1
|
Guo Y, Ma BC, Zhang WQ, Li BX, Ou JM, Liu F, Hui CY. Visual indicator for the detection of methylmercury in blood: A critical biomarker for dietary exposure assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 295:118157. [PMID: 40199093 DOI: 10.1016/j.ecoenv.2025.118157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/10/2025]
Abstract
Methylmercury (MeHg), a significant dietary exposure biomarker, poses a substantial threat to public health, primarily due to the consumption of aquatic foods. Current detection methods are complex and unsuitable for on-site testing, necessitating the development of a simple and sensitive biosensor for rapid screening. This study addresses this challenge by developing a highly sensitive whole-cell biosensor for detecting organic mercury in blood samples, offering both visual qualitative and colorimetric quantitative assessments. We engineered a biosensor based on the mer operon and deoxyviolacein (DV) pigment, optimizing its performance by adjusting the MerB expression level, screening host cells, and incorporating the biosurfactant rhamnolipid. The optimized biosensor achieved a detection limit of 0.195 nM and exhibited a linear response range of 0.195-1.563 nM for MeHg. This range is significantly below the Provisional Tolerable Weekly Intake (PTWI) of 1.6 μg/kg body weight per week established by the Joint FAO/WHO Expert Committee on Food Additives (JECFA), ensuring the reliable detection of MeHg at concentrations well within the safety threshold. Notably, the biosensor demonstrated broad-spectrum detection capabilities, including natural MeHg and synthetic organomercurials, which are crucial for assessing dietary exposure risks from various sources. This study advances the development of a novel biosensor for MeHg detection, highlighting its potential as a critical tool for assessing dietary exposure risks and contributing to understanding food safety and public health.
Collapse
Affiliation(s)
- Yan Guo
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Bing-Chan Ma
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Wen-Qi Zhang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Bo-Xin Li
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Jia-Ming Ou
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Fen Liu
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Chang-Ye Hui
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China.
| |
Collapse
|
2
|
Hui CY, Ma BC, Hu SY, Wu C. Tailored bacteria tackling with environmental mercury: Inspired by natural mercuric detoxification operons. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:123016. [PMID: 38008253 DOI: 10.1016/j.envpol.2023.123016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/30/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Mercury (Hg) and its inorganic and organic compounds significantly threaten the ecosystem and human health. However, the natural and anthropogenic Hg environmental inputs exceed 5000 metric tons annually. Hg is usually discharged in elemental or ionic forms, accumulating in surface water and sediments where Hg-methylating microbes-mediated biotransformation occurs. Microbial genetic factors such as the mer operon play a significant role in the complex Hg biogeochemical cycle. Previous reviews summarize the fate of environmental Hg, its biogeochemistry, and the mechanism of bacterial Hg resistance. This review mainly focuses on the mer operon and its components in detecting, absorbing, bioaccumulating, and detoxifying environmental Hg. Four components of the mer operon, including the MerR regulator, divergent mer promoter, and detoxification factors MerA and MerB, are rare bio-parts for assembling synthetic bacteria, which tackle pollutant Hg. Bacteria are designed to integrate synthetic biology, protein engineering, and metabolic engineering. In summary, this review highlights that designed bacteria based on the mer operon can potentially sense and bioremediate pollutant Hg in a green and low-cost manner.
Collapse
Affiliation(s)
- Chang-Ye Hui
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen, 518020, China.
