1
|
Koppova K, Burianova L, Patakova P, Branska B. Lignocellulose-derived inhibitors can extend residence of Clostridium beijerinckii in active solventogenic state. BIORESOUR BIOPROCESS 2025; 12:31. [PMID: 40205254 PMCID: PMC11982004 DOI: 10.1186/s40643-025-00871-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/29/2025] [Indexed: 04/11/2025] Open
Abstract
Lignocellulose is a promising renewable resource for producing platform chemicals, such as acetone, butanol, and ethanol, via ABE fermentation by solventogenic clostridia. This study investigates the effects of common lignocellulose derived inhibitory compounds: ferulic acid, coumaric acid, and furfural on Clostridium beijerinckii. Dual-staining with propidium iodide and CFDA, combined with flow cytometry, was employed to assess physiological variability. The results showed that phenolic acid-induced stress helped maintain a higher proportion of viable cells during the production phase, enhancing solvent yields and reducing sporulation. At 0.4 g/L, ferulic and coumaric acids did not reduce cell viability; however, coumaric acid exposure led to an acid-crash profile. Conversely, a more robust inoculum exposed to both phenolic acids simultaneously exhibited effects similar to ferulic acid alone, including slower viability decline, reduced growth and sporulation, and improved solvent production. Furfural exposure at 1.5 g/L resulted in immediate viability loss in 20% of the population, though the overall decline accompanied by the highest sporulation rate occurred later than in the control. Additionally, furfural transformation was slower, suppressing butyrate production and reducing solvent production by 13%. This study suggests that delaying cell death mechanism may explain the stimulatory effects of inhibitors, advancing lignocellulose use in the future.
Collapse
Affiliation(s)
- K Koppova
- Department of Biotechnology, University of Chemistry and Technology Prague, Technická 5, Prague, 16628, Czech Republic
| | - L Burianova
- Department of Biotechnology, University of Chemistry and Technology Prague, Technická 5, Prague, 16628, Czech Republic
| | - P Patakova
- Department of Biotechnology, University of Chemistry and Technology Prague, Technická 5, Prague, 16628, Czech Republic
| | - B Branska
- Department of Biotechnology, University of Chemistry and Technology Prague, Technická 5, Prague, 16628, Czech Republic.
| |
Collapse
|
2
|
Tan L, Scott HL, Smith MD, Pingali SV, Cheng X, O’Neill HM, Katsaras J, Smith JC, Elkins JG, Davison BH, Nickels JD. Toxic Effects of Butanol in the Plane of the Cell Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1281-1296. [PMID: 39772768 PMCID: PMC11756534 DOI: 10.1021/acs.langmuir.4c03677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025]
Abstract
Solvent toxicity limits n-butanol fermentation titer, increasing the cost and energy consumption for subsequent separation processes and making biobased production more expensive and energy-intensive than petrochemical approaches. Amphiphilic solvents such as n-butanol partition into the cell membrane of fermenting microorganisms, thinning the transverse structure, and eventually causing a loss of membrane potential and cell death. In this work, we demonstrate the deleterious effects of n-butanol partitioning upon the lateral dimension of the membrane structure, called membrane domains or lipid rafts. Lipid rafts are regions of the cell membrane enriched with certain lipids, providing a reservoir of high melting temperature lipids and a platform for membrane protein partitioning and oligomerization. Neutron scattering experiments and molecular dynamics simulations revealed that n-butanol increased the size of the lipid domains in a model membrane system. The data showed that n-butanol partitions more into the disordered lipid regions than into the raft-like phase, leading to a differential thinning of these coexisting phases in the plane of the membrane and increasing the hydrophobic mismatch. The resulting increase in line tension at the interface favors domain coalescence to minimize the ratio of the interfacial length to domain area. A detailed computational investigation of the lipid domain interface identifies the boundary as a site of membrane disorder and thinning due to an accumulation of n-butanol. Solvent-induced changes to domain morphology and membrane instability at the domain interface are unrecognized modes of solvent-induced stress to fermenting microbes, representing targets for new solvent tolerance strategies to increase the n-butanol titer.
