1
|
Cabrol L, Delleuze M, Szylit A, Schwob G, Quéméneur M, Misson B. Assessing the diversity of plankton-associated prokaryotes along a size-fraction gradient: A methodological evaluation. MARINE POLLUTION BULLETIN 2023; 197:115688. [PMID: 39491285 DOI: 10.1016/j.marpolbul.2023.115688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 09/29/2023] [Accepted: 10/16/2023] [Indexed: 11/05/2024]
Abstract
Marine free-living (FL) and plankton-associated prokaryotes (plankton-microbiota) are at the basis of trophic webs and play crucial roles in the transfer and cycling of nutrients, organic matter, and contaminants. Different ecological niches exist along the plankton size fraction gradient. Despite its relevant ecological role, the plankton-microbiota has rarely been investigated with a sufficient level of size-fraction resolution, and it can be challenging to study because of overwhelming eukaryotic DNA. Here we compared the prokaryotic diversity obtained by 16S rRNA gene sequencing from six plankton size fractions (from FL to mesoplankton), through three DNA recovery methods: direct extraction, desorption pretreatment, enrichment post-treatment. The plankton microbiota differed strongly according to the plankton size-fraction and methodological approach. Prokaryotic taxa specific to each size fraction, and methodology used, were identified. Vibrionaceae were over-represented by cell desorption pretreatment, while prokaryotic DNA enrichment had taxon-specific effects, indicating that direct DNA extraction was the most appropriate method.
Collapse
Affiliation(s)
- Léa Cabrol
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France; Millennium Institute BASE "Biodiversity of Antarctic and Subantarctic Ecosystems", Las Palmeras, 3425, Santiago, Chile; Instituto de Ecologia y Biodiversidad, Santiago, Chile.
| | - Mélanie Delleuze
- Millennium Institute BASE "Biodiversity of Antarctic and Subantarctic Ecosystems", Las Palmeras, 3425, Santiago, Chile; Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Arthur Szylit
- Instituto de Ecologia y Biodiversidad, Santiago, Chile
| | - Guillaume Schwob
- Millennium Institute BASE "Biodiversity of Antarctic and Subantarctic Ecosystems", Las Palmeras, 3425, Santiago, Chile; Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Marianne Quéméneur
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Benjamin Misson
- Université de Toulon, Aix Marseille Univ., CNRS, IRD, MIO, Toulon, France
| |
Collapse
|
2
|
Bou Orm E, Sauvagère S, Rocher J, Benezet JC, Bayle S, Siatka C, Bergeret A, Malhautier L. Estimating the bias related to DNA recovery from hemp stems for retting microbial community investigation. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12582-5. [PMID: 37227475 DOI: 10.1007/s00253-023-12582-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023]
Abstract
The industrial hemp plant Cannabis sativa is a source of vegetable fiber for both textiles and biocomposite applications. After harvesting, the plant stems are laid out on the ground and colonized by microorganisms (bacteria and fungi) naturally present in the soil and on the stems. By producing hydrolytic enzymes that degrade the plant wall polymers, the natural cement that binds the fiber bundles together is removed, thus facilitating their dissociation (retting process) which is required for producing high-performant fibers. To investigate temporal dynamics of retting microbial communities (density levels, diversity, and structure), a reliable protocol for extracting genomic DNA from stems is mandatory. However, very little attention has been paid to the methodological aspects of nucleic acid extraction, although they are crucial for the significance of the final result. Three protocols were selected and tested: a commercial kit (FastDNA™ Spin Kit for soil), the Gns-GII procedure, and a custom procedure from the Genosol platform. A comparative analysis was carried out on soil and two different varieties of hemp stem. The efficiency of each method was measured by evaluating both the quantity and quality of the extracted DNA and the abundance and taxonomy of bacterial and fungal populations. The Genosol protocol provides interesting yields in terms of quantity and quality of genomic DNA compared to the other two protocols. However, no major difference was observed in microbial diversity between the two extraction procedures (FastDNA™ SPIN Kit and Genosol protocol). Based on these results, the FastDNA™ SPIN kit or the Genosol procedure seems to be suitable for studying bacterial and fungal communities of the retting process. It should be noted that this work has demonstrated the importance of evaluating biases associated with DNA recovery from hemp stems. KEY POINTS: • Metagenomic DNA was successfully extracted from hemp stem samples using three different protocols. • Further evaluation was performed in terms of DNA yield and purity, abundance level, and microbial community structure. • This work exhibited the crucial importance of DNA recovery bias evaluation.