| | - Bing-Chan Ma
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen, 518020, China; School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Shun-Yu Hu
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen, 518020, China; Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Can Wu
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen, 518020, China; Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
3
|
Zhao Z, Chen W, Cheng Y, Li J, Chen Z. Burkholderia cepacia immobilized onto rGO as a biomaterial for the removal of naphthalene from wastewater. ENVIRONMENTAL RESEARCH 2023; 235:116663. [PMID: 37451574 DOI: 10.1016/j.envres.2023.116663] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
As one of the polycyclic aromatic hydrocarbons (PAHs), naphthalene is of serious environmental concern due to its carcinogenicity, persistence and refractory degradation. In this study, a new functional biomaterial based on Burkholderia cepacia (BK) immobilized on reduced graphene oxide (rGO) was prepared, resulting in the removal of 99.0% naphthalene within 48 h. This was better than the 67.3% for free BK and 55.6% for rGO alone. Various characterizations indicated that reduced graphene oxide-Burkholderia cepacia (rGO-BK) was successfully synthesized and secreted non-toxic and degradable surfactants which participated in the degradation of naphthalene. The adsorption kinetics and degradation kinetics conformed best to non-linear pseudo-second-order and pseudo-first-order kinetic models, respectively. Demonstrated in this work is that removing naphthalene by rGO-BK involved both chemically dominated adsorption and biodegradation. As well, GC-MS analysis revealed two things: firstly, that the degraded products of naphthalene were dibutyl phthalate, diethyl phthalate, phthalic acid, and benzoic acid; and secondly, two potentially viable biodegradation pathways of naphthalene by rGO-BK could be proposed. Finally, for practical application experiment, the rGO-BK was exposed to river water samples and generated 99% removal efficiency of naphthalene, so this study offers new insights into biomaterials that can remove naphthalene.
Collapse
Affiliation(s)
- Zhihao Zhao
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Wei Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Ying Cheng
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jiabing Li
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350007, Fujian, China.
| | - Zuliang Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350007, Fujian, China.
| |
Collapse
|
4
|
Firoozbakht M, Sepahi AA, Rashedi H, Yazdian F. Investigating the effect of nanoparticle on phenanthrene biodegradation by Labedella gwakjiensis strain KDI. Biodegradation 2022; 33:441-460. [PMID: 35732966 DOI: 10.1007/s10532-022-09991-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 06/06/2022] [Indexed: 11/02/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), as persistent organic contaminants, are a major source of concern due to their toxic effect on ecosystems and human health. This study attempted to isolate halotolerant PAHs degrading bacteria from saline oil-contaminated soils. Among the isolates, strain KDI with the highest 16S rRNA gene sequence similarity to Labedella gwakjiensis was able to reduce surface tension (ST) from 65.42 to 26.60 mN m-1 and increase the emulsification index to 81.04%, as a result of significant biosurfactant production. Response Surface Methodology (RSM) analysis was applied to optimize the factors, i.e. PAHs concentration and NaCl concentration as well as to determine the effect of these important variables on PAHs biodegradation. The Carbon Quantum Dots. Iron Oxide (CQDs.Fe3O4) nanoparticles were characterized by several popular analytical techniques, after which the effect of CQD.Fe3O4 nanoparticles on biodegradation was examined. PAHs biodegradation rate and efficiency of strain KDI to degrade PHE in the presence of CQD.Fe3O4 nanoparticles was analyzed by GC. According to the results during biodegradation both the concentration of PAHs and the amount of NaCl were effective. The biodegradation rate significantly increased in the presence of CQD.Fe3O4. The highest biodegradation of PHE occurred in the presence of 0.5 g/L of CQD.Fe3O4 which was 63.63% and 81.77% after 48 and 72 h of incubation. To the best of our knowledge, this is the first report on optimization of PAHs concentration and salinity by RSM and nanobioremediation of PHE using a bacterial strain in the presence of CQD.Fe3O4 nanoparticles.
Collapse
Affiliation(s)
- Maryam Firoozbakht
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Abbas Akhavan Sepahi
- Department of Microbiology, Faculty of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran.
