1
|
Chen X, Gao Z, Wang S, Yang F. Processivity and enzymatic mechanism of a non-modular family 5 endoglucanase from Sporocytophaga sp. CX11 with potential applications in cellulose saccharification. Enzyme Microb Technol 2025; 185:110609. [PMID: 39965377 DOI: 10.1016/j.enzmictec.2025.110609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/07/2025] [Accepted: 02/14/2025] [Indexed: 02/20/2025]
Abstract
In this study, a novel GH5 processive endoglucanase SmCel5A from Sporocytophaga sp. CX11 was functionally expressed in E. coli. It could rapidly decrease the viscosity of carboxymethyl cellulose (CMC-Na) solution by nearly 50 % within the initial 8 min of incubation and exhibited a significantly high specific activity towards CMC-Na of 9940 U/µmol. SmCel5A could also hydrolyze other cellulosic substrates such as RAC, Avicel, filter paper, β-glucan and the chromogenic substrate pNPC. When hydrolyzing filter paper, about 89.1 % of soluble reducing sugars were generated after 180 min of incubation, and the main products were cellobiose followed by cellotriose and glucose. The processive ratio of SmCel5A increased from 2.32 to 11.22 as the reaction time was extended from 5 min to 180 min, which is significantly higher than those of other known processive endoglucanases. Moreover, SmCel5A could hydrolyze cellodextrins with the degree of polymerization (DP) ≥ 3, but it was not active on cellobiose. In combination reaction with β-glucosidase, the maximum substrate conversion rate reached 73.2 %, showing that the synergistic reaction of the two enzymes could efficiently reduce the accumulation of cellobiose and greatly improve the hydrolysis efficiency of cellulose. The three-dimensional structure of SmCel5A was predicted by AlphaFold2 and showed to feature a classic GH5 family (β/α)8-barrel structure, with a deep substrate-binding cleft formed by the amino acids at the C-terminus. Molecular docking results indicated that when hydrolyzing cellulosic substrates, SmCel5A exhibits a preference for the exo-type mechanism of action over the endo-type mechanism of action.
Collapse
Affiliation(s)
- Xiaoyi Chen
- School of Biological Engineering, Dalian Polytechnic University, Ganjingzi district, Dalian 116034, PR China
| | - Zilong Gao
- School of Biological Engineering, Dalian Polytechnic University, Ganjingzi district, Dalian 116034, PR China
| | - Shang Wang
- School of Biological Engineering, Dalian Polytechnic University, Ganjingzi district, Dalian 116034, PR China
| | - Fan Yang
- School of Biological Engineering, Dalian Polytechnic University, Ganjingzi district, Dalian 116034, PR China.
| |
Collapse
|
2
|
Kuch NJ, Kutschke ME, Parker A, Bingman CA, Fox BG. Contribution of calcium ligands in substrate binding and product release in the Acetovibrio thermocellus glycoside hydrolase family 9 cellulase CelR. J Biol Chem 2023; 299:104655. [PMID: 36990218 PMCID: PMC10149213 DOI: 10.1016/j.jbc.2023.104655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Enzymatic deconstruction of lignocellulosic biomass is crucial to establishment of the renewable biofuel and bioproduct economy. Better understanding of these enzymes, including their catalytic and binding domains, and other features offer potential avenues for improvement. Glycoside hydrolase family 9 (GH9) enzymes are attractive targets because they have members that exhibit exo- and endo-cellulolytic activity, processivity of reaction, and thermostability. This study examines a GH9 from Acetovibrio thermocellus ATCC 27405, AtCelR containing a catalytic domain and a carbohydrate binding module (CBM3c). Crystal structures of the enzyme without substrate, bound to cellohexaose (substrate) or cellobiose (product), show the positioning of ligands to calcium and adjacent residues in the catalytic domain that may contribute to substrate binding and facilitate product release. We also investigated the properties of the enzyme engineered to contain an additional carbohydrate binding module (CBM3a). Relative to the catalytic domain alone, CBM3a gave improved binding for Avicel (a crystalline form of cellulose), and catalytic efficiency (kcat/KM) was improved 40× with both CBM3c and CBM3a present. However, because of the molecular weight added by CBM3a, the specific activity of the engineered enzyme was not increased relative to the native construct consisting of only the catalytic and CBM3c domains. This work provides new insight into a potential role of the conserved calcium in the catalytic domain and identifies contributions and limitations of domain engineering for AtCelR and perhaps other GH9 enzymes.
Collapse
Affiliation(s)
- Nathaniel J Kuch
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mark E Kutschke
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alex Parker
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA; Dane County Youth Apprenticeship Program, Dane County School Consortium, Monona, Wisconsin, USA
| | - Craig A Bingman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA; Collaborative Crystallography Core, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Brian G Fox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
3
|
Li P, Wang X, Zhang C, Xu D. Processive binding mechanism of Cel9G from Clostridium cellulovorans: molecular dynamics and free energy landscape investigations. Phys Chem Chem Phys 2023; 25:646-657. [DOI: 10.1039/d2cp04830b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The processive binding mechanism of cellulose by Cel9G from C. cellulovorans was investigated by MD and metadynamics simulations.
Collapse
Affiliation(s)
- Penghui Li
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Sichuan, Chengdu, 610064, P. R. China
| | - Xin Wang
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Sichuan, Chengdu, 610064, P. R. China
| | - Chunchun Zhang
- Analytical & Testing Center, Sichuan University, Sichuan, Chengdu, 610064, P. R. China
| | - Dingguo Xu
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Sichuan, Chengdu, 610064, P. R. China
| |
Collapse
|
4
|
Calloni RD, Muchut RJ, Garay AS, Arias DG, Iglesias AA, Guerrero SA. Functional and structural characterization of an endo-β-1,3-glucanase from Euglena gracilis. Biochimie 2022; 208:117-128. [PMID: 36586565 DOI: 10.1016/j.biochi.2022.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Endo-β-1,3-glucanases from several organisms have attracted much attention in recent years because of their capability for in vitro degrading β-1,3-glucan as a critical step for both biofuels production and short-chain oligosaccharides synthesis. In this study, we biochemically characterized a putative endo-β-1,3-glucanase (EgrGH64) belonging to the family GH64 from the single-cell protist Euglena gracilis. The gene coding for the enzyme was heterologously expressed in a prokaryotic expression system supplemented with 3% (v/v) ethanol to optimize the recombinant protein right folding. Thus, the produced enzyme was highly purified by immobilized-metal affinity and gel filtration chromatography. The enzymatic study demonstrated that EgrGH64 could hydrolyze laminarin (KM 23.5 mg ml-1,kcat 1.20 s-1) and also, but with less enzymatic efficiency, paramylon (KM 20.2 mg ml-1,kcat 0.23 ml mg-1 s-1). The major product of the hydrolysis of both substrates was laminaripentaose. The enzyme could also use ramified β-glucan from the baker's yeast cell wall as a substrate (KM 2.10 mg ml-1, kcat 0.88 ml mg-1 s-1). This latter result, combined with interfacial kinetic analysis evidenced a protein's greater efficiency for the yeast polysaccharide, and a higher number of hydrolysis sites in the β-1,3/β-1,6-glucan. Concurrently, the enzyme efficiently inhibited the fungal growth when used at 1.0 mg/mL (15.4 μM). This study contributes to assigning a correct function and determining the enzymatic specificity of EgrGH64, which emerges as a relevant biotechnological tool for processing β-glucans.