Collapse
Affiliation(s)
- Luoxi Tan
- Department
of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45220, United States
| | - Haden L. Scott
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Micholas Dean Smith
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Center
for Molecular Biophysics, University of Tennessee/Oak Ridge National
Laboratory, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Sai Venkatesh Pingali
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Xiaolin Cheng
- Department
of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Hugh M. O’Neill
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37830, United States
| | - John Katsaras
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Jeremy C. Smith
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Center
for Molecular Biophysics, University of Tennessee/Oak Ridge National
Laboratory, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - James G. Elkins
- Biosciences
Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Brian H. Davison
- Biosciences
Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Jonathan D. Nickels
- Department
of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45220, United States
| |
Collapse
|
3
|
Kozaeva E, Nieto-Domínguez M, Tang KKY, Stammnitz M, Nikel PI. Leveraging Engineered Pseudomonas putida Minicells for Bioconversion of Organic Acids into Short-Chain Methyl Ketones. ACS Synth Biol 2025; 14:257-272. [PMID: 39748701 PMCID: PMC11744930 DOI: 10.1021/acssynbio.4c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025]
Abstract
Methyl ketones, key building blocks widely used in diverse industrial applications, largely depend on oil-derived chemical methods for their production. Here, we investigated biobased production alternatives for short-chain ketones, adapting the solvent-tolerant soil bacterium Pseudomonas putida as a host for ketone biosynthesis either by whole-cell biocatalysis or using engineered minicells, chromosome-free bacterial vesicles. Organic acids (acetate, propanoate and butanoate) were selected as the main carbon substrate to drive the biosynthesis of acetone, butanone and 2-pentanone. Pathway optimization identified efficient enzyme variants from Clostridium acetobutylicum and Escherichia coli, tested with both constitutive and inducible expression of the cognate genes. By implementing these optimized pathways in P. putida minicells, which can be prepared through a simple three-step purification protocol, the feedstock was converted into the target short-chain methyl ketones. These results highlight the value of combining morphology and pathway engineering of noncanonical bacterial hosts to establish alternative bioprocesses for toxic chemicals that are difficult to produce by conventional approaches.
Collapse
Affiliation(s)
- Ekaterina Kozaeva
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Manuel Nieto-Domínguez
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Kent Kang Yong Tang
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | | | - Pablo Iván Nikel
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| |
Collapse
|
4
|
Linney JA, Routledge SJ, Connell SD, Larson TR, Pitt AR, Jenkinson ER, Goddard AD. Identification of membrane engineering targets for increased butanol tolerance in Clostridium saccharoperbutylacetonicum. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184217. [PMID: 37648011 DOI: 10.1016/j.bbamem.2023.184217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/17/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
There is a growing interest in the use of microbial cell factories to produce butanol, an industrial solvent and platform chemical. Biobutanol can also be used as a biofuel and represents a cleaner and more sustainable alternative to the use of conventional fossil fuels. Solventogenic Clostridia are the most popular microorganisms used due to the native expression of butanol synthesis pathways. A major drawback to the wide scale implementation and development of these technologies is the toxicity of butanol. Various membrane properties and related functions are perturbed by the interaction of butanol with the cell membrane, causing lower yields and higher purification costs. This is ultimately why the technology remains underemployed. This study aimed to develop a deeper understanding of butanol toxicity at the membrane to determine future targets for membrane engineering. Changes to the lipidome in Clostridium saccharoperbutylacetonicum N1-4 (HMT) throughout butanol fermentation were investigated with thin layer chromatography and mass spectrometry. By the end of fermentation, levels of phosphatidylglycerol lipids had increased significantly, suggesting an important role of these lipid species in tolerance to butanol. Using membrane models and in vitro assays to investigate characteristics such as permeability, fluidity, and swelling, it was found that altering the composition of membrane models can convey tolerance to butanol, and that modulating membrane fluidity appears to be a key factor. Data presented here will ultimately help to inform rational strain engineering efforts to produce more robust strains capable of producing higher butanol titres.
