ocean College, Zhejiang University, Hangzhou 310058, Zhejiang Province, China; Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Dao-Qiong Zheng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Xiao-Qin Chi
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen University Affiliated Zhongshan Hospital, Xiamen 361004, Fujian Province, China
| | - Ou Li
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Chao-Dong Qian
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Tian-Zhe Liu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Xiao-Yang Zhang
- State Key Laboratory of Motor Vehicle Biofuel Technology, Nanyang 473000, Henan Province, China
| | - Feng-Guang Du
- State Key Laboratory of Motor Vehicle Biofuel Technology, Nanyang 473000, Henan Province, China
| | - Pei-Yong Sun
- State Key Laboratory of Motor Vehicle Biofuel Technology, Nanyang 473000, Henan Province, China
| | - Ai-Min Qu
- State Key Laboratory of Motor Vehicle Biofuel Technology, Nanyang 473000, Henan Province, China
| | - Xue-Chang Wu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China.
| |
Collapse
|
34
|
Δ(1)-pyrroline-5-carboxylate/glutamate biogenesis is required for fungal virulence and sporulation. PLoS One 2013; 8:e73483. [PMID: 24039956 PMCID: PMC3767830 DOI: 10.1371/journal.pone.0073483] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 07/22/2013] [Indexed: 11/19/2022] Open
Abstract
Proline dehydrogenase (Prodh) and Δ1-pyrroline-5-carboxylate dehydrogenase (P5Cdh) are two key enzymes in the cellular biogenesis of glutamate. Recombinant Prodh and P5Cdh proteins of the chestnut blight fungus Cryphonectria parasitica were investigated and showed activity in in vitro assays. Additionally, the C. parasitica Prodh and P5Cdh genes were able to complement the Saccharomyces cerevisiae put1 and put2 null mutants, respectively, to allow these proline auxotrophic yeast mutants to grow on media with proline as the sole source of nitrogen. Deletion of the Prodh gene in C. parasitica resulted in hypovirulence and a lower level of sporulation, whereas deletion of P5Cdh resulted in hypovirulence though no effect on sporulation; both Δprodh and Δp5cdh mutants were unable to grow on minimal medium with proline as the sole nitrogen source. In a wild-type strain, the intracellular level of proline and the activity of Prodh and P5Cdh increased after supplementation of exogenous proline, though the intracellular Δ1-pyrroline-5-carboxylate (P5C) content remained unchanged. Prodh and P5Cdh were both transcriptionally down-regulated in cells infected with hypovirus. The disruption of other genes with products involved in the conversion of arginine to ornithine, ornithine and glutamate to P5C, and P5C to proline in the cytosol did not appear to affect virulence; however, asexual sporulation was reduced in the Δpro1 and Δpro2 mutants. Taken together, our results showed that Prodh, P5Cdh and related mitochondrial functions are essential for virulence and that proline/glutamate pathway components may represent down-stream targets of hypovirus regulation in C. parasitica.