Collapse
Affiliation(s)
- Rodrigo D Calloni
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Robertino J Muchut
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina
| | - Alberto S Garay
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Diego G Arias
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Alberto A Iglesias
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Sergio A Guerrero
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
5
|
Thakur V, Singh D. A thermo-alkali stable and detergent compatible processive β-1,4-glucanase from Himalayan Bacillus sp. PCH94. Front Microbiol 2022; 13:1058249. [DOI: 10.3389/fmicb.2022.1058249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
Present study reports a novel and robust GH9 processive endoglucanase β-1,4-glucanase from Bacillus sp. PCH94 (EGaseBL) with thermo-alkali stable properties. The EGaseBL gene was cloned in pET-28b(+) and expressed in Escherichia coli BL21(DE3) cells. The recombinant protein was purified 94-fold with a yield of 67.8%. The biochemical characterization revealed an active enzyme at a wide pH (4.0–10.0) and temperature (4–100°C). It showed a Km and Vmax of 1.10 mg/ml and 208.24 IU/mg, respectively, using β-glucan as a substrate. The EGaseBL showed dual activities for endoglucanase (134.17 IU/mg) and exoglucanase (28.76 IU/mg), assayed using substrates β-glucan and Avicel, respectively. The enzyme is highly stable in neutral and alkaline pH and showed a half-life of 11.29 h, and 8.31 h in pH 7.0 and 9.0, respectively. The enzyme is also compatible with commercial detergents (Tide, Surf, Ghadi, Raj, and Healing tree) of the Indian market and retained > 85% enzyme activity. Concisely, robustness, extreme functionality, and detergent compatibility endorse EGaseBL as a potential bioresource for the detergent industry, in addition to its implications for the bioethanol industry.Highlights– Cloning, expression, and purification of putative novel GH9 family β-1,4-glucanase.– Processive endoglucanase with CBM3 domain and bi-functional (endo/exo) activity.– Broad pH-temperature active and stable enzyme.– Compatible with commercial detergent powders.
Collapse
|
6
|
A processive GH9 family endoglucanase of Bacillus licheniformis and the role of its carbohydrate-binding domain. Appl Microbiol Biotechnol 2022; 106:6059-6075. [PMID: 35948851 DOI: 10.1007/s00253-022-12117-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 11/02/2022]
Abstract
One of the critical steps in lignocellulosic deconstruction is the hydrolysis of crystalline cellulose by cellulases. Endoglucanases initially facilitate the breakdown of cellulose in lignocellulosic biomass and are further aided by other cellulases to produce fermentable sugars. Furthermore, if the endoglucanase is processive, it can adsorb to the smooth surface of crystalline cellulose and release soluble sugars during repeated cycles of catalysis before dissociating. Most glycoside hydrolase family 9 (GH9) endoglucanases have catalytic domains linked to a CBM (carbohydrate-binding module) (mostly CBM3) and present the second-largest cellulase family after GH5. GH9 endoglucanases are relatively less characterized. Bacillus licheniformis is a mesophilic soil bacterium containing many glycoside hydrolase (GH) enzymes. We identified an endoglucanase gene, gh9A, encoding the GH9 family enzyme H1AD14 in B. licheniformis and cloned and overexpressed H1AD14 in Escherichia coli. The purified H1AD14 exhibited very high enzymatic activity on endoglucanase substrates, such as β-glucan, lichenan, Avicel, CMC-Na (sodium carboxymethyl cellulose) and PASC (phosphoric acid swollen cellulose), across a wide pH range. The enzyme is tolerant to 2 M sodium chloride and retains 74% specific activity on CMC after 10 days, the highest amongst the reported GH9 endoglucanases. The full-length H1AD14 is a processive endoglucanase and efficiently saccharified sugarcane bagasse. The deletion of the CBM reduces the catalytic activity and processivity. The results add to the sparse knowledge of GH9 endoglucanases and offer the possibility of characterizing and engineering additional enzymes from B. licheniformis toward developing a cellulase cocktail for improved biomass deconstruction. KEY POINTS: • H1AD14 is a highly active and processive GH9 endoglucanase from B. licheniformis. • H1AD14 is thermostable and has a very long half-life. • H1AD14 showed higher saccharification efficiency than commercial endoglucanase.
Collapse
|
7
|
Li P, Shi M, Wang X, Xu D. QM/MM investigation of the catalytic mechanism of processive endoglucanase Cel9G from Clostridium cellulovorans. Phys Chem Chem Phys 2022; 24:11919-11930. [PMID: 35514276 DOI: 10.1039/d2cp00593j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Carbohydrate degradation catalyzed by glucoside hydrolases (GHs) is a major mechanism in biomass conversion. GH family 9 endoglucanase (Cel9G) from Clostridium cellulovorans, a typical multimodular enzyme, contains a catalytic domain closely linked to a family 3c carbohydrate-binding module (CBM3c). Unlike the conventional behavior proposed for other carbohydrate-binding modules, CBM3c has a direct impact on catalytic activity. In this work, extensive molecular dynamics (MD) simulations were employed to clarify the functional role of CBM3c. Furthermore, the detailed catalytic mechanism of Cel9G was investigated at the atomistic level using the combined quantum mechanical and molecular mechanical (QM/MM) method. Based on these simulations, owing to the rigidity of the peptide linker, CBM3c may affect the enzymatic activity via direct interactions with alpha helix 4 of GH9, especially with the K123 and H125 residues. In addition, using cellohexaose as a substrate, the QM/MM MD simulations confirmed that this enzyme can cleave the β-1,4-glycosidic linkage via an inverting mechanism. An oxocarbenium ion-like transition state was located with a barrier height of 19.6 kcal mol-1. Furthermore, the G(-1) pyranose unit preferentially adopted a distorted 1S5/4H5 conformer in the enzyme-substrate complex. For the cleavage of the glycosidic bond, we were able to identify a plausible route (1S5/4H5 → [4H5/4E]# → 4C1) from the reactant to the product at the G(-1) site.
Collapse
Affiliation(s)
- Penghui Li
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, Sichuan, 610064, P. R. China.
| | - Mingsong Shi
- State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Xin Wang
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, Sichuan, 610064, P. R. China.
| | - Dingguo Xu
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, Sichuan, 610064, P. R. China.
| |
Collapse
|
8
|
Nguyen KHV, Dao TK, Nguyen HD, Nguyen KH, Nguyen TQ, Nguyen TT, Nguyen TMP, Truong NH, Do TH. Some characters of bacterial cellulases in goats' rumen elucidated by metagenomic DNA analysis and the role of fibronectin 3 module for endoglucanase function. Anim Biosci 2021; 34:867-879. [PMID: 32882773 PMCID: PMC8100471 DOI: 10.5713/ajas.20.0115] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 07/19/2020] [Indexed: 12/20/2022] Open
Abstract
Objective Fibronectin 3 (FN3) and immunoglobulin like modules (Ig) are usually collocated beside modular cellulase catalytic domains. However, very few researches have investigated the role of these modules. In a previous study, we have sequenced and analyzed bacterial metagenomic DNA in Vietnamese goats’ rumen and found that cellulase-producing bacteria and cellulase families were dominant. In this study, the properties of modular cellulases and the role of a FN3 in unique endoglucanase belonging to glycosyl hydorlase (GH) family 5 were determined. Methods Based on Pfam analysis, the cellulases sequences containing FN3, Ig modules were extracted from 297 complete open reading frames (ORFs). The alkaline, thermostability, tertiary structure of deduced enzymes were predicted by AcalPred, TBI software, Phyre2 and Swiss models. Then, whole and truncated forms of a selected gene were expressed in Escherichia coli and purified by His-tag affinity column for assessment of FN3 ability to enhance enzyme activity, solubility and conformation. Results From 297 complete ORFs coding for cellulases, 148 sequences containing FN3, Ig were identified. Mostly FN3 appeared in 90.9% beta-glucosidases belonging to glycosyl hydrolase family 3 (GH3) and situated downstream of catalytic domains. The Ig was found upstream of 100% endoglucanase GH9. Rarely FN3 was seen to be situated downstream of X domain and upstream of catalytic domain endoglucanase GH5. Whole enzyme (called XFN3GH5 based on modular structure) and truncate forms FN3, XFN3, FN3GH5, GH5 were cloned in pET22b (+) and pET22SUMO to be expressed in single and fusion forms with a small ubiquitin-related modifier partner (S). The FN3, SFN3 increased GH5 solubility in FN3GH5, SFN3GH5. The SFN3 partly served for GH5 conformation in SFN3GH5, increased modules interaction and enzyme-soluble substrate affinity to enhance SXFN3GH5, SFN3GH5 activities in mixtures. Both SFN3 and SXFN3 did not anchor enzyme on filter paper but exfoliate and separate cellulose chains on filter paper for enzyme hydrolysis. Conclusion Based on these findings, the presence of FN3 module in certain cellulases was confirmed and it assisted for enzyme conformation and activity in both soluble and insoluble substrate.