Collapse
Affiliation(s)
- John A Linney
- School of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Sarah J Routledge
- School of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Simon D Connell
- School of Physics and Astronomy and The Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Tony R Larson
- Department of Biology, University of York, York YO10 5DD, UK
| | - Andrew R Pitt
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK
| | | | - Alan D Goddard
- School of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| |
Collapse
|
5
|
Luo H, Zhou T, Cao J, Gao L, Wang S, Gui Z, Shi Y, Xie F, Yang R. Utilization of lignocellulosic biomass by glycerol organosolv pretreatment for biobutanol production integrated with bioconversion of residual glycerol into value-added products. BIORESOURCE TECHNOLOGY 2023; 387:129661. [PMID: 37573976 DOI: 10.1016/j.biortech.2023.129661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
Glycerol organosolv pretreatment (GOP) is considered an efficient method to deconstruct lignocellulose for producing fermentable sugars. Herein, the liquid fraction containing glycerol after GOP was utilized for recycled pretreatment of corn stover (CS) for four cycles. Enzymatic yield of glucose after recycled pretreatment was enhanced by 2.4-3.5 folds compared with untreated CS. Meanwhile, residual glycerol was used as carbon source for cultivation of Pichia pastoris to obtain high cell-density, and a final titer of 1.3 g/L human lysozyme was produced by P. pastoris under low temperature methanol induction strategy. Additionally, the pretreated CS was mixed with cassava as fermentable substrates for butanol production by wild-type Clostridium acetobutylicum ATCC 824. Final butanol production of 13.9 g/L was obtained from mixed substrates (25%:75% of CS/cassava) at 10% solids loading by simultaneous saccharification and fermentation. Overall, integration of residual glycerol utilization and butanol production by microbial fermentation provided an efficient strategy for biorefinery.
Collapse
Affiliation(s)
- Hongzhen Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Tairan Zhou
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Jin Cao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Lei Gao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Shijie Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Zheng Gui
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Yongjiang Shi
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Fang Xie
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Rongling Yang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| |
Collapse
|
6
|
Lee GH, Kim DW, Jin YH, Kim SM, Lim ES, Cha MJ, Ko JK, Gong G, Lee SM, Um Y, Han SO, Ahn JH. Biotechnological Plastic Degradation and Valorization Using Systems Metabolic Engineering. Int J Mol Sci 2023; 24:15181. [PMID: 37894861 PMCID: PMC10607142 DOI: 10.3390/ijms242015181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Various kinds of plastics have been developed over the past century, vastly improving the quality of life. However, the indiscriminate production and irresponsible management of plastics have led to the accumulation of plastic waste, emerging as a pressing environmental concern. To establish a clean and sustainable plastic economy, plastic recycling becomes imperative to mitigate resource depletion and replace non-eco-friendly processes, such as incineration. Although chemical and mechanical recycling technologies exist, the prevalence of composite plastics in product manufacturing complicates recycling efforts. In recent years, the biodegradation of plastics using enzymes and microorganisms has been reported, opening a new possibility for biotechnological plastic degradation and bio-upcycling. This review provides an overview of microbial strains capable of degrading various plastics, highlighting key enzymes and their role. In addition, recent advances in plastic waste valorization technology based on systems metabolic engineering are explored in detail. Finally, future perspectives on systems metabolic engineering strategies to develop a circular plastic bioeconomy are discussed.
Collapse
Affiliation(s)
- Ga Hyun Lee
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Do-Wook Kim
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Yun Hui Jin
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sang Min Kim
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Eui Seok Lim
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Min Ji Cha
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Ja Kyong Ko
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Gyeongtaek Gong
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Sun-Mi Lee
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Sung Ok Han
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jung Ho Ahn
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
7
|
Li CJ, Zhang Z, Zhan PC, Lv AP, Li PP, Liu L, Li WJ, Yang LL, Zhi XY. Comparative genomic analysis and proposal of Clostridium yunnanense sp. nov., Clostridium rhizosphaerae sp. nov., and Clostridium paridis sp. nov., three novel Clostridium sensu stricto endophytes with diverse capabilities of acetic acid and ethanol production. Anaerobe 2023; 79:102686. [PMID: 36535584 DOI: 10.1016/j.anaerobe.2022.102686] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/04/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Genus Clostridium sensu stricto is generally regarded as the true Clostridium genus, which includes important human and animal pathogens and industrially relevant microorganisms. Besides, it is also a prominent member of plant-associated endophytes. However, our knowledge of endophytic Clostridium is limited. METHODS In this study, the endophytes were isolated under anaerobic condition from the roots of Paris polyphylla Smith var. yunnanensis. Subsequently, a polyphasic taxonomic approach was used to clarify their taxonomic positions. The fermentation products were measured in the isolates with HPLC analysis. Comparative genomics was performed on these new strains and other relatives. RESULTS In total, nine endophytic strains belonging to the genus Clostridium sensu stricto were isolated, and three of them were identified as new species. Seven of nine strains could produce acetate, propionate, and butyrate. Only two strains could produce ethanol, although genomics analysis suggested that only two of them were without genes for solventogenesis. Different from the endophytic strains, the phylogenetically closely related non-endophytic strains showed significant enrichment effects on some metabolic pathways involving environmental information processing, carbohydrate, and amino acid metabolisms, etc. It suggests that the genomes of these endophytic strains had undergone subtle changes associated with environmental adaptations. CONCLUSION Consequently, strains YIM B02505T, YIM B02515T, and YIM B02565T are proposed to represent a new species of the genus Clostridium sensu stricto, for which the names Clostridium yunnanense sp. nov., Clostridium rhizosphaerae sp. nov., and Clostridium paridis sp. nov. are suggested.