Collapse
Affiliation(s)
- Eliane Bou Orm
- Polymers, Composites and Hybrids (PCH), IMT Mines Alès, 6 avenue de Clavières, 30319, Alès Cedex, France
- Laboratoire des Sciences des Risques (LSR), IMT Mines Alès, 6 avenue de Clavières, 30319, Alès Cedex, France
| | - Stéphane Sauvagère
- École de l'ADN, Université de Nîmes, 19 Grand Rue BP 81295, 30015, Nîmes cedex 1, France
| | - Janick Rocher
- Laboratoire des Sciences des Risques (LSR), IMT Mines Alès, 6 avenue de Clavières, 30319, Alès Cedex, France
| | - Jean-Charles Benezet
- Polymers, Composites and Hybrids (PCH), IMT Mines Alès, 6 avenue de Clavières, 30319, Alès Cedex, France
| | - Sandrine Bayle
- Laboratoire des Sciences des Risques (LSR), IMT Mines Alès, 6 avenue de Clavières, 30319, Alès Cedex, France
| | - Christian Siatka
- UPR CHROME, Université de Nîmes, Place Gabriel Péri, 30000, Nîmes cedex 1, France
| | - Anne Bergeret
- Polymers, Composites and Hybrids (PCH), IMT Mines Alès, 6 avenue de Clavières, 30319, Alès Cedex, France
| | - Luc Malhautier
- Laboratoire des Sciences des Risques (LSR), IMT Mines Alès, 6 avenue de Clavières, 30319, Alès Cedex, France.
| |
Collapse
|
3
|
Nnadozie CF, Lin J, Govinden R. Optimisation of protocol for effective detachment and selective recovery of the representative bacteria for extraction of metagenomic DNA from Eucalyptus spp. woodchips. J Microbiol Methods 2018; 148:155-160. [PMID: 29673787 DOI: 10.1016/j.mimet.2018.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 10/17/2022]
Abstract
For some environments such as planktonic/aqueous environments, the separation of bacteria cells from eukaryotic cells prior to DNA extraction using filtration is relatively straightforward. However, for woodchips, the bacteria are attached/embedded within the wood matrix, which prevents easy removal of bacterial cells. In this study, a method for the selective extraction of DNA from bacteria inhabiting Eucalyptus spp. woodchips has been developed. The objective was to compare milled and unmilled woodchips processed via three detachment methods, viz., sonication, vortexing and shaking followed by filtration using Teflon filters according to three relevant criteria: DNA yield, DNA purity and quality of DNA. Highest DNA yield was obtained by milling and vortexing for 10 min (77.50 ± 5.17 ng/μl), followed by milling and vortexing for 2 min (61.00 ± 6.56 ng/μl), unmilled and vortexing for 10 min (38.67 ± 5.17 ng/μl) and milled and shaking for 2 h (31.62 ± 5.17 ng/μl). The lowest DNA yield was obtained by using unmilled woodchips and 5 min of sonication treatment (7.00 ± 1.22 ng/μl). There was no significant difference in DNA purity for milled or unmilled woodchips processed via the three detachment methods. Duration of cell detachment treatment did not significantly influence DNA yield and purity. Following optimisation experiments, it was possible to extract bacterial DNA using milled woodchips and 10 minute vortexing devoid of DNA from the host background and other associated eukaryotes and of sufficient quality and quantity for metagenomic analysis.
Collapse
Affiliation(s)
- Chika F Nnadozie
- Biotechnology Cluster/Microbiology Discipline, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa.