Collapse
|
9
|
Raza A, Bashir S, Pothula R, Abdelgaffar H, Tabassum R, Anwar MI, Awais MM, Akhtar M, Jurat-Fuentes JL. Expression and functional characterization in yeast of an endoglucanase from Bacillus sonorensis BD92 and its impact as feed additive in commercial broilers. Int J Biol Macromol 2021; 176:364-375. [PMID: 33549664 DOI: 10.1016/j.ijbiomac.2021.02.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 11/26/2022]
Abstract
Some ingredients used in poultry feed formulation contain carbohydrate polymers which are difficult to digest and thus hinder nutritional feed value. Toward overcoming this limitation, exogenous enzymes have been added to poultry feed to improve its nutritive value. The present study was designed to provide first enzymatic characterization of endoglucanase (BsEgl) from the genome of B. sonorensis BD92 expressed in Pichia pastoris. Further, we tested its impact alone and in combination with a β-glucosidase (Bteqβgluc) on growth in commercial broilers as feed additive. The expressed enzyme displayed features of GH5 family and had optimum activity against carboxymethyl cellulose at pH 5 and 50 °C. The BsEgl was stable at a range of pH from 4 to 8 for 60 min and at 50 °C for 180 min. Supplementing broilers diet with BsEgl alone or in combination with Bteqβgluc resulted in better feed conversion ratio among treatments during a five weeks testing period. Moreover, meat percentage was also highest for this treatment, and all treatments with recombinant enzymes increased intestinal length in birds compared to treatment control group. Blood parameters and serum biochemistry profile showed non-significant difference among groups. These results support that recombinant cellulolytic enzymes supplement high fiber diets improve their nutritional performance.
Collapse
Affiliation(s)
- Ahmad Raza
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Saira Bashir
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan.
| | - Ratnasri Pothula
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, USA
| | - Heba Abdelgaffar
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, USA
| | - Romana Tabassum
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Muhammad Irfan Anwar
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Mian Muhammad Awais
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Masood Akhtar
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | | |
Collapse
|
10
|
Ogonda LA, Saumonneau A, Dion M, Muge EK, Wamalwa BM, Mulaa FJ, Tellier C. Characterization and engineering of two new GH9 and GH48 cellulases from a Bacillus pumilus isolated from Lake Bogoria. Biotechnol Lett 2021; 43:691-700. [PMID: 33386499 DOI: 10.1007/s10529-020-03056-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To search for new alkaliphilic cellulases and to improve their efficiency on crystalline cellulose through molecular engineering RESULTS: Two novel cellulases, BpGH9 and BpGH48, from a Bacillus pumilus strain were identified, cloned and biochemically characterized. BpGH9 is a modular endocellulase belonging to the glycoside hydrolase 9 family (GH9), which contains a catalytic module (GH) and a carbohydrate-binding module belonging to class 3 and subclass c (CBM3c). This enzyme is extremely tolerant to high alkali pH and remains significantly active at pH 10. BpGH48 is an exocellulase, belonging to the glycoside hydrolase 48 family (GH48) and acts on the reducing end of oligo-β1,4 glucanes. A truncated form of BpGH9 and a chimeric fusion with an additional CBM3a module was constructed. The deletion of the CBM3c module results in a significant decline in the catalytic activity. However, fusion of CBM3a, although in a non native position, enhanced the activity of BpGH9 on crystalline cellulose. CONCLUSIONS A new alkaliphilic endocellulase BpGH9, was cloned and engineered as a fusion protein (CBM3a-BpGH9), which led to an improved activity on crystalline cellulose.
Collapse
Affiliation(s)
- Lydia A Ogonda
- Université de Nantes, CNRS, UFIP, UMR6286, 2, rue de la Houssinière, 44322, Nantes, France.,Department of Biochemistry, School of Medicine, College of Health Sciences, University of Nairobi, P.O BOX 30197-00100, Nairobi, Kenya.,Department of Medical Biochemistry, School of Medicine, Masinde Muliro University of Science and Technology, P.O BOX 190-50100, Kakamega, Kenya
| | - Amélie Saumonneau
- Université de Nantes, CNRS, UFIP, UMR6286, 2, rue de la Houssinière, 44322, Nantes, France
| | - Michel Dion
- Université de Nantes, IRS2, 44000, Nantes, France
| | - Edward K Muge
- Department of Biochemistry, School of Medicine, College of Health Sciences, University of Nairobi, P.O BOX 30197-00100, Nairobi, Kenya
| | - Benson M Wamalwa
- Department of Chemistry, School of Physical Sciences, College of Biological and Physical Sciences, University of Nairobi, P.O BOX 30197-00100, Nairobi, Kenya
| | - Francis J Mulaa
- Department of Biochemistry, School of Medicine, College of Health Sciences, University of Nairobi, P.O BOX 30197-00100, Nairobi, Kenya
| | - Charles Tellier
- Université de Nantes, CNRS, UFIP, UMR6286, 2, rue de la Houssinière, 44322, Nantes, France.
| |
Collapse
|
11
|
Kumar K, Singh S, Sharma K, Goyal A. Computational modeling and small-angle X-ray scattering based structure analysis and identifying ligand cleavage mechanism by processive endocellulase of family 9 glycoside hydrolase (HtGH9) from Hungateiclostridium thermocellum ATCC 27405. J Mol Graph Model 2020; 103:107808. [PMID: 33248343 DOI: 10.1016/j.jmgm.2020.107808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 11/16/2022]
Abstract
The cellulases of family 9 glycoside hydrolase with subtle difference in amino acid sequence have shown different types of catalytic activities such as endo-, exo- or processive endocellulase. However, the reason behind the different types of catalytic activities still unclear. In this study, the processive endocellulase, HtGH9 of family 9 GH from Hungateiclostridium thermocellum was modeled by homology modeling. The catalytic module (HtGH9t) of HtGH9 modeled structure displayed the (α/α)6 barrel topology and associated family 3 carbohydrate binding module (HtCBM3c) displayed β-sandwich fold. Ramachandran plot of HtGH9 modeled structure displayed all the amino acid residues in allowed region except Asn225 and Asp317. Secondary structure analysis of modeled HtGH9 showed the presence of 41.3% α-helices and 11.0% β-strands which was validated through circular dichroism analysis that showed the presence of 42.6% α-helices and 14.5% β-strands. Molecular Dynamic (MD) simulation of HtGH9 structure for 50 ns showed Root Mean Square Deviation (RMSD), 0.84 nm and radius of gyration (Rg) 3.1 nm. The Small-angle X-ray scattering of HtGH9 confirmed the monodisperse state. The radius of gyration for globular shape (Rg) was 5.50 ± 0.15 nm and for rod shape (Rc) by Guinier plot was 2.0 nm. The loop formed by amino acid residues, 264-276 towards one end of the catalytic site of HtGH9 forms a barrier, that blocks the non-reducing end of the cellulose chain causing the processive cleavage resulting in the release of cellotetraose. The position of the corresponding loop in cellulases of family 9 GH is responsible for different types of cleavage patterns.