Collapse
Affiliation(s)
- Cong-Jian Li
- Key Laboratory of Microbial Diversity in Southwest China of Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Zhen Zhang
- Key Laboratory of Microbial Diversity in Southwest China of Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Peng-Chao Zhan
- Key Laboratory of Microbial Diversity in Southwest China of Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Ai-Ping Lv
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Pan-Pan Li
- Key Laboratory of Microbial Diversity in Southwest China of Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Lan Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Ling-Ling Yang
- Key Laboratory of Microbial Diversity in Southwest China of Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China.
| | - Xiao-Yang Zhi
- Key Laboratory of Microbial Diversity in Southwest China of Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China.
| |
Collapse
|
8
|
Manna MS, Mazumder A, Bhowmick TK, Gayen K. Economic analysis of biobutanol recovery from the acetone-butanol-ethanol fermentation using molasses. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Vamsi Krishna K, Bharathi N, George Shiju S, Alagesan Paari K, Malaviya A. An updated review on advancement in fermentative production strategies for biobutanol using Clostridium spp. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:47988-48019. [PMID: 35562606 DOI: 10.1007/s11356-022-20637-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
A significant concern of our fuel-dependent era is the unceasing exhaustion of petroleum fuel supplies. In parallel to this, environmental issues such as the greenhouse effect, change in global climate, and increasing global temperature must be addressed on a priority basis. Biobutanol, which has fuel characteristics comparable to gasoline, has attracted global attention as a viable green fuel alternative among the many biofuel alternatives. Renewable biomass could be used for the sustainable production of biobutanol by the acetone-butanol-ethanol (ABE) pathway. Non-extinguishable resources, such as algal and lignocellulosic biomass, and starch are some of the most commonly used feedstock for fermentative production of biobutanol, and each has its particular set of advantages. Clostridium, a gram-positive endospore-forming bacterium that can produce a range of compounds, along with n-butanol is traditionally known for its biobutanol production capabilities. Clostridium fermentation produces biobased n-butanol through ABE fermentation. However, low butanol titer, a lack of suitable feedstock, and product inhibition are the primary difficulties in biobutanol synthesis. Critical issues that are essential for sustainable production of biobutanol include (i) developing high butanol titer producing strains utilizing genetic and metabolic engineering approaches, (ii) renewable biomass that could be used for biobutanol production at a larger scale, and (iii) addressing the limits of traditional batch fermentation by integrated bioprocessing technologies with effective product recovery procedures that have increased the efficiency of biobutanol synthesis. Our paper reviews the current progress in all three aspects of butanol production and presents recent data on current practices in fermentative biobutanol production technology.
Collapse
Affiliation(s)
- Kondapalli Vamsi Krishna
- Applied and Industrial Biotechnology Laboratory, CHRIST (Deemed-to-Be University), Hosur road, Bangalore, Karnataka, India
| | - Natarajan Bharathi
- Department of Life Sciences, CHRIST (Deemed to Be University), Bengaluru, India
| | - Shon George Shiju
- Applied and Industrial Biotechnology Laboratory, CHRIST (Deemed-to-Be University), Hosur road, Bangalore, Karnataka, India
| | | | - Alok Malaviya
- Applied and Industrial Biotechnology Laboratory, CHRIST (Deemed-to-Be University), Hosur road, Bangalore, Karnataka, India.