| | - Johnson Lin
- Biotechnology Cluster/Microbiology Discipline, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
| | - Roshini Govinden
- Biotechnology Cluster/Microbiology Discipline, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
4
|
Cabrol L, Poly F, Malhautier L, Pommier T, Lerondelle C, Verstraete W, Lepeuple AS, Fanlo JL, Le Roux X. Management of Microbial Communities through Transient Disturbances Enhances the Functional Resilience of Nitrifying Gas-Biofilters to Future Disturbances. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:338-48. [PMID: 26651080 DOI: 10.1021/acs.est.5b02740] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Microbial communities have a key role for the performance of engineered ecosystems such as waste gas biofilters. Maintaining constant performance despite fluctuating environmental conditions is of prime interest, but it is highly challenging because the mechanisms that drive the response of microbial communities to disturbances still have to be disentangled. Here we demonstrate that the bioprocess performance and stability can be improved and reinforced in the face of disturbances, through a rationally predefined strategy of microbial resource management (MRM). This strategy was experimentally validated in replicated pilot-scale nitrifying gas-biofilters, for the two steps of nitrification. The associated biological mechanisms were unraveled through analysis of functions, abundances and community compositions for the major actors of nitrification in these biofilters, that is, ammonia-oxidizing bacteria (AOB) and Nitrobacter-like nitrite-oxidizers (NOB). Our MRM strategy, based on the application of successive, transient perturbations of increasing intensity, enabled to steer the nitrifier community in a favorable way through the selection of more resistant AOB and NOB sharing functional gene sequences close to those of, respectively, Nitrosomonas eutropha and Nitrobacter hamburgensis that are well adapted to high N load. The induced community shifts resulted in significant enhancement of nitrification resilience capacity following the intense perturbation.
Collapse
Affiliation(s)
- Léa Cabrol
- Laboratoire Génie de l'Environnement Industriel, Ecole des Mines d'Alès , Rue Jules Renard, 30100 Alès, France
- Veolia Environnement Recherche et Innovation, Chemin de la Digue, BP76, 78600, Maisons Laffitte, France
- Pontificia Universidad Católica de Valparaíso, Escuela de Ingeniería Bioquímica, Avenida Brasil 2185, Valparaíso, Chile
| | - Franck Poly
- Laboratoire d'Ecologie Microbienne, Université de Lyon, Université Lyon 1, CNRS, INRA, UMR CNRS 5557, USC INRA 1364, Bâtiment Gregor Mendel, 16, rue Raphael Dubois, 69622, Villeurbanne Cedex, France
| | - Luc Malhautier
- Laboratoire Génie de l'Environnement Industriel, Ecole des Mines d'Alès , Rue Jules Renard, 30100 Alès, France
| | - Thomas Pommier
- Laboratoire d'Ecologie Microbienne, Université de Lyon, Université Lyon 1, CNRS, INRA, UMR CNRS 5557, USC INRA 1364, Bâtiment Gregor Mendel, 16, rue Raphael Dubois, 69622, Villeurbanne Cedex, France
| | - Catherine Lerondelle
- Laboratoire d'Ecologie Microbienne, Université de Lyon, Université Lyon 1, CNRS, INRA, UMR CNRS 5557, USC INRA 1364, Bâtiment Gregor Mendel, 16, rue Raphael Dubois, 69622, Villeurbanne Cedex, France
| | - Willy Verstraete
- LabMET, Faculty Bio-Science Engineering, Ghent University , Coupure L 653, 9000 Gent, Belgium
| | - Anne-Sophie Lepeuple
- Veolia Environnement Recherche et Innovation, Chemin de la Digue, BP76, 78600, Maisons Laffitte, France
| | - Jean-Louis Fanlo
- Laboratoire Génie de l'Environnement Industriel, Ecole des Mines d'Alès , Rue Jules Renard, 30100 Alès, France
| | - Xavier Le Roux
- Laboratoire d'Ecologie Microbienne, Université de Lyon, Université Lyon 1, CNRS, INRA, UMR CNRS 5557, USC INRA 1364, Bâtiment Gregor Mendel, 16, rue Raphael Dubois, 69622, Villeurbanne Cedex, France
| |
Collapse
|
5
|
Treatment of volatile organic compounds from a typical waste printed circuit board dismantling workshop by a pilot-scale biotrickling filter. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-015-0212-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Malhautier L, Soupramanien A, Bayle S, Rocher J, Fanlo JL. Potentialities of coupling biological processes (biotrickler/biofilter) for the degradation of a mixture of sulphur compounds. Appl Microbiol Biotechnol 2014; 99:89-96. [PMID: 24898634 DOI: 10.1007/s00253-014-5842-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/15/2014] [Accepted: 05/16/2014] [Indexed: 10/25/2022]
Abstract