Collapse
|
35
|
Cray JA, Bell ANW, Bhaganna P, Mswaka AY, Timson DJ, Hallsworth JE. The biology of habitat dominance; can microbes behave as weeds? Microb Biotechnol 2013; 6:453-92. [PMID: 23336673 PMCID: PMC3918151 DOI: 10.1111/1751-7915.12027] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 12/03/2012] [Indexed: 02/06/2023] Open
Abstract
Competition between microbial species is a product of, yet can lead to a reduction in, the microbial diversity of specific habitats. Microbial habitats can resemble ecological battlefields where microbial cells struggle to dominate and/or annihilate each other and we explore the hypothesis that (like plant weeds) some microbes are genetically hard-wired to behave in a vigorous and ecologically aggressive manner. These 'microbial weeds' are able to dominate the communities that develop in fertile but uncolonized--or at least partially vacant--habitats via traits enabling them to out-grow competitors; robust tolerances to habitat-relevant stress parameters and highly efficient energy-generation systems; avoidance of or resistance to viral infection, predation and grazers; potent antimicrobial systems; and exceptional abilities to sequester and store resources. In addition, those associated with nutritionally complex habitats are extraordinarily versatile in their utilization of diverse substrates. Weed species typically deploy multiple types of antimicrobial including toxins; volatile organic compounds that act as either hydrophobic or highly chaotropic stressors; biosurfactants; organic acids; and moderately chaotropic solutes that are produced in bulk quantities (e.g. acetone, ethanol). Whereas ability to dominate communities is habitat-specific we suggest that some microbial species are archetypal weeds including generalists such as: Pichia anomala, Acinetobacter spp. and Pseudomonas putida; specialists such as Dunaliella salina, Saccharomyces cerevisiae, Lactobacillus spp. and other lactic acid bacteria; freshwater autotrophs Gonyostomum semen and Microcystis aeruginosa; obligate anaerobes such as Clostridium acetobutylicum; facultative pathogens such as Rhodotorula mucilaginosa, Pantoea ananatis and Pseudomonas aeruginosa; and other extremotolerant and extremophilic microbes such as Aspergillus spp., Salinibacter ruber and Haloquadratum walsbyi. Some microbes, such as Escherichia coli, Mycobacterium smegmatis and Pseudoxylaria spp., exhibit characteristics of both weed and non-weed species. We propose that the concept of nonweeds represents a 'dustbin' group that includes species such as Synodropsis spp., Polypaecilum pisce, Metschnikowia orientalis, Salmonella spp., and Caulobacter crescentus. We show that microbial weeds are conceptually distinct from plant weeds, microbial copiotrophs, r-strategists, and other ecophysiological groups of microorganism. Microbial weed species are unlikely to emerge from stationary-phase or other types of closed communities; it is open habitats that select for weed phenotypes. Specific characteristics that are common to diverse types of open habitat are identified, and implications of weed biology and open-habitat ecology are discussed in the context of further studies needed in the fields of environmental and applied microbiology.
Collapse
Affiliation(s)
- Jonathan A Cray
- School of Biological Sciences, MBC, Queen's University BelfastBelfast, BT9 7BL, Northern Ireland, UK
| | - Andrew N W Bell
- School of Biological Sciences, MBC, Queen's University BelfastBelfast, BT9 7BL, Northern Ireland, UK
| | - Prashanth Bhaganna
- School of Biological Sciences, MBC, Queen's University BelfastBelfast, BT9 7BL, Northern Ireland, UK
| | - Allen Y Mswaka
- School of Biological Sciences, MBC, Queen's University BelfastBelfast, BT9 7BL, Northern Ireland, UK
| | - David J Timson
- School of Biological Sciences, MBC, Queen's University BelfastBelfast, BT9 7BL, Northern Ireland, UK
| | - John E Hallsworth
- School of Biological Sciences, MBC, Queen's University BelfastBelfast, BT9 7BL, Northern Ireland, UK
| |
Collapse
|
36
|
Keum YS, Kim JH. Metabolic Differentiation of Saccharomyces cerevisiae by Ketoconazole Treatment. ACTA ACUST UNITED AC 2013. [DOI: 10.3839/jabc.2013.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
A rapid, high-throughput method for quantitative determination of ethanol tolerance in Saccharomyces cerevisiae. ANN MICROBIOL 2013. [DOI: 10.1007/s13213-012-0518-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
38
|
Gene expression and function involved in polyol biosynthesis of Trichosporonoides megachiliensis under hyper-osmotic stress. J Biosci Bioeng 2013; 115:645-50. [DOI: 10.1016/j.jbiosc.2012.12.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 11/27/2012] [Accepted: 12/04/2012] [Indexed: 11/18/2022]
|
39
|
Lourenço AB, Roque FC, Teixeira MC, Ascenso JR, Sá-Correia I. Quantitative 1H-NMR-metabolomics reveals extensive metabolic reprogramming and the effect of the aquaglyceroporin FPS1 in ethanol-stressed yeast cells. PLoS One 2013; 8:e55439. [PMID: 23408980 PMCID: PMC3568136 DOI: 10.1371/journal.pone.0055439] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 12/22/2012] [Indexed: 11/19/2022] Open