- Department of Life Sciences, CHRIST (Deemed to Be University), Bengaluru, India.
| |
Collapse
|
10
|
Xia M, Wang D, Xia Y, Shi H, Tian Z, Zheng Y, Wang M. Oxidoreduction potential controlling for increasing the fermentability of enzymatically hydrolyzed steam-exploded corn stover for butanol production. Microb Cell Fact 2022; 21:130. [PMID: 35761287 PMCID: PMC9238237 DOI: 10.1186/s12934-022-01824-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/12/2022] [Indexed: 11/10/2022] Open
Abstract
Background Lignocellulosic biomass is recognized as an effective potential substrate for biobutanol production. Though many pretreatment and detoxification methods have been set up, the fermentability of detoxicated lignocellulosic substrate is still far lower than that of starchy feedstocks. On the other hand, the number of recent efforts on rational metabolic engineering approaches to increase butanol production in Clostridium strains is also quite limited, demonstrating the physiological complexity of solventogenic clostridia. In fact, the strain performance is greatly impacted by process control. developing efficient process control strategies could be a feasible solution to this problem. Results In this study, oxidoreduction potential (ORP) controlling was applied to increase the fermentability of enzymatically hydrolyzed steam-exploded corn stover (SECS) for butanol production. When ORP of detoxicated SECS was controlled at − 350 mV, the period of fermentation was shortened by 6 h with an increase of 27.5% in the total solvent (to 18.1 g/L) and 34.2% in butanol (to 10.2 g/L) respectively. Silico modeling revealed that the fluxes of NADPH, NADH and ATP strongly differed between the different scenarios. Quantitative analysis showed that intracellular concentrations of ATP, NADPH/NADP+, and NADH/NAD+ were increased by 25.1%, 81.8%, and 62.5%. ORP controlling also resulted in a 2.1-fold increase in butyraldehyde dehydrogenase, a 1.2-fold increase in butanol dehydrogenase and 29% increase in the cell integrity. Conclusion ORP control strategy effectively changed the intracellular metabolic spectrum and significantly improved Clostridium cell growth and butanol production. The working mechanism can be summarized into three aspects: First, Glycolysis and TCA circulation pathways were strengthened through key nodes such as pyruvate carboxylase [EC: 6.4.1.1], which provided sufficient NADH and NADPH for the cell. Second, sufficient ATP was provided to avoid “acid crash”. Third, the key enzymes activities regulating butanol biosynthesis and cell membrane integrity were improved. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01824-2.
Collapse
Affiliation(s)
- Menglei Xia
- State Key Laboratory of Food Nutrition and Safety. Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education. College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Di Wang
- State Key Laboratory of Food Nutrition and Safety. Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education. College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Yiming Xia
- State Key Laboratory of Food Nutrition and Safety. Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education. College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Haijiao Shi
- State Key Laboratory of Food Nutrition and Safety. Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education. College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Zhongyu Tian
- State Key Laboratory of Food Nutrition and Safety. Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education. College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Yu Zheng
- State Key Laboratory of Food Nutrition and Safety. Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education. College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Min Wang
- State Key Laboratory of Food Nutrition and Safety. Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education. College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
11
|
Review of alternative technologies for acetone-butanol-ethanol separation: Principles, state-of-the-art, and development trends. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Increased Butyrate Production in Clostridium saccharoperbutylacetonicum from Lignocellulose-Derived Sugars. Appl Environ Microbiol 2022; 88:e0241921. [PMID: 35311509 DOI: 10.1128/aem.02419-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Butyrate is produced by chemical synthesis based on crude oil, produced by microbial fermentation, or extracted from animal fats (M. Dwidar, J.-Y. Park, R. J. Mitchell, and B.