Collapse
Affiliation(s)
- Krishan Kumar
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Shubha Singh
- Division of Biological Sciences and Engineering, Netaji Subhas University of Technology, Delhi, 110078, India
| | - Kedar Sharma
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; Laboratory of Small Molecules & Macro Molecular Crystallography, Department of Bioengineering, Indian Institute of Technology Gandhinagar, Gandhinagar, 382355, India
| | - Arun Goyal
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
12
|
Barbosa FC, Silvello MA, Goldbeck R. Cellulase and oxidative enzymes: new approaches, challenges and perspectives on cellulose degradation for bioethanol production. Biotechnol Lett 2020; 42:875-884. [DOI: 10.1007/s10529-020-02875-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 01/04/2023]
|
13
|
Kumar K, Singal S, Goyal A. Role of carbohydrate binding module (CBM3c) of GH9 β-1,4 endoglucanase (Cel9W) from Hungateiclostridium thermocellum ATCC 27405 in catalysis. Carbohydr Res 2019; 484:107782. [DOI: 10.1016/j.carres.2019.107782] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/06/2019] [Accepted: 08/20/2019] [Indexed: 11/30/2022]
|
14
|
Processivity and the Mechanisms of Processive Endoglucanases. Appl Biochem Biotechnol 2019; 190:448-463. [DOI: 10.1007/s12010-019-03096-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 07/18/2019] [Indexed: 11/26/2022]
|
15
|
Valls C, Pastor FIJ, Roncero MB, Vidal T, Diaz P, Martínez J, Valenzuela SV. Assessing the enzymatic effects of cellulases and LPMO in improving mechanical fibrillation of cotton linters. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:161. [PMID: 31289461 PMCID: PMC6593493 DOI: 10.1186/s13068-019-1502-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/15/2019] [Indexed: 05/31/2023]
Abstract
BACKGROUND The increasing interest in replacing petroleum-based products by more sustainable materials in the packaging sector gives relevance to cellulose as a biodegradable natural resource. Moreover, its properties can be modified physically, chemically or biotechnologically in order to obtain new bioproducts. Refined cotton linters with high cellulose content were treated with hydrolytic (cellulases) and oxidative (LPMO and Laccase_Tempo) enzymes to evaluate their effect on fibre properties and in improving mechanical fibrillation. RESULTS Cellulases released cellooligosaccharides, reducing fibre length and partially degrading cellulose. They also improved mechanical fibrillation yielding up to 18% of nanofibrillated cellulose (NFC). LPMO introduced a slight amount of COOH groups in cellulose fibres, releasing cellobionic acid to the effluents. The action of cellulases was improved after LPMO treatment; however, the COOH groups created disappeared from fibres. After mechanical fibrillation of LPMO-cellulase-treated cotton linters a 23% yield of NFC was obtained. Laccase_Tempo treatment also introduced COOH groups in cellulose fibres from cotton, yielding 10% of NFC. Degree of polymerization was reduced by Laccase_Tempo, while LPMO treatment did not significantly affect it but produced a higher reduction in fibre length. The combined treatment with LPMO and cellulase provided films with higher transparency (86%), crystallinity (92%), smoothness and improved barrier properties to air and water than films casted from non-treated linters and from commercial NFC. CONCLUSIONS The combined enzymatic treatment with LPMO and cellulases boosted mechanical fibrillation of cotton linters, improving the NFC production and providing bioproducts with high transparency and high barrier properties.
Collapse
Affiliation(s)
- Cristina Valls
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
- CELBIOTECH_Paper Engineering Research Group, Universitat Politècnica de Catalunya, BarcelonaTech, 08222 Terrassa, Spain
| | - F. I. Javier Pastor
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - M. Blanca Roncero
- CELBIOTECH_Paper Engineering Research Group, Universitat Politècnica de Catalunya, BarcelonaTech, 08222 Terrassa, Spain
| | - Teresa Vidal
- CELBIOTECH_Paper Engineering Research Group, Universitat Politècnica de Catalunya, BarcelonaTech, 08222 Terrassa, Spain
| | - Pilar Diaz
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Josefina Martínez
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Susana V. Valenzuela
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| |
Collapse
|
16
|
Valenzuela SV, Valls C, Schink V, Sánchez D, Roncero MB, Diaz P, Martínez J, Pastor FJ. Differential activity of lytic polysaccharide monooxygenases on celluloses of different crystallinity. Effectiveness in the sustainable production of cellulose nanofibrils. Carbohydr Polym 2019; 207:59-67. [DOI: 10.1016/j.carbpol.2018.11.076] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/20/2018] [Accepted: 11/23/2018] [Indexed: 01/14/2023]
|
17
|
Liu ZL, Li HN, Song HT, Xiao WJ, Xia WC, Liu XP, Jiang ZB. Construction of a trifunctional cellulase and expression in Saccharomyces cerevisiae using a fusion protein. BMC Biotechnol 2018; 18:43. [PMID: 30005661 PMCID: PMC6044064 DOI: 10.1186/s12896-018-0454-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/04/2018] [Indexed: 01/11/2023] Open
Abstract
Background Cellulose is the most important component of lignocellulose, and its degradation requires three different types of enzymes to act synergistically. There have been reports of single gene duality, but no gene has been described to have more than two functions. Cloning and expression of fusion cellulases containing more than two kinds of catalytic domains has not been reported thus far. Results We synthesized three different cellulase genes and linked the three catalytic domains with a (G4S)3 flexible linker. The trifunctional cellulase gene (BCE) containing three types of cellulase functions was constructed and expressed in S. cerevisiae successfully. The β-glucosidase, the exoglucanase and the endoglucanase activity of the trifunctional cellulase BCE reached 16.80 IU/mg, 2.26 IU/mg and 20.67 IU/mg, which was 46.27, 6.73 and 46.20% higher than the activities of the β-glucosidase BG, the endoglucanase CBH and the endoglucanase EG. The filter paper enzyme activity of BCE was higher than those of BG, CBH and EG, reached 2.04 IU/mg. Conclusions The trifunctional cellulase BCE was designed based on β-glucosidase BG, endoglucanase EG and exoglucanase CBH, and it possessed β-glucosidase activity, endoglucanase activity and exoglucanase activity simultaneously. The BCE has better filter paper activity, it means the potential practical application. Electronic supplementary material The online version of this article (10.1186/s12896-018-0454-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zi-Lu Liu
- Hubei Key Laboratory of Industrial Biotechnology College of Life Science, Hubei University, Wuhan, 430062, People's Republic of China.,Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei University, Wuhan, 430062, People's Republic of China
| | - Hua-Nan Li
- Hubei Key Laboratory of Industrial Biotechnology College of Life Science, Hubei University, Wuhan, 430062, People's Republic of China
| | - Hui-Ting Song
- Hubei Key Laboratory of Industrial Biotechnology College of Life Science, Hubei University, Wuhan, 430062, People's Republic of China.,College of Resources and Environmental Science, Hubei University, Wuhan, 430062, People's Republic of China
| | - Wen-Jing Xiao
- Hubei Key Laboratory of Industrial Biotechnology College of Life Science, Hubei University, Wuhan, 430062, People's Republic of China
| | - Wu-Cheng Xia
- Hubei Key Laboratory of Industrial Biotechnology College of Life Science, Hubei University, Wuhan, 430062, People's Republic of China
| | - Xiao-Peng Liu
- Department of Biological Science and Technology, Hubei University for Nationalities, Ensi, 445000, People's Republic of China
| | - Zheng-Bing Jiang
- Hubei Key Laboratory of Industrial Biotechnology College of Life Science, Hubei University, Wuhan, 430062, People's Republic of China. .,Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei University, Wuhan, 430062, People's Republic of China.