Abstract
A metabolomic analysis using high resolution 1H NMR spectroscopy coupled with multivariate statistical analysis was used to characterize the alterations in the endo- and exo-metabolome of S. cerevisiae BY4741 during the exponential phase of growth in minimal medium supplemented with different ethanol concentrations (0, 2, 4 and 6% v/v). This study provides evidence that supports the notion that ethanol stress induces reductive stress in yeast cells, which, in turn, appears to be counteracted by the increase in the rate of NAD+ regenerating bioreactions. Metabolomics data also shows increased intra- and extra-cellular accumulation of most amino acids and TCA cycle intermediates in yeast cells growing under ethanol stress suggesting a state of overflow metabolism in turn of the pyruvate branch-point. Given its previous implication in ethanol stress resistance in yeast, this study also focused on the effect of the expression of the aquaglyceroporin encoded by FPS1 in the yeast metabolome, in the absence or presence of ethanol stress. The metabolomics data collected herein shows that the deletion of the FPS1 gene in the absence of ethanol stress partially mimics the effect of ethanol stress in the parental strain. Moreover, the results obtained suggest that the reported action of Fps1 in mediating the passive diffusion of glycerol is a key factor in the maintenance of redox balance, an important feature for ethanol stress resistance, and may interfere with the ability of the yeast cell to accumulate trehalose. Overall, the obtained results corroborate the idea that metabolomic approaches may be crucial tools to understand the function and/or the effect of membrane transporters/porins, such as Fps1, and may be an important tool for the clear-cut design of improved process conditions and more robust yeast strains aiming to optimize industrial fermentation performance.
Collapse
Affiliation(s)
- Artur B. Lourenço
- IBB - Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Technical University of Lisbon, Lisboa, Portugal
| | - Filipa C. Roque
- IBB - Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Technical University of Lisbon, Lisboa, Portugal
| | - Miguel C. Teixeira
- IBB - Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Technical University of Lisbon, Lisboa, Portugal
| | - José R. Ascenso
- Centro de Química Estrutural, Instituto Superior Técnico, Technical University of Lisbon, Lisboa, Portugal
| | - Isabel Sá-Correia
- IBB - Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Technical University of Lisbon, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
40
|
Chen T, Wang J, Zeng L, Li R, Li J, Chen Y, Lin Z. Significant rewiring of the transcriptome and proteome of an Escherichia coli strain harboring a tailored exogenous global regulator IrrE. PLoS One 2012; 7:e37126. [PMID: 22792156 PMCID: PMC3390347 DOI: 10.1371/journal.pone.0037126] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Accepted: 04/17/2012] [Indexed: 12/25/2022] Open
Abstract
Cell reprogramming for microorganisms via engineered or artificial transcription factors and RNA polymerase mutants has presented a powerful tool for eliciting complex traits that are practically useful particularly for industrial strains, and for understanding at the global level the regulatory network of gene transcription. We previously further showed that an exogenous global regulator IrrE (derived from the extreme radiation-resistant bacterium Deinococcus radiodurans) can be tailored to confer Escherichia coli (E. coli) with significantly enhanced tolerances to different stresses. In this work, based on comparative transcriptomic and proteomic analyses of the representative strains E1 and E0, harboring the ethanol-tolerant IrrE mutant E1 and the ethanol-intolerant wild type IrrE, respectively, we found that the transcriptome and proteome of E. coli were extensively rewired by the tailored IrrE protein. Overall, 1196 genes (or approximately 27% of E. coli genes) were significantly altered at the transcriptomic level, including notably genes in the nitrate-nitrite-nitric oxide (NO) pathway, and genes for non-coding RNAs. The proteomic profile revealed significant up- or downregulation of several proteins associated with syntheses of the cell membrane and cell wall. Analyses of the intracellular NO level and cell growth under reduced temperature supported a close correlation between NO and ethanol tolerance, and also suggests a role for membrane fluidity. The significantly different omic profiles of strain E1 indicate that IrrE functions as a global regulator in E. coli, and that IrrE may be evolved for other cellular tolerances. In this sense, it will provide synthetic biology with a practical and evolvable regulatory “part” that operates at a higher level of complexity than local regulators. This work also suggests a possibility of introducing and engineering other exogenous global regulators to rewire the genomes of microorganism cells.