-I. Sang, The Scientific World Journal, 2012:471417, 2012, https://doi.org/10.1100/2012/471417). Butyrate production by anaerobic bacteria is highly favorable since waste or sustainable resources can be used as the substrates. For this purpose, the native hyper-butanol producer Clostridium saccharoperbutylacetonicum N1-4(HMT) was used as a chassis strain due to its broad substrate spectrum. BLASTp analysis of the predicted proteome of C. saccharoperbutylacetonicum N1-4(HMT) resulted in the identification of gene products potentially involved in acetone-butanol-ethanol (ABE) fermentation. Their participation in ABE fermentation was either confirmed or disproven by the parallel production of acids or solvents and the respective transcript levels obtained by transcriptome analysis of this strain. The genes encoding phosphotransacetylase (pta) and butyraldehyde dehydrogenase (bld) were deleted to reduce acetate and alcohol formation. The genes located in the butyryl-CoA synthesis (bcs) operon encoding crotonase, butyryl-CoA dehydrogenase with electron-transferring protein subunits α and β, and 3-hydroxybutyryl-CoA dehydrogenase were overexpressed to channel the flux further towards butyrate formation. Thereby, the native hyper-butanol producer C. saccharoperbutylacetonicum N1-4(HMT) was converted into the hyper-butyrate producer C. saccharoperbutylacetonicum ΔbldΔpta [pMTL83151_BCS_PbgaL]. The transcription pattern following deletion and overexpression was characterized by a second transcriptomic study, revealing partial compensation for the deletion. Furthermore, this strain was characterized in pH-controlled fermentations with either glucose or Excello, a substrate yielded from spruce biomass. Butyrate was the main product, with maximum butyrate concentrations of 11.7 g·L-1 and 14.3 g·L-1, respectively. Minimal amounts of by-products were detected. IMPORTANCE Platform chemicals such as butyrate are usually produced chemically from crude oil, resulting in the carry-over of harmful compounds. The selective production of butyrate using sustainable resources or waste without harmful by-products can be achieved by bacteria such as clostridia. The hyper-butanol producer Clostridium saccharoperbutylacetonicum N1-4(HMT) was converted into a hyper-butyrate producer. Butyrate production with very small amounts of by-products was established with glucose and the sustainable lignocellulosic sugar substrate Excello extracted from spruce biomass by the biorefinery Borregaard (Sarpsborg, Norway).
Collapse
|
13
|
Biro R, Daugulis AJ, Parent JS. Polymeric Ionic Liquid Absorbents for
n
‐Butanol
Recovery from Aqueous Solution. AIChE J 2022. [DOI: 10.1002/aic.17676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Robert Biro
- Department of Chemical Engineering Queen's University Kingston Ontario Canada
| | - Andrew J. Daugulis
- Department of Chemical Engineering Queen's University Kingston Ontario Canada
| | - J. Scott Parent
- Department of Chemical Engineering Queen's University Kingston Ontario Canada
| |
Collapse
|
14
|
Ibrahim MF, Shaharuddin NA, Alias NH, Jenol MA, Abd‐Aziz S, Phang L. Biobutanol Production from Oil Palm Biomass. BIOREFINERY OF OIL PRODUCING PLANTS FOR VALUE‐ADDED PRODUCTS 2022:307-324. [DOI: 10.1002/9783527830756.ch16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
15
|
High butanol/acetone ratio featured ABE production using mixture of glucose and waste Pichia pastoris medium-based butyrate fermentation supernatant. Bioprocess Biosyst Eng 2022; 45:465-480. [PMID: 34999947 DOI: 10.1007/s00449-021-02671-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/22/2021] [Indexed: 12/16/2022]
Abstract
In this study, butanol (ABE) fermentations were implemented in a 7 L anaerobic fermentor, by directly using the mixture of glucose solution with the corn/waste Pichia pastoris medium-based butyrate fermentation supernatants (BFS II) as the co-substrate, followed by consecutively feeding of the BFS and concentrated glucose solution. When compared with the major index of ABE fermentation using 150 g/L corn-based medium, butanol concentration could be maintained at high level of 12.7-12.8 g/L, butanol/acetone (B/A) largely increased from ~ 2.0 to 4.4-5.0, butanol yield on total carbon sources increased from 0.32-0.34 to 0.39-0.41 (mol base) with a higher butyrate/glucose consumption ratio of 37%-53%. Efficient utilization of butyrate, SO42-, amino acids, oligosaccharides, etc. in BFS II and the intracellular NADH contributed to the ABE fermentation performance improvement. The proposed strategy could be considered as the second utilization of waste Pichia pastoris, which could save raw materials/operating costs, fully use the oligosaccharides/SO42- in BFS II to relieve the working loads in downstream waste water treatment process, and increase fermentation products diversity/flexibility to deal with the varied marketing prices and requirements.