This study deals with the potential of biological processes combining a biotrickler and a biofilter to treat a mixture of sulphur-reduced compounds including dimethyl sulphide (DMS), dimethyl disulphide (DMDS) and hydrogen sulphide (H2S). As a reference, duplicated biofilters were implemented, and operating conditions were similar for all bioprocesses. The first step of this work was to determine the efficiency removal level achieved for each compound of the mixture and in a second step, to assess the longitudinal distribution of biodegradation activities and evaluate the total bacteria, Hyphomicrobium sp. and Thiobacillus thioparus densities along the bed height. A complete removal of hydrogen sulphide is reached at the start of the experiment within the first stage (biotrickler) of the coupling. This study highlighted that the coupling of a biotrickling filter and a biofilter is an interesting way to improve both removal efficiency levels (15-20% more) and kinetics of recalcitrant sulphur compounds such as DMS and DMDS. The total cell densities remained similar (around 1 × 10(10) 16S recombinant DNA (rDNA) copies g dry packing material) for duplicated biofilters and the biofilter below the biotrickling filter. The relative abundances of Hyphomicrobium sp. and T. thioparus have been estimated to an average of 10 ± 7.0 and 0.23 ± 0.07%, respectively, for all biofilters. Further investigation should allow achieving complete removal of DMS by starting the organic sulphur compound degradation within the first stage and surveying microbial community structure colonizing this complex system.
Collapse
Affiliation(s)
- Luc Malhautier
- Ecole des mines d'Alès, 6 Avenue de Clavières, 30319, Alès Cedex, France,
| | | | | | | | | |
Collapse
|
7
|
López ME, Rene ER, Malhautier L, Rocher J, Bayle S, Veiga MC, Kennes C. One-stage biotrickling filter for the removal of a mixture of volatile pollutants from air: performance and microbial community analysis. BIORESOURCE TECHNOLOGY 2013; 138:245-252. [PMID: 23612184 DOI: 10.1016/j.biortech.2013.03.136] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/17/2013] [Accepted: 03/18/2013] [Indexed: 06/02/2023]
Abstract
The biodegradation of gas-phase mixtures of methanol, α-pinene and H2S was examined in a biotrickling filter (BTF), inoculated with a microbial consortium composed of an autotrophic H2S-degrading culture, and pure strains of Candida boidinii, Rhodococcus erythropolis, and Ophiostoma stenoceras. The inlet concentrations of methanol, α-pinene and H2S varied from 0.05 to 3.3 gm(-3), 0.05 to 2.7 gm(-3), and 0.01 to 1.4 gm(-3), respectively, at empty bed residence times (EBRT) of either 38 or 26s. The maximum elimination capacities (ECmax) of the BTF were 302, 175, and 191 gm(-3)h(-1), with 100%, 67%, and >99% removal of methanol, α-pinene and H2S, respectively. The presence of methanol showed an antagonistic removal pattern for α-pinene, but the opposite did not occur. For α-pinene, inlet loading rates (ILRs) >150 gα-pinenem(-3)h(-1) affected its own removal in the BTF. The presence of H2S did not show any declining effect on the removal of both methanol and α-pinene.
Collapse
Affiliation(s)
- M Estefanía López
- Department of Chemical Engineering, University of La Coruña, Campus da Zapateira, Rua da Fraga, 10, E-15008 La Coruña, Spain
| | | | | | | | | | | | | |
Collapse
|
8
|
Cabrol L, Malhautier L, Poly F, Roux XL, Lepeuple AS, Fanlo JL. Resistance and resilience of removal efficiency and bacterial community structure of gas biofilters exposed to repeated shock loads. BIORESOURCE TECHNOLOGY 2012; 123:548-557. [PMID: 22944489 DOI: 10.1016/j.biortech.2012.07.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 07/09/2012] [Accepted: 07/11/2012] [Indexed: 06/01/2023]
Abstract
Since full-scale biofilters are often operated under fluctuating conditions, it is critical to understand their response to transient states. Four pilot-scale biofilters treating a composting gas mixture and undergoing repeated substrate pulses of increasing intensity were studied. A systematic approach was proposed to quantify the resistance and resilience capacity of their removal efficiency, which enabled to distinguish between recalcitrant (ammonia, DMDS, ketones) and easily degradable (esters and aldehyde) compounds. The threshold of disturbing shock intensity and the influence of disturbance history depended on the contaminant considered. The spatial and temporal distribution of the bacterial community structure in response to the perturbation regime was analysed by Denaturing Gradient Gel Electrophoresis (DGGE). Even if the substrate-pulses acted as a driving force for some community characteristics (community stratification), the structure-function relationships were trickier to evidence: the distributions of resistance and composition were only partially coupled, with contradictory results depending on the contaminant considered.