Collapse
Affiliation(s)
- Tingjian Chen
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Jianqing Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Lingli Zeng
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Rizong Li
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Jicong Li
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Yilu Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, China
| | - Zhanglin Lin
- Department of Chemical Engineering, Tsinghua University, Beijing, China
- * E-mail:
| |
Collapse
|
41
|
Simultaneous accumulation of proline and trehalose in industrial baker's yeast enhances fermentation ability in frozen dough. J Biosci Bioeng 2012; 113:592-5. [DOI: 10.1016/j.jbiosc.2011.12.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 12/26/2011] [Indexed: 11/22/2022]
|
42
|
Gomes DG, Guimarães PMR, Pereira FB, Teixeira JA, Domingues L. Plasmid-mediate transfer of FLO1 into industrial Saccharomyces cerevisiae PE-2 strain creates a strain useful for repeat-batch fermentations involving flocculation-sedimentation. BIORESOURCE TECHNOLOGY 2012; 108:162-168. [PMID: 22285899 DOI: 10.1016/j.biortech.2011.12.089] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 11/04/2011] [Accepted: 12/16/2011] [Indexed: 05/31/2023]
Abstract
The flocculation gene FLO1 was transferred into the robust industrial strain Saccharomyces cerevisiae PE-2 by the lithium acetate method. The recombinant strain showed a fermentation performance similar to that of the parental strain. In 10 repeat-batch cultivations in VHG medium with 345 g glucose/L and cell recycling by flocculation-sedimentation, an average final ethanol concentration of 142 g/L and an ethanol productivity of 2.86 g/L/h were achieved. Due to the flocculent nature of the recombinant strain it is possible to reduce the ethanol production cost because of lower centrifugation and distillation costs.
Collapse
Affiliation(s)
- Daniel G Gomes
- IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | | | | | | | | |
Collapse
|
43
|
A novel strategy to construct yeast Saccharomyces cerevisiae strains for very high gravity fermentation. PLoS One 2012; 7:e31235. [PMID: 22363590 PMCID: PMC3281935 DOI: 10.1371/journal.pone.0031235] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Accepted: 01/04/2012] [Indexed: 12/01/2022] Open
Abstract
Very high gravity (VHG) fermentation is aimed to considerably increase both the fermentation rate and the ethanol concentration, thereby reducing capital costs and the risk of bacterial contamination. This process results in critical issues, such as adverse stress factors (ie., osmotic pressure and ethanol inhibition) and high concentrations of metabolic byproducts which are difficult to overcome by a single breeding method. In the present paper, a novel strategy that combines metabolic engineering and genome shuffling to circumvent these limitations and improve the bioethanol production performance of Saccharomyces cerevisiae strains under VHG conditions was developed. First, in strain Z5, which performed better than other widely used industrial strains, the gene GPD2 encoding glycerol 3-phosphate dehydrogenase was deleted, resulting in a mutant (Z5ΔGPD2) with a lower glycerol yield and poor ethanol productivity. Second, strain Z5ΔGPD2 was subjected to three rounds of genome shuffling to improve its VHG fermentation performance, and the best performing strain SZ3-1 was obtained. Results showed that strain SZ3-1 not only produced less glycerol, but also increased the ethanol yield by up to 8% compared with the parent strain Z5. Further analysis suggested that the improved ethanol yield in strain SZ3-1 was mainly contributed by the enhanced ethanol tolerance of the strain. The differences in ethanol tolerance between strains Z5 and SZ3-1 were closely associated with the cell membrane fatty acid compositions and intracellular trehalose concentrations. Finally, genome rearrangements in the optimized strain were confirmed by karyotype analysis. Hence, a combination of genome shuffling and metabolic engineering is an efficient approach for the rapid improvement of yeast strains for desirable industrial phenotypes.