Collapse
|
16
|
Guan P, Ren C, Shan H, Cai D, Zhao P, Ma D, Qin P, Li S, Si Z. Boosting the pervaporation performance of PDMS membrane for 1-butanol by MAF-6. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04873-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Iyyappan J, Bharathiraja B, Vaishnavi A, Prathiba S. Overview of Current Developments in Biobutanol Production Methods and Future Perspectives. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2290:3-21. [PMID: 34009579 DOI: 10.1007/978-1-0716-1323-8_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Renewable biobutanol production is receiving more attention toward substituting fossil-based nonrenewable fuels. Biobutanol is recognized as the top most biofuel with extraordinary properties as compared with gasoline. The demand for biobutanol production is increasing enormously due to application in various industries as chemical substituent. Biobutanol production technology has attracted many researchers toward implementation of replacing cost-effective substrate and easy method to recover from the fermentation broth. Sugarcane bagasse, algal biomass, crude glycerol, and lignocellulosic biomass are potential cost-effective substrates which could replace consistent glucose-based substrates. The advantages and limitations of these substrates have been discussed in this chapter. Moreover, finding the integrated biobutanol recovery methods is an important factor parameter in production of biobutanol. This chapter also concentrated on possibilities and drawbacks of obtainable integrated biobutanol recovery methods. Thus, successful process involving cost-effective substrate and biobutanol recovery methods could help to implementation of biobutanol production industry. Overall, this chapter has endeavored to increase the viability of industrial production of biobutanol.
Collapse
Affiliation(s)
- J Iyyappan
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai, India
| | - B Bharathiraja
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai, India.
| | - A Vaishnavi
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai, India
| | - S Prathiba
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai, India
| |
Collapse
|
18
|
Ujor VC, Lai LB, Okonkwo CC, Gopalan V, Ezeji TC. Ribozyme-Mediated Downregulation Uncovers DNA Integrity Scanning Protein A (DisA) as a Solventogenesis Determinant in Clostridium beijerinckii. Front Bioeng Biotechnol 2021; 9:669462. [PMID: 34169065 PMCID: PMC8217750 DOI: 10.3389/fbioe.2021.669462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/04/2021] [Indexed: 11/21/2022] Open
Abstract
Carbon catabolite repression (CCR) limits microbial utilization of lignocellulose-derived pentoses. To relieve CCR in Clostridium beijerinckii NCIMB 8052, we sought to downregulate catabolite control protein A (CcpA) using the M1GS ribozyme technology. A CcpA-specific ribozyme was constructed by tethering the catalytic subunit of Escherichia coli RNase P (M1 RNA) to a guide sequence (GS) targeting CcpA mRNA (M1GSCcpA). As negative controls, the ribozyme M1GSCcpA–Sc (constructed with a scrambled GSCcpA) or the empty plasmid pMTL500E were used. With a ∼3-fold knockdown of CcpA mRNA in C. beijerinckii expressing M1GSCcpA (C. beijerinckii_M1GSCcpA) relative to both controls, a modest enhancement in mixed-sugar utilization and solvent production was achieved. Unexpectedly, C. beijerinckii_M1GSCcpA–Sc produced 50% more solvent than C. beijerinckii_pMTL500E grown on glucose + arabinose. Sequence complementarity (albeit suboptimal) suggested that M1GSCcpA–Sc could target the mRNA encoding DNA integrity scanning protein A (DisA), an expectation that was confirmed by a 53-fold knockdown in DisA mRNA levels. Therefore, M1GSCcpA–Sc was renamed M1GSDisA. Compared to C. beijerinckii_M1GSCcpA and _pMTL500E, C. beijerinckii_M1GSDisA exhibited a 7-fold decrease in the intracellular c-di-AMP level after 24 h of growth and a near-complete loss of viability upon exposure to DNA-damaging antibiotics. Alterations in c-di-AMP-mediated signaling and cell cycling likely culminate in a sporulation delay and the solvent production gains observed in C. beijerinckii_M1GSDisA. Successful knockdown of the CcpA and DisA mRNAs demonstrate the feasibility of using M1GS technology as a metabolic engineering tool for increasing butanol production in C. beijerinckii.