Collapse
Affiliation(s)
- Léa Cabrol
- Laboratoire Génie de l'Environnement Industriel, Ecole des Mines d'Alès, Rue Jules Renard, 30100 Alès, France.
| | | | | | | | | | | |
Collapse
|
9
|
Ralebitso-Senior TK, Senior E, Di Felice R, Jarvis K. Waste gas biofiltration: advances and limitations of current approaches in microbiology. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:8542-8573. [PMID: 22746978 DOI: 10.1021/es203906c] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
As confidence in gas biofiltration efficacy grows, ever more complex malodorant and toxic molecules are ameliorated. In parallel, for many countries, emission control legislation becomes increasingly stringent to accommodate both public health and climate change imperatives. Effective gas biofiltration in biofilters and biotrickling filters depends on three key bioreactor variables: the support medium; gas molecule solubilization; and the catabolic population. Organic and inorganic support media, singly or in combination, have been employed and their key criteria are considered by critical appraisal of one, char. Catabolic species have included fungal and bacterial monocultures and, to a lesser extent, microbial communities. In the absence of organic support medium (soil, compost, sewage sludge, etc.) inoculum provision, a targeted enrichment and isolation program must be undertaken followed, possibly, by culture efficacy improvement. Microbial community process enhancement can then be gained by comprehensive characterization of the culturable and total populations. For all species, support medium attachment is critical and this is considered prior to filtration optimization by water content, pH, temperature, loadings, and nutrients manipulation. Finally, to negate discharge of fungal spores, and/or archaeal and/or bacterial cells, capture/destruction technologies are required to enable exploitation of the mineralization product CO(2).
Collapse
|
10
|
De Clippeleir H, Courtens E, Mosquera M, Vlaeminck SE, Smets BF, Boon N, Verstraete W. Efficient total nitrogen removal in an ammonia gas biofilter through high-rate OLAND. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:8826-8833. [PMID: 22799264 DOI: 10.1021/es301717b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Ammonia gas is conventionally treated in nitrifying biofilters; however, addition of organic carbon to perform post-denitrification is required to obtain total nitrogen removal. Oxygen-limited autotrophic nitrification/denitrification (OLAND), applied in full-scale for wastewater treatment, can offer a cost-effective alternative for gas treatment. In this study, the OLAND application thus was broadened toward ammonia loaded gaseous streams. A down flow, oxygen-saturated biofilter (height of 1.5 m; diameter of 0.11 m) was fed with an ammonia gas stream (248 ± 10 ppmv) at a loading rate of 0.86 ± 0.04 kg N m(-3) biofilter d(-1) and an empty bed residence time of 14 s. After 45 days of operation a stable nitrogen removal rate of 0.67 ± 0.06 kg N m(-3) biofilter d(-1), an ammonia removal efficiency of 99%, a removal of 75-80% of the total nitrogen, and negligible NO/N(2)O productions were obtained at water flow rates of 1.3 ± 0.4 m(3) m(-2) biofilter section d(-1). Profile measurements revealed that 91% of the total nitrogen activity was taking place in the top 36% of the filter. This study demonstrated for the first time highly effective and sustainable autotrophic ammonia removal in a gas biofilter and therefore shows the appealing potential of the OLAND process to treat ammonia containing gaseous streams.