| |
Collapse
|
18
|
Wu B, Zheng S, Pedroso MM, Guddat LW, Chang S, He B, Schenk G. Processivity and enzymatic mechanism of a multifunctional family 5 endoglucanase from Bacillus subtilis BS-5 with potential applications in the saccharification of cellulosic substrates. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:20. [PMID: 29422948 PMCID: PMC5787917 DOI: 10.1186/s13068-018-1022-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/11/2018] [Indexed: 05/28/2023]
Abstract
BACKGROUND Presently, enzymes still constitute a major part of the cost of biofuel production from lignocellulosic biomass. Processive endoglucanases, which possess both endoglucanase and exoglucanase activity, have the potential to reduce the costs of biomass saccharification when used together with commercial cellulases. Therefore, the exploration of new processive endoglucanases has attracted much attention with a view to accelerating the industrialization of biofuels and biochemicals. RESULTS The endoglucanase EG5C and its truncated form EG5C-1 from Bacillus subtilis BS-5 were expressed and characterized. EG5C was a typical endoglucanase, comprised of a family 5 catalytic domain and family 3 carbohydrate-binding domain, and which had high activity toward soluble cellulosic substrates, but low activity toward insoluble cellulosic substrates. Importantly, the truncated form EG5C-1 was a processive endoglucanase that hydrolyzed not only carboxymethyl cellulose (CMC), but also insoluble cellulosic substrates. The hydrolytic activities of EG5C-1 towards CMC, phosphoric acid-swollen cellulose (PASC), p-nitrophenyl-β-d-cellobioside, filter paper and Avicel are 4170, 700, 2550, 405 and 320 U/μmol, respectively. These data demonstrated that EG5C-1 had higher activity ratio of exoglucanase to endoglucanase than other known processive endoglucanases. When PASC was degraded by EG5C-1, the ratio of soluble to insoluble reducing sugars was about 3.7 after 3 h of incubation with cellobiose and cellotriose as the main products. Importantly, EG5C-1 alone was able to hydrolyze filter paper and PASC. At 5% substrate concentration and 10 FPU/g PASC enzyme loading, the saccharification yield was 76.5% after 60 h of incubation. Replacement of a phenylalanine residue (F238) by an alanine at the entrance/exit of the substrate binding cleft significantly reduces the ability of EG5C-1 to degrade filter paper and Avicel, but this mutation has little impact on CMCase activity. The processivity of this mutant was also greatly reduced while its cellulose binding ability was markedly enhanced. CONCLUSIONS The processive endoglucanase EG5C-1 from B. subtilis BS-5 exhibits excellent properties that render it a suitable candidate for use in biofuel and biochemical production from lignocellulosic biomass. In addition, our studies also provide useful information for research on enzyme processivity at the molecular level.
Collapse
Affiliation(s)
- Bin Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan road, Nanjing, 211816 Jiangsu China
- China Jiangsu National Synergetic Innovation Center for Advanced Materials, 30 Puzhunan road, Nanjing, 211816 Jiangsu China
| | - Shan Zheng
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072 Australia
| | - Marcelo Monteiro Pedroso
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072 Australia
| | - Luke W. Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072 Australia
| | - Siyuan Chang
- School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhunan road, Nanjing, 211816 Jiangsu China
| | - Bingfang He
- China Jiangsu National Synergetic Innovation Center for Advanced Materials, 30 Puzhunan road, Nanjing, 211816 Jiangsu China
- School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhunan road, Nanjing, 211816 Jiangsu China
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072 Australia
| |
Collapse
|
19
|
Kolinko S, Wu YW, Tachea F, Denzel E, Hiras J, Gabriel R, Bäcker N, Chan LJG, Eichorst SA, Frey D, Chen Q, Azadi P, Adams PD, Pray TR, Tanjore D, Petzold CJ, Gladden JM, Simmons BA, Singer SW. A bacterial pioneer produces cellulase complexes that persist through community succession. Nat Microbiol 2017; 3:99-107. [PMID: 29109478 PMCID: PMC6794216 DOI: 10.1038/s41564-017-0052-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 10/04/2017] [Indexed: 11/16/2022]
Abstract
Cultivation of microbial consortia provides low-complexity communities that can serve as tractable models to understand community dynamics. Time-resolved metagenomics demonstrated that an aerobic cellulolytic consortium cultivated from compost exhibited community dynamics consistent with the definition of an endogenous heterotrophic succession. The genome of the proposed pioneer population, ‘Candidatus Reconcilibacillus cellulovorans’, possessed a gene cluster containing multidomain glycoside hydrolases (GHs). Purification of the soluble cellulase activity from a 300litre cultivation of this consortium revealed that ~70% of the activity arose from the ‘Ca. Reconcilibacillus cellulovorans’ multidomain GHs assembled into cellulase complexes through glycosylation. These remarkably stable complexes have supramolecular structures for enzymatic cellulose hydrolysis that are distinct from cellulosomes. The persistence of these complexes during cultivation indicates that they may be active through multiple cultivations of this consortium and act as public goods that sustain the community. The provision of extracellular GHs as public goods may influence microbial community dynamics in native biomass-deconstructing communities relevant to agriculture, human health and biotechnology. Cultivation of a cellulolytic consortium reveals successional community dynamics and the presence of multidomain glycoside hydrolases assembled into stable complexes distinct from cellulosomes, which are produced by a potential pioneer population.
Collapse
Affiliation(s)
- Sebastian Kolinko
- Joint BioEnergy Institute, Emeryville, CA, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yu-Wei Wu
- Joint BioEnergy Institute, Emeryville, CA, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Firehiwot Tachea
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Advanced Biofuels Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
| | - Evelyn Denzel
- Joint BioEnergy Institute, Emeryville, CA, USA.,Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Faculty of Biotechnology, University of Applied Sciences, Mannheim, Germany
| | - Jennifer Hiras
- Joint BioEnergy Institute, Emeryville, CA, USA.,Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Corning Incorporated, Corning, NY, USA
| | - Raphael Gabriel
- Joint BioEnergy Institute, Emeryville, CA, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Institut für Genetik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nora Bäcker
- Joint BioEnergy Institute, Emeryville, CA, USA.,Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Faculty of Biotechnology, University of Applied Sciences, Mannheim, Germany
| | - Leanne Jade G Chan
- Joint BioEnergy Institute, Emeryville, CA, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Stephanie A Eichorst
- Joint BioEnergy Institute, Emeryville, CA, USA.,Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research network "Chemistry meets Microbiology", University of Vienna, Vienna, Austria
| | - Dario Frey
- Joint BioEnergy Institute, Emeryville, CA, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Faculty of Biotechnology, University of Applied Sciences, Mannheim, Germany
| | - Qiushi Chen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Paul D Adams
- Joint BioEnergy Institute, Emeryville, CA, USA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Todd R Pray
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Advanced Biofuels Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
| | - Deepti Tanjore
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Advanced Biofuels Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
| | - Christopher J Petzold
- Joint BioEnergy Institute, Emeryville, CA, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - John M Gladden
- Joint BioEnergy Institute, Emeryville, CA, USA.,Biological and Materials Science Center, Sandia National Laboratories, Livermore, CA, USA
| | - Blake A Simmons
- Joint BioEnergy Institute, Emeryville, CA, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Steven W Singer
- Joint BioEnergy Institute, Emeryville, CA, USA. .,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
20
|
Valenzuela SV, Ferreres G, Margalef G, Pastor FJ. Fast purification method of functional LPMOs from Streptomyces ambofaciens by affinity adsorption. Carbohydr Res 2017; 448:205-211. [DOI: 10.1016/j.carres.2017.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 02/17/2017] [Accepted: 02/18/2017] [Indexed: 01/03/2023]
|
21
|
A bacterial GH6 cellobiohydrolase with a novel modular structure. Appl Microbiol Biotechnol 2017; 101:2943-2952. [PMID: 28120014 DOI: 10.1007/s00253-017-8129-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/19/2016] [Accepted: 12/28/2016] [Indexed: 02/01/2023]
Abstract
Cel6D from Paenibacillus barcinonensis is a modular cellobiohydrolase with a novel molecular architecture among glycosyl hydrolases of family 6. It contains an N-terminal catalytic domain (family 6 of glycosyl hydrolases (GH6)), followed by a fibronectin III-like domain repeat (Fn31,2) and a C-terminal family 3b cellulose-binding domain (CBM3b). The enzyme has been identified and purified showing catalytic activity on cellulosic substrates and cellodextrins, with a marked preference for phosphoric acid swollen cellulose (PASC). Analysis of mode of action of Cel6D shows that it releases cellobiose as the only hydrolysis product from cellulose. Kinetic parameters were determined on PASC showing a K m of 68.73 mg/ml and a V max of 1.73 U/mg. A series of truncated derivatives of Cel6D have been constructed and characterized. Deletion of CBM3b caused a notable reduction in hydrolytic activity, while deletion of the Fn3 domain abolished activity, as the isolated GH6 domain was not active on any of the substrates tested. Mutant enzymes Cel6D-D146A and Cel6D-D97A were constructed in the residues corresponding to the putative acid catalyst and to the network for the nucleophilic attack. The lack of activity of the mutant enzymes indicates the important role of these residues in catalysis. Analysis of cooperative activity of Cel6D with cellulases from the same producing P. barcinonensis strain reveals high synergistic activity with processive endoglucanase Cel9B on hydrolysis of crystalline substrates. The characterized cellobiohydrolase can be a good contribution for depolymerization of cellulosic substrates and for the deconstruction of native cellulose.