| | - Hamid Rashedi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| |
Collapse
|
5
|
Zhang L, Yan J, Xiao Z, Tang S, Chen Y, Sun G, Wang W, Yu Y. Using Vinegar Residue-Based Carrier Materials to Improve the Biodegradation of Phenanthrene in Aqueous Solution. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:3134-3147. [PMID: 33653489 DOI: 10.1166/jnn.2021.19123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A large amount of vinegar residue (VR) is generated every year in China, causing serious environmental pollutions. Meanwhile, as a kind of persistent organic pollutants, polycyclic aromatic hydrocarbons (PAHs) ubiquitously exist in environments. With a goal of reusing VR and reducing PAHs pollutions, we herein isolated one B. subtilis strain, ZL09-26, which can degrade phenanthrene and produce biosurfactants. Subsequently, raw VR was dried under different temperatures (50 °C, 80 °C, 100 °C and 120 °C) or pyrolyzed under 350 °C and 700 °C, respectively. After being characterized by various approaches, the treated VR were mixed with ZL09-26 as carriers to degrade phenanthrene. We found that VR dried at 50 °C (VR50) was the best in promoting the growth of ZL09-26 and the degradation of phenanthrene. This result may be attributed to the residual nutrients, suitable porosity and small surface charge of VR50. Our results demonstrate the potential of VR in the biodegradation of phenanthrene, which may be meaningful for developing new VR-based approaches to remove PAHs in aqueous environments.
Collapse
Affiliation(s)
- Lei Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Jinyuan Yan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Zhixing Xiao
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Susu Tang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Yunliang Chen
- School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Gangzheng Sun
- Research Institute of Petroleum Engineering and Technology, Shengli Oilfield Company, Sinopec, Dongying 257067, People's Republic of China
| | - Weidong Wang
- Research Institute of Petroleum Engineering and Technology, Shengli Oilfield Company, Sinopec, Dongying 257067, People's Republic of China
| | - Yadong Yu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| |
Collapse
|
6
|
Ma Y, Li Y, Huang C, Tian Y, Hao Z. RETRACTED ARTICLE: Rhamnolipid biosurfactants: functional properties and potential contributions for bioremediation. Biodegradation 2019; 30:363. [PMID: 30357536 DOI: 10.1007/s10532-018-9862-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/17/2018] [Indexed: 10/28/2022]
Affiliation(s)
- Yanling Ma
- Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, 229 Taibai North Rd, Xi'an, 710069, Shaanxi, China.
| | - Yanpeng Li
- Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, 229 Taibai North Rd, Xi'an, 710069, Shaanxi, China
| | - Chao Huang
- Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, 229 Taibai North Rd, Xi'an, 710069, Shaanxi, China
| | - Yuexin Tian
- Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, 229 Taibai North Rd, Xi'an, 710069, Shaanxi, China
| | - Zhidan Hao
- Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, 229 Taibai North Rd, Xi'an, 710069, Shaanxi, China
| |
Collapse
|
7
|
Zeng Z, Liu Y, Zhong H, Xiao R, Zeng G, Liu Z, Cheng M, Lai C, Zhang C, Liu G, Qin L. Mechanisms for rhamnolipids-mediated biodegradation of hydrophobic organic compounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 634:1-11. [PMID: 29625372 DOI: 10.1016/j.scitotenv.2018.03.349] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
The widespread existence of hydrophobic organic compounds (HOCs) in soil and water poses a potential health hazard to human, such as skin diseases, heart diseases, carcinogenesis, etc. Surfactant-enhanced bioremediation has been regarded as one of the most viable technologies to treat HOCs contaminated soil and groundwater. As a biosurfactant that has been intensively studied, rhamnolipids have shown to enhance biodegradation of HOCs in the environment, however, the underlying mechanisms are not fully disclosed. In this paper, properties and production of rhamnolipids are summarized. Then effects of rhamnolipids on the biodegradation of HOCs, including solubilization, altering cell affinity to HOCs, and facilitating microbial uptake are reviewed in detail. Special attention is paid to how rhamnolipids change the bioavailability of HOCs, which are crucial for understanding the mechanism of rhamnolipids-mediated biodegradation. The biodegradation and toxicity of rhamnolipids are also discussed. Finally, perspectives and future research directions are proposed. This review adds insight to rhamnolipids-enhanced biodegradation process, and helps in application of rhamnolipids in bioremediation.