Collapse
Affiliation(s)
- Haydée De Clippeleir
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
11
|
Zhao F, Xu K. Efficiency of DNA extraction methods on the evaluation of soil microeukaryotic diversity. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.chnaes.2012.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
12
|
Cabrol L, Malhautier L, Poly F, Lepeuple AS, Fanlo JL. Bacterial dynamics in steady-state biofilters: beyond functional stability. FEMS Microbiol Ecol 2012; 79:260-71. [PMID: 22029727 DOI: 10.1111/j.1574-6941.2011.01213.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The spatial and temporal dynamics of microbial community structure and function were surveyed in duplicated woodchip-biofilters operated under constant conditions for 231 days. The contaminated gaseous stream for treatment was representative of composting emissions, included ammonia, dimethyl disulfide and a mixture of five oxygenated volatile organic compounds. The community structure and diversity were investigated by denaturing gradient gel electrophoresis on 16S rRNA gene fragments. During the first 42 days, microbial acclimatization revealed the influence of operating conditions and contaminant loading on the biofiltration community structure and diversity, as well as the limited impact of inoculum compared to the greater persistence of the endogenous woodchip community. During long-term operation, a high and stable removal efficiency was maintained despite a highly dynamic microbial community, suggesting the probable functional redundancy of the community. Most of the contaminant removal occurred in the first compartment, near the gas inlet, where the microbial diversity was the highest. The stratification of the microbial structures along the filter bed was statistically correlated to the longitudinal distribution of environmental conditions (selective pressure imposed by contaminant concentrations) and function (contaminant elimination capacity), highlighting the central role of the bacterial community. The reproducibility of microbial succession in replicates suggests that the community changes were presumably driven by a deterministic process.
Collapse
Affiliation(s)
- Léa Cabrol
- Veolia Environnement Recherche et Innovation, Maisons Laffitte, France
| | | | | | | | | |
Collapse
|
13
|
Evaluation of methods for the extraction and purification of DNA from the human microbiome. PLoS One 2012; 7:e33865. [PMID: 22457796 PMCID: PMC3311548 DOI: 10.1371/journal.pone.0033865] [Citation(s) in RCA: 354] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 02/23/2012] [Indexed: 01/28/2023] Open
Abstract
Background DNA extraction is an essential step in all cultivation-independent approaches to characterize microbial diversity, including that associated with the human body. A fundamental challenge in using these approaches has been to isolate DNA that is representative of the microbial community sampled. Methodology/Principal Findings In this study, we statistically evaluated six commonly used DNA extraction procedures using eleven human-associated bacterial species and a mock community that contained equal numbers of those eleven species. These methods were compared on the basis of DNA yield, DNA shearing, reproducibility, and most importantly representation of microbial diversity. The analysis of 16S rRNA gene sequences from a mock community showed that the observed species abundances were significantly different from the expected species abundances for all six DNA extraction methods used. Conclusions/Significance Protocols that included bead beating and/or mutanolysin produced significantly better bacterial community structure representation than methods without both of them. The reproducibility of all six methods was similar, and results from different experimenters and different times were in good agreement. Based on the evaluations done it appears that DNA extraction procedures for bacterial community analysis of human associated samples should include bead beating and/or mutanolysin to effectively lyse cells.
Collapse
|
14
|
Integrating microbial ecology in bioprocess understanding: the case of gas biofiltration. Appl Microbiol Biotechnol 2011; 90:837-49. [PMID: 21424795 DOI: 10.1007/s00253-011-3191-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 02/25/2011] [Accepted: 02/27/2011] [Indexed: 10/18/2022]
Abstract
Biofilters are packed-bed bioreactors where contaminants, once transferred from the gas phase to the biofilm, are oxidized by diverse and complex communities of attached microorganisms. Over the last decade, more and more studies aimed at opening the back box of biofiltration by unraveling the biodiversity-ecosystem function relationship. In this review, we report the insights provided by the microbial ecology approach in biofilters and we emphasize the parallels existing with other engineered ecosystems used for wastewater treatment, as they all constitute relevant model ecosystems to explore ecological issues. We considered three characteristic ecological indicators: the density, the diversity, and the structure of the microbial community. Special attention was paid to the temporal and spatial dynamics of each indicator, insofar as it can disclose the potential relationship, or absence of relation, with any operating or functional parameter. We also focused on the impact of disturbance regime on the microbial community structure, in terms of resistance, resilience, and memory. This literature review led to mitigated conclusions in terms of biodiversity-ecosystem function relationship. Depending on the environmental system itself and the way it is investigated, the spatial and temporal dynamics of the microbial community can be either correlated (e.g., spatial stratification) or uncoupled (e.g., temporal instability) to the ecosystem function. This lack of generality shows the limits of current 16S approach in complex ecosystems, where a functional approach may be more suitable.
Collapse
|