Collapse
|
22
|
Baramee S, Teeravivattanakit T, Phitsuwan P, Waeonukul R, Pason P, Tachaapaikoon C, Kosugi A, Sakka K, Ratanakhanokchai K. A novel GH6 cellobiohydrolase from Paenibacillus curdlanolyticus B-6 and its synergistic action on cellulose degradation. Appl Microbiol Biotechnol 2016; 101:1175-1188. [PMID: 27743043 DOI: 10.1007/s00253-016-7895-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 09/12/2016] [Accepted: 09/25/2016] [Indexed: 11/30/2022]
Abstract
We recently discovered a novel glycoside hydrolase family 6 (GH6) cellobiohydrolase from Paenibacillus curdlanolyticus B-6 (PcCel6A), which is rarely found in bacteria. This enzyme is a true exo-type cellobiohydrolase which exhibits high substrate specificity on amorphous cellulose and low substrate specificity on crystalline cellulose, while this showed no activity on substitution substrates, carboxymethyl cellulose and xylan, distinct from all other known GH6 cellobiohydrolases. Product profiles, HPLC analysis of the hydrolysis products and a schematic drawing of the substrate-binding subsites catalysing cellooligosaccharides can explain the new mode of action of this enzyme which prefers to hydrolyse cellopentaose. PcCel6A was not inhibited by glucose or cellobiose at concentrations up to 300 and 100 mM, respectively. A good synergistic effect for glucose production was found when PcCel6A acted together with processive endoglucanase Cel9R from Clostridium thermocellum and β-glucosidase CglT from Thermoanaerobacter brockii. These properties of PcCel6A make it a suitable candidate for industrial application in the cellulose degradation process.
Collapse
Affiliation(s)
- Sirilak Baramee
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Thitiporn Teeravivattanakit
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Paripok Phitsuwan
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Rattiya Waeonukul
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Patthra Pason
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Chakrit Tachaapaikoon
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Akihiko Kosugi
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, 305-8686, Japan
| | - Kazuo Sakka
- Graduated School of Bioresources, Mie University, Tsu, Mie, 514-8507, Japan
| | - Khanok Ratanakhanokchai
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
| |
Collapse
|
23
|
Dhar H, Kasana RC, Dutt S, Gulati A. Cloning and expression of low temperature active endoglucanase EG5C from Paenibacillus sp. IHB B 3084. Int J Biol Macromol 2015; 81:259-66. [DOI: 10.1016/j.ijbiomac.2015.07.060] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 07/25/2015] [Accepted: 07/28/2015] [Indexed: 10/23/2022]
|
24
|
Wang J, Gao G, Li Y, Yang L, Liang Y, Jin H, Han W, Feng Y, Zhang Z. Cloning, Expression, and Characterization of a Thermophilic Endoglucanase, AcCel12B from Acidothermus cellulolyticus 11B. Int J Mol Sci 2015; 16:25080-95. [PMID: 26506341 PMCID: PMC4632791 DOI: 10.3390/ijms161025080] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/29/2015] [Accepted: 10/13/2015] [Indexed: 12/23/2022] Open
Abstract
The gene ABK52392 from the thermophilic bacterium Acidothermus cellulolyticus 11B was predicted to be endoglucanase and classified into glycoside hydrolase family 12. ABK52392 encodes a protein containing a catalytic domain and a carbohydrate binding module. ABK52392 was cloned and functionally expressed in Escherichia coli. After purification by Ni-NTA agarose affinity chromatography and Q-Sepharose® Fast Flow chromatography, the properties of the recombinant protein (AcCel12B) were characterized. AcCel12B exhibited optimal activity at pH 4.5 and 75 °C. The half-lives of AcCel12B at 60 and 70 °C were about 90 and 2 h, respectively, under acidic conditions. The specific hydrolytic activities of AcCel12B at 70 °C and pH 4.5 for sodium carboxymethylcellulose (CMC) and regenerated amorphous cellulose (RAC) were 118.3 and 104.0 U·mg−1, respectively. The Km and Vmax of AcCel12B for CMC were 25.47 mg·mL−1 and 131.75 U·mg−1, respectively. The time course of hydrolysis for RAC was investigated by measuring reducing ends in the soluble and insoluble phases. The total hydrolysis rate rapidly decreased after the early stage of incubation and the generation of insoluble reducing ends decreased earlier than that of soluble reducing ends. High thermostability of the cellulase indicates its potential commercial significance and it could be exploited for industrial application in the future.
Collapse
Affiliation(s)
- Junling Wang
- Key Laboratory for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun 130012, China.
- Department of Biotechnology, Jilin Agricultural Science and Technology College, Jilin 132101, China.
| | - Gui Gao
- Key Laboratory for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun 130012, China.
| | - Yuwei Li
- Key Laboratory for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun 130012, China.
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Liangzhen Yang
- Key Laboratory for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun 130012, China.
| | - Yanli Liang
- Key Laboratory for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun 130012, China.
| | - Hanyong Jin
- Key Laboratory for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun 130012, China.
| | - Weiwei Han
- Key Laboratory for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun 130012, China.
| | - Yan Feng
- Key Laboratory for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun 130012, China.
| | - Zuoming Zhang
- Key Laboratory for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun 130012, China.
| |
Collapse
|
25
|
Valls A, Diaz P, Pastor FIJ, Valenzuela SV. A newly discovered arabinoxylan-specific arabinofuranohydrolase. Synergistic action with xylanases from different glycosyl hydrolase families. Appl Microbiol Biotechnol 2015; 100:1743-1751. [DOI: 10.1007/s00253-015-7061-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/27/2015] [Accepted: 10/05/2015] [Indexed: 01/11/2023]
|
26
|
Petkun S, Rozman Grinberg I, Lamed R, Jindou S, Burstein T, Yaniv O, Shoham Y, Shimon LJ, Bayer EA, Frolow F. Reassembly and co-crystallization of a family 9 processive endoglucanase from its component parts: structural and functional significance of the intermodular linker. PeerJ 2015; 3:e1126. [PMID: 26401442 PMCID: PMC4579020 DOI: 10.7717/peerj.1126] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/04/2015] [Indexed: 11/22/2022] Open
Abstract
Non-cellulosomal processive endoglucanase 9I (Cel9I) from Clostridium thermocellum is a modular protein, consisting of a family-9 glycoside hydrolase (GH9) catalytic module and two family-3 carbohydrate-binding modules (CBM3c and CBM3b), separated by linker regions. GH9 does not show cellulase activity when expressed without CBM3c and CBM3b and the presence of the CBM3c was previously shown to be essential for endoglucanase activity. Physical reassociation of independently expressed GH9 and CBM3c modules (containing linker sequences) restored 60-70% of the intact Cel9I endocellulase activity. However, the mechanism responsible for recovery of activity remained unclear. In this work we independently expressed recombinant GH9 and CBM3c with and without their interconnecting linker in Escherichia coli. We crystallized and determined the molecular structure of the GH9/linker-CBM3c heterodimer at a resolution of 1.68 Å to understand the functional and structural importance of the mutual spatial orientation of the modules and the role of the interconnecting linker during their re-association. Enzyme activity assays and isothermal titration calorimetry were performed to study and compare the effect of the linker on the re-association. The results indicated that reassembly of the modules could also occur without the linker, albeit with only very low recovery of endoglucanase activity. We propose that the linker regions in the GH9/CBM3c endoglucanases are important for spatial organization and fixation of the modules into functional enzymes.
Collapse
Affiliation(s)
- Svetlana Petkun
- Department of Molecular Microbiology and Biotechnology, The Daniella Rich Institute for Structural Biology, Tel Aviv University, Ramat Aviv, Israel
| | - Inna Rozman Grinberg
- Department of Molecular Microbiology and Biotechnology, The Daniella Rich Institute for Structural Biology, Tel Aviv University, Ramat Aviv, Israel
| | - Raphael Lamed
- Department of Molecular Microbiology and Biotechnology, The Daniella Rich Institute for Structural Biology, Tel Aviv University, Ramat Aviv, Israel
| | - Sadanari Jindou
- Department of Life Sciences, Meijo University, Nagoya, Japan
| | - Tal Burstein
- Department of Molecular Microbiology and Biotechnology, The Daniella Rich Institute for Structural Biology, Tel Aviv University, Ramat Aviv, Israel
| | - Oren Yaniv
- Department of Molecular Microbiology and Biotechnology, The Daniella Rich Institute for Structural Biology, Tel Aviv University, Ramat Aviv, Israel
| | - Yuval Shoham
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Linda J.W. Shimon
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot, Israel
| | - Edward A. Bayer
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Felix Frolow
- Department of Molecular Microbiology and Biotechnology, The Daniella Rich Institute for Structural Biology, Tel Aviv University, Ramat Aviv, Israel
| |
Collapse
|
27
|
Expression and characteristics of a Ca2+-dependent endoglucanase from Cytophaga hutchinsonii. Appl Microbiol Biotechnol 2015; 99:9617-23. [DOI: 10.1007/s00253-015-6746-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/27/2015] [Accepted: 05/29/2015] [Indexed: 10/23/2022]
|
28
|
Cerda LA, Valenzuela SV, Diaz P, Pastor FIJ. New GH16 β-glucanase fromPaenibacillus barcinonensisBP-23 releases a complex pattern of mixed-linkage oligomers from barley glucan. Biotechnol Appl Biochem 2015; 63:51-6. [DOI: 10.1002/bab.1348] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/08/2014] [Indexed: 01/19/2023]
Affiliation(s)
| | | | - Pilar Diaz
- Department of Microbiology; Faculty of Biology; University of Barcelona; Barcelona Spain
| | | |
Collapse
|
29
|
Protein engineering of cellulases. Curr Opin Biotechnol 2014; 29:139-45. [DOI: 10.1016/j.copbio.2014.04.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/06/2014] [Accepted: 04/07/2014] [Indexed: 11/21/2022]
|
30
|
Gastelum-Arellanez A, Paredes-López O, Olalde-Portugal V. Extracellular endoglucanase activity from Paenibacillus polymyxa BEb-40: production, optimization and enzymatic characterization. World J Microbiol Biotechnol 2014; 30:2953-65. [DOI: 10.1007/s11274-014-1723-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 08/14/2014] [Indexed: 10/24/2022]
|
31
|
Ciolacu D, Chiriac AI, Pastor FIJ, Kokol V. The influence of supramolecular structure of cellulose allomorphs on the interactions with cellulose-binding domain, CBD3b from Paenibacillus barcinonensis. BIORESOURCE TECHNOLOGY 2014; 157:14-21. [PMID: 24525243 DOI: 10.1016/j.biortech.2014.01.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 01/06/2014] [Accepted: 01/08/2014] [Indexed: 06/03/2023]
Abstract
The interaction of recombinant cellulose-binding domains (CBDs) of endoglucanase Cel9B from Paenibacillus barcinonensis with different cotton cellulose allomorphs (I, II and III) has been investigated, in order to bring new insights regarding the CBD adsorption and desorption processes. The highest CBD adsorption capacity was recorded for cellulose I, confirming the affinity of proteins to the most crystalline substrate. The weakening and splitting of the hydrogen bonds within cellulose structure after CBD adsorption, as well as a decrease of the crystallinity degree were identified by ATR-FTIR spectroscopy and XRD. The CBD's adsorption kinetic was shown to be rendered by properties as, specific surface area and porosity, being confirmed by dynamic vapor sorption measurements. An important influence of temperature (25, 37 and 50°C) and/or pH medium (4, 5.5, 7 and 10) on the CBD desorption capacity was confirmed, being related to the hydrophobic interactions formed between the CBD and the cellulose allomorphs.
Collapse
Affiliation(s)
- Diana Ciolacu
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Alina Iulia Chiriac
- Department of Microbiology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - F I Javier Pastor
- Department of Microbiology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Vanja Kokol
- University of Maribor, Institute of Engineering Materials and Design, Smetanova ulica 17, 2000 Maribor, Slovenia.
| |
Collapse
|
32
|
Yi Z, Su X, Revindran V, Mackie RI, Cann I. Molecular and biochemical analyses of CbCel9A/Cel48A, a highly secreted multi-modular cellulase by Caldicellulosiruptor bescii during growth on crystalline cellulose. PLoS One 2013; 8:e84172. [PMID: 24358340 PMCID: PMC3865294 DOI: 10.1371/journal.pone.0084172] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 11/20/2013] [Indexed: 01/24/2023] Open
Abstract
During growth on crystalline cellulose, the thermophilic bacterium Caldicellulosiruptor bescii secretes several cellulose-degrading enzymes. Among these enzymes is CelA (CbCel9A/Cel48A), which is reported as the most highly secreted cellulolytic enzyme in this bacterium. CbCel9A/Cel48A is a large multi-modular polypeptide, composed of an N-terminal catalytic glycoside hydrolase family 9 (GH9) module and a C-terminal GH48 catalytic module that are separated by a family 3c carbohydrate-binding module (CBM3c) and two identical CBM3bs. The wild-type CbCel9A/Cel48A and its truncational mutants were expressed in Bacillus megaterium and Escherichia coli, respectively. The wild-type polypeptide released twice the amount of glucose equivalents from Avicel than its truncational mutant that lacks the GH48 catalytic module. The truncational mutant harboring the GH9 module and the CBM3c was more thermostable than the wild-type protein, likely due to its compact structure. The main hydrolytic activity was present in the GH9 catalytic module, while the truncational mutant containing the GH48 module and the three CBMs was ineffective in degradation of either crystalline or amorphous cellulose. Interestingly, the GH9 and/or GH48 catalytic modules containing the CBM3bs form low-density particles during hydrolysis of crystalline cellulose. Moreover, TM3 (GH9/CBM3c) and TM2 (GH48 with three CBM3 modules) synergistically hydrolyze crystalline cellulose. Deletion of the CBM3bs or mutations that compromised their binding activity suggested that these CBMs are important during hydrolysis of crystalline cellulose. In agreement with this observation, seven of nine genes in a C. bescii gene cluster predicted to encode cellulose-degrading enzymes harbor CBM3bs. Based on our results, we hypothesize that C. bescii uses the GH48 module and the CBM3bs in CbCel9A/Cel48A to destabilize certain regions of crystalline cellulose for attack by the highly active GH9 module and other endoglucanases produced by this hyperthermophilic bacterium.