Collapse
|
44
|
Sasano Y, Haitani Y, Ohtsu I, Shima J, Takagi H. Proline accumulation in baker's yeast enhances high-sucrose stress tolerance and fermentation ability in sweet dough. Int J Food Microbiol 2012; 152:40-3. [DOI: 10.1016/j.ijfoodmicro.2011.10.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 10/03/2011] [Accepted: 10/09/2011] [Indexed: 10/16/2022]
|
45
|
Abstract
Recombinant production has become an invaluable tool for supplying research and therapy with proteins of interest. The target proteins are not in every case soluble and/or correctly folded. That is why different production parameters such as host, cultivation conditions and co-expression of chaperones and foldases are applied in order to yield functional recombinant protein. There has been a constant increase and success in the use of folding promoting agents in recombinant protein production. Recent cases are reviewed and discussed in this chapter. Any impact of such strategies cannot be predicted and has to be analyzed and optimized for the corresponding target protein. The in vivo effects of the agents are at least partially comparable to their in vitro mode of action and have been studied by means of modern systems approaches and even in combination with folding/activity screening assays. Resulting data can be used directly for experimental planning or can be fed into knowledge-based modelling. An overview of such technologies is included in the chapter in order to facilitate a decision about the potential in vivo use of folding promoting agents.
Collapse
Affiliation(s)
- Beatrix Fahnert
- Cardiff School of Biosciences, Cardiff University, Wales, UK.
| |
Collapse
|
46
|
Pereira FB, Gomes DG, Guimarães PMR, Teixeira JA, Domingues L. Cell recycling during repeated very high gravity bio-ethanol fermentations using the industrial Saccharomyces cerevisiae strain PE-2. Biotechnol Lett 2011; 34:45-53. [DOI: 10.1007/s10529-011-0735-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 08/24/2011] [Indexed: 11/29/2022]
|
47
|
Robust industrial Saccharomyces cerevisiae strains for very high gravity bio-ethanol fermentations. J Biosci Bioeng 2011; 112:130-6. [DOI: 10.1016/j.jbiosc.2011.03.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 03/28/2011] [Accepted: 03/31/2011] [Indexed: 11/18/2022]
|
48
|
Ding MZ, Li BZ, Cheng JS, Yuan YJ. Metabolome analysis of differential responses of diploid and haploid yeast to ethanol stress. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 14:553-61. [PMID: 20955008 DOI: 10.1089/omi.2010.0015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Metabolomic analysis was carried out to investigate the metabolic differences of diploid (α/a) and homogenous haploid (α,a) yeasts, and further assess their response to ethanol stress. The dynamic metabolic variations of diploid and haploid caused by 3 and 7% (v/v) ethanol stress were evaluated by gas chromatography coupled to time-of-flight mass spectrometry combined with statistical analysis. Metabolite profiles originating from three strains in presence/absence of ethanol stress were distinctive and could be distinguished by principal components analysis. Results showed that the divergence among the strains with ethanol stress was smaller than without it. Furthermore, the levels of most glycolytic intermediates and amino acids in haploid were lower than these in diploid with/without ethanol stress, which was considered as species-specific behaviors. The increases of protective metabolites including polyols, amino acids, precursors of phospholipids, and unsaturated fatty acids under ethanol stress in three strains revealed the ethanol stress-specific responses. Higher fold change in most of these protectants in haploid indicated that haploid was more susceptible to ethanol stress than diploid. These findings provided underlying basis for better understanding diploid and haploid yeasts, and further breeding tolerant strains for efficient ethanol fermentation.
Collapse
Affiliation(s)
- Ming-Zhu Ding
- Key Laboratory of Systems Bioengineering, Ministry of Education and Department of Pharmaceutical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, People's Republic of China
| | | | | | | |
Collapse
|
49
|
Guo ZP, Zhang L, Ding ZY, Shi GY. Minimization of glycerol synthesis in industrial ethanol yeast without influencing its fermentation performance. Metab Eng 2011; 13:49-59. [DOI: 10.1016/j.ymben.2010.11.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/08/2010] [Accepted: 11/16/2010] [Indexed: 10/18/2022]
|
50
|
Pereira FB, Guimarães PMR, Teixeira JA, Domingues L. Selection of Saccharomyces cerevisiae strains for efficient very high gravity bio-ethanol fermentation processes. Biotechnol Lett 2010; 32:1655-61. [DOI: 10.1007/s10529-010-0330-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 06/14/2010] [Indexed: 11/28/2022]
|