Collapse
Affiliation(s)
- Zhuotong Zeng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, PR China
| | - Yang Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Hua Zhong
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430070, PR China
| | - Rong Xiao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, PR China
| | - Guangming Zeng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, PR China; College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Chen Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guansheng Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
8
|
The Impact of Biosurfactants on Microbial Cell Properties Leading to Hydrocarbon Bioavailability Increase. COLLOIDS AND INTERFACES 2018. [DOI: 10.3390/colloids2030035] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The environment pollution with hydrophobic hydrocarbons is a serious problem that requires development of efficient strategies that would lead to bioremediation of contaminated areas. One of the common methods used for enhancement of biodegradation of pollutants is the addition of biosurfactants. Several mechanisms have been postulated as responsible for hydrocarbons bioavailability enhancement with biosurfactants. They include solubilization and desorption of pollutants as well as modification of bacteria cell surface properties. The presented review contains a wide discussion of these mechanisms in the context of alteration of bioremediation efficiency with biosurfactants. It brings new light to such a complex and important issue.
Collapse
|
9
|
Lamichhane S, Bal Krishna KC, Sarukkalige R. Surfactant-enhanced remediation of polycyclic aromatic hydrocarbons: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 199:46-61. [PMID: 28527375 DOI: 10.1016/j.jenvman.2017.05.037] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/04/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are toxic, mutagenic and carcinogenic organic compounds that are widely present in the environment. The bioremediation of PAHs is an economical and environmentally friendly remediation technique, but it is limited because PAHs have low water solubility and fewer bioavailable properties. The solubility and bioavailability of PAHs can be increased by using surfactants to reduce surface tension and interfacial tension; this method is called surfactant-enhanced remediation (SER). The SER of PAHs is influenced by many factors such as the type and concentration of surfactants, PAH hydrophobicity, temperature, pH, salinity, dissolved organic matter and microbial community. Furthermore, as mixed micelles have a synergistic effect on PAH solubilisation, selecting the optimum ratio of mixed surfactants leads to effective PAH remediation. Although the use of surfactants inhibits microbial activities in some cases, this could be avoided by choosing an optimum combination of surfactants and a proper microbial community for the targeted PAH(s), resulting in up to 99.99% PAH removal. This article reviews the literature on SER of PAHs, including surfactant types, the synergistic effect of mixed micelles on PAH removal, the impact of surfactants on the PAH biodegradation process, factors affecting the SER process, and the mechanisms of surfactant-enhanced solubilisation of PAHs.
Collapse
Affiliation(s)
- Shanti Lamichhane
- Department of Civil Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - K C Bal Krishna
- School of Computing Engineering and Mathematics, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Ranjan Sarukkalige
- Department of Civil Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| |
Collapse
|
10
|
Li H, Zhuang X, Bao M. Kinetics and thermodynamics of dissolved petroleum hydrocarbons in sediment under sophorolipid application and their effects on oil behaviour end-results in marine environment. RSC Adv 2017. [DOI: 10.1039/c7ra07423a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The behaviour end-result of dissolved petroleum hydrocarbons (DPHs) is known to interact with sediments in marine environments.
Collapse
Affiliation(s)
- Haoshuai Li
- Key Laboratory of Marine Chemistry Theory and Technology
- Ministry of Education
- Ocean University of China
- Qingdao 266100
- China
| | - Xiaohong Zhuang
- Key Laboratory of Marine Chemistry Theory and Technology
- Ministry of Education
- Ocean University of China
- Qingdao 266100
- China
| | - Mutai Bao
- Key Laboratory of Marine Chemistry Theory and Technology
- Ministry of Education
- Ocean University of China
- Qingdao 266100
- China
| |
Collapse
|
11
|
Jiang B, Huang WE, Li G. Construction of a bioreporter by heterogeneously expressing a Vibrio natriegens recA::luxCDABE fusion in Escherichia coli, and genotoxicity assessments of petrochemical-contaminated groundwater in northern China. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2016; 18:751-759. [PMID: 27258332 DOI: 10.1039/c6em00120c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Here, we constructed an Escherichia coli recA::luxCDABE bioreporter for genotoxicity assessments. The recA promoter was cloned from the marine bacterium Vibrio natriegens. This bioreporter showed a dose-response relationship following induction by mitomycin C, and other pollutants or environmental samples could be calculated as mitomycin C equivalents, which provided a way to quantitatively compare the genotoxicities of different environmental samples. This bioreporter was used to evaluate the genotoxicity under a wide range of external environmental conditions, like temperatures ranging from 15 °C to 42 °C, pH between 4.0 and 9.0, and salinity ranging from 0% to 3%. This successfully extended its application from the laboratory to the field, and allowed the bioreporter to assess the genotoxicity and bioavailability of genotoxins in various environmental media, including surface water, groundwater, seawater, and soil matrix. Expression of V. natriegens recA in E. coli indicated a LexA-like regulator in V. natriegens, and the putative SOS box of V. natriegens recA was similar to that of E. coli. The genotoxicities of groundwater samples from a petrochemical-contaminated site in northern China were evaluated by this bioreporter assay, and the genotoxic levels were in accordance with contamination levels obtained by chemical analyses.