Collapse
Affiliation(s)
- Zhuolin Yi
- Energy Biosciences Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Xiaoyun Su
- Energy Biosciences Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Vanessa Revindran
- Energy Biosciences Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Roderick I. Mackie
- Energy Biosciences Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Isaac Cann
- Energy Biosciences Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
33
|
Nakazawa H, Kim DM, Matsuyama T, Ishida N, Ikeuchi A, Ishigaki Y, Kumagai I, Umetsu M. Hybrid Nanocellulosome Design from Cellulase Modules on Nanoparticles: Synergistic Effect of Catalytically Divergent Cellulase Modules on Cellulose Degradation Activity. ACS Catal 2013. [DOI: 10.1021/cs400012v] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hikaru Nakazawa
- Department of Biomolecular Engineering,
Graduate school of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Do-Myoung Kim
- Department of Biomolecular Engineering,
Graduate school of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Takashi Matsuyama
- Toyota Central R&D Laboratories, Yokomichi 41-1, Oaza Nagakute, Nagakute-cho, Aichi-gun, 480-1192, Japan
| | - Nobuhiro Ishida
- Toyota Central R&D Laboratories, Yokomichi 41-1, Oaza Nagakute, Nagakute-cho, Aichi-gun, 480-1192, Japan
| | - Akinori Ikeuchi
- Toyota Central R&D Laboratories, Yokomichi 41-1, Oaza Nagakute, Nagakute-cho, Aichi-gun, 480-1192, Japan
| | - Yuri Ishigaki
- Department of Biomolecular Engineering,
Graduate school of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Izumi Kumagai
- Department of Biomolecular Engineering,
Graduate school of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Mitsuo Umetsu
- Department of Biomolecular Engineering,
Graduate school of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
34
|
Valls C, Cadena EM, Blanca Roncero M. Obtaining biobleached eucalyptus cellulose fibres by using various enzyme combinations. Carbohydr Polym 2013; 92:276-82. [DOI: 10.1016/j.carbpol.2012.08.083] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 07/25/2012] [Accepted: 08/23/2012] [Indexed: 10/27/2022]
|
35
|
Processivity and enzymatic mode of a glycoside hydrolase family 5 endoglucanase from Volvariella volvacea. Appl Environ Microbiol 2012. [PMID: 23204424 DOI: 10.1128/aem.02725-12] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
EG1 is a modular glycoside hydrolase family 5 endoglucanase from Volvariella volvacea consisting of an N-terminal carbohydrate-binding module (CBM1) and a catalytic domain (CD). The ratios of soluble to insoluble reducing sugar produced from filter paper after 8 and 24 h of exposure to EG1 were 6.66 and 8.56, respectively, suggesting that it is a processive endoglucanase. Three derivatives of EG1 containing a core domain only or additional CBMs were constructed in order to evaluate the contribution of the CBM to the processivity and enzymatic mode of EG1 under stationary and agitated conditions. All four enzymatic forms exhibited the same mode of action on both soluble and insoluble cellulosic substrates with cellobiose as a main end product. An additional CBM fused at either the N or C terminus reduced specific activity toward soluble and insoluble celluloses under stationary reaction conditions. Deletion of the CBM significantly decreased enzyme processivity. Insertion of an additional CBM also resulted in a dramatic decrease in processivity in enzyme-substrate reaction mixtures incubated for 0.5 h, but this effect was reversed when reactions were allowed to proceed for longer periods (24 h). Further significant differences were observed in the substrate adsorption/desorption patterns of EG1 and enzyme derivatives equipped with an additional CBM under agitated reaction conditions. An additional family 1 CBM improved EG1 processivity on insoluble cellulose under highly agitated conditions. Our data indicate a strong link between high adsorption levels and low desorption levels in the processivity of EG1 and possibly other processive endoglucanses.
Collapse
|
36
|
Brunecky R, Alahuhta M, Bomble YJ, Xu Q, Baker JO, Ding SY, Himmel ME, Lunin VV. Structure and function of theClostridium thermocellumcellobiohydrolase A X1-module repeat: enhancement through stabilization of the CbhA complex. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:292-9. [DOI: 10.1107/s0907444912001680] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 01/13/2012] [Indexed: 11/10/2022]
|
37
|
Jeon SD, Yu KO, Kim SW, Han SO. The processive endoglucanase EngZ is active in crystalline cellulose degradation as a cellulosomal subunit of Clostridium cellulovorans. N Biotechnol 2012; 29:365-71. [DOI: 10.1016/j.nbt.2011.06.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 05/17/2011] [Accepted: 06/01/2011] [Indexed: 10/18/2022]
|
38
|
Biochemical and mutational analyses of a multidomain cellulase/mannanase from Caldicellulosiruptor bescii. Appl Environ Microbiol 2012; 78:2230-40. [PMID: 22247178 DOI: 10.1128/aem.06814-11] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Thermophilic cellulases and hemicellulases are of significant interest to the biofuel industry due to their perceived advantages over their mesophilic counterparts. We describe here biochemical and mutational analyses of Caldicellulosiruptor bescii Cel9B/Man5A (CbCel9B/Man5A), a highly thermophilic enzyme. As one of the highly secreted proteins of C. bescii, the enzyme is likely to be critical to nutrient acquisition by the bacterium. CbCel9B/Man5A is a modular protein composed of three carbohydrate-binding modules flanked at the N terminus and the C terminus by a glycoside hydrolase family 9 (GH9) module and a GH5 module, respectively. Based on truncational analysis of the polypeptide, the cellulase and mannanase activities within CbCel9B/Man5A were assigned to the N- and C-terminal modules, respectively. CbCel9B/Man5A and its truncational mutants, in general, exhibited a pH optimum of ∼5.5 and a temperature optimum of 85°C. However, at this temperature, thermostability was very low. After 24 h of incubation at 75°C, the wild-type protein maintained 43% activity, whereas a truncated mutant, TM1, maintained 75% activity. The catalytic efficiency with phosphoric acid swollen cellulose as a substrate for the wild-type protein was 7.2 s(-1) ml/mg, and deleting the GH5 module led to a mutant (TM1) with a 2-fold increase in this kinetic parameter. Deletion of the GH9 module also increased the apparent k(cat) of the truncated mutant TM5 on several mannan-based substrates; however, a concomitant increase in the K(m) led to a decrease in the catalytic efficiencies on all substrates. These observations lead us to postulate that the two catalytic activities are coupled in the polypeptide.
Collapse
|
39
|
Mormeneo M, Pastor FJ, Zueco J. Efficient expression of a Paenibacillus barcinonensis endoglucanase in Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 2011; 39:115-23. [PMID: 21701899 DOI: 10.1007/s10295-011-1006-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 06/09/2011] [Indexed: 02/08/2023]
Abstract
The endoglucanase coded by celA (GenBank Access No. Y12512) from Paenibacillus barcinonensis, an enzyme with good characteristics for application on paper manufacture from agricultural fibers, was expressed in Saccharomyces cerevisiae by using different domains of the cell wall protein Pir4 as translational fusion partners, to achieve either secretion or cell wall retention of the recombinant enzyme. Given the presence of five potential N-glycosylation sites in the amino acid sequence coded by celA, the effect of glycosylation on the enzymatic activity of the recombinant enzyme was investigated by expressing the recombinant fusion proteins in both, standard and glycosylation-deficient strains of S. cerevisiae. Correct targeting of the recombinant fusion proteins was confirmed by Western immunoblot using Pir-specific antibodies, while enzymatic activity on carboxymethyl cellulose was demonstrated on plate assays, zymographic analysis and colorimetric assays. Hyperglycosylation of the enzyme when expressed in the standard strain of S. cerevisiae did not affect activity, and values of 1.2 U/ml were obtained in growth medium supernatants in ordinary batch cultures after 24 h. These values compare quite favorably with those described for other recombinant endoglucanases expressed in S. cerevisiae. This is one of the few reports describing the expression of Bacillus cellulases in S. cerevisiae, since yeast expressed recombinant cellulases have been mostly of fungal origin. It is also the first report of the yeast expression of this particular endoglucanase.
Collapse
Affiliation(s)
- María Mormeneo
- Unidad de Microbiología, Facultad de Farmacia, Universidad De Valencia, Avda. Vicente Andrés Estelles s/n, 46100, Burjassot, Valencia, Spain
| | | | | |
Collapse
|