Collapse
Affiliation(s)
- Victor Chinomso Ujor
- Fermentation Science Program, Department of Food Science, University of Wisconsin-Madison, Madison WI, United States
| | - Lien B Lai
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| | - Christopher Chukwudi Okonkwo
- Department of Animal Sciences, Ohio State Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| | - Venkat Gopalan
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| | - Thaddeus Chukwuemeka Ezeji
- Department of Animal Sciences, Ohio State Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| |
Collapse
|
19
|
Exposure to 1-Butanol Exemplifies the Response of the Thermoacidophilic Archaeon Sulfolobus acidocaldarius to Solvent Stress. Appl Environ Microbiol 2021; 87:AEM.02988-20. [PMID: 33741627 PMCID: PMC8208165 DOI: 10.1128/aem.02988-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/09/2021] [Indexed: 12/18/2022] Open
Abstract
Sulfolobus acidocaldarius is a thermoacidophilic crenarchaeon with optimal growth at 80°C and pH 2 to 3. Due to its unique physiological properties, allowing life at environmental extremes, and the recent availability of genetic tools, this extremophile has received increasing interest for biotechnological applications. In order to elucidate the potential of tolerating process-related stress conditions, we investigated the response of S. acidocaldarius toward the industrially relevant organic solvent 1-butanol. In response to butanol exposure, biofilm formation of S. acidocaldarius was enhanced and occurred at up to 1.5% (vol/vol) 1-butanol, while planktonic growth was observed at up to 1% (vol/vol) 1-butanol. Confocal laser-scanning microscopy revealed that biofilm architecture changed with the formation of denser and higher tower-like structures. Concomitantly, changes in the extracellular polymeric substances with enhanced carbohydrate and protein content were determined in 1-butanol-exposed biofilms. Using scanning electron microscopy, three different cell morphotypes were observed in response to 1-butanol. Transcriptome and proteome analyses were performed comparing the response of planktonic and biofilm cells in the absence and presence of 1-butanol. In response to 1% (vol/vol) 1-butanol, transcript levels of genes encoding motility and cell envelope structures, as well as membrane proteins, were reduced. Cell division and/or vesicle formation were upregulated. Furthermore, changes in immune and defense systems, as well as metabolism and general stress responses, were observed. Our findings show that the extreme lifestyle of S. acidocaldarius coincided with a high tolerance to organic solvents. This study provides what may be the first insights into biofilm formation and membrane/cell stress caused by organic solvents in S. acidocaldarius IMPORTANCE Archaea are unique in terms of metabolic and cellular processes, as well as the adaptation to extreme environments. In the past few years, the development of genetic systems and biochemical, genetic, and polyomics studies has provided deep insights into the physiology of some archaeal model organisms. In this study, we used S. acidocaldarius, which is adapted to the two extremes of low pH and high temperature, to study its tolerance and robustness as well as its global cellular response toward organic solvents, as exemplified by 1-butanol. We were able to identify biofilm formation as a primary cellular response to 1-butanol. Furthermore, the triggered cell/membrane stress led to significant changes in culture heterogeneity accompanied by changes in central cellular processes, such as cell division and cellular defense systems, thus suggesting a global response for the protection at the population level.
Collapse
|
20
|
Capability of Immobilized Clostridium beijerinckii TISTR 1461 on Lotus Stalk Pieces to Produce Butanol from Sugarcane Molasses. Processes (Basel) 2021. [DOI: 10.3390/pr9040573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Immobilized Clostridium beijerinckii TISTR 1461 was used to enhance the butanol production efficiency from sugarcane molasses. Lotus stalk (LS) pieces were used as carriers for cell immobilization. Sugarcane molasses containing 50 g/L of sugar supplemented with 1 g/L of yeast extract was found to be an appropriate medium for bacterial cell immobilization on the LS pieces. Carrier size (4, 12 and 20 mm in length) and carrier loading (1:15, 1:30 and 1:45, w/v) were optimized for high levels of butanol production using response surface methodology (RSM). The batch fermentation was carried out under anaerobic conditions in 1 L screw-capped bottles at 37 °C and an agitation rate of 150 rpm. It was found that the optimum conditions for the butanol production were the carrier size of 4 mm and carrier loading of 1:31 (w/v). Under these conditions, the butanol concentration (PB) was 12.89 g/L, corresponding to