Collapse
Affiliation(s)
- Bo Jiang
- School of Environment, Tsinghua University, Beijing, 100084, People's Republic of China.
| | | | | |
Collapse
|
12
|
Yu H, Huang GH, Xiao H, Wang L, Chen W. Combined effects of DOM and biosurfactant enhanced biodegradation of polycylic armotic hydrocarbons (PAHs) in soil-water systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:10536-10549. [PMID: 24801290 DOI: 10.1007/s11356-014-2958-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/21/2014] [Indexed: 06/03/2023]
Abstract
This study systematically investigated the interactive effects of dissolved organic matter (DOM) and biosurfactant (rhamnolipid) on the biodegradation of phenanthrene (PHE) and pyrene (PYR) in soil-water systems. The degradations of two polycyclic aromatic hydrocarbons (PAHs) were fitted well with first order kinetic model and the degradation rates were in proportion to the concentration of biosurfactant. In addition, the degradation enhancement of PHE was higher than that of PYR. The addition of soil DOM itself at an environmental level would inhibit the biodegradation of PAHs. However, in the system with co-existence of DOM and biosurfactant, the degradation of PAHs was higher than that in only biosurfactant addition system, which may be attributed to the formation of DOM-biosurfactant complex micelles. Furthermore, under the combined conditions, the degradation of PAH increased with the biosurfactant concentration, and the soil DOM added system showed slightly higher degradation than the compost DOM added system, indicating that the chemical structure and composition of DOM would also affect the bioavailability of PAHs. The study result may broaden knowledge of biosurfactant enhanced bioremediation of PAHs contaminated soil and groundwater.
Collapse
Affiliation(s)
- Hui Yu
- MOE Key Laboratory of Regional Energy Systems Optimization, S&C Academy of Energy and Environmental Research, North China Electric Power University, Beijing, 102206, China
| | | | | | | | | |
Collapse
|
13
|
Abstract
Bacterial communities are often heavily consumed by microfaunal predators, such as protozoa and nematodes. Predation is an important cause of mortality and determines the structure and activity of microbial communities in both terrestrial and aquatic ecosystems, and bacteria evolved various defence mechanisms helping them to resist predation. In this review, I summarize known antipredator defence strategies and their regulation, and explore their importance for bacterial fitness in various environmental conditions, and their implications for bacterial evolution and diversification under predation pressure. I discuss how defence mechanisms affect competition and cooperation within bacterial communities. Finally I present some implications of bacterial defence mechanisms for ecosystem services provided by microbial communities, such as nutrient cycling, virulence and the biological control of plant diseases.
Collapse
Affiliation(s)
- Alexandre Jousset
- Georg-August University Göttingen, JF Blumenbach Institute of Zoology and Anthropology, Animal Ecology, Berliner Str. 28, 37073 Göttingen, Germany.
| |
Collapse
|
14
|
|
15
|
Where microbiology meets microengineering: design and applications of reporter bacteria. Nat Rev Microbiol 2010; 8:511-22. [DOI: 10.1038/nrmicro2392] [Citation(s) in RCA: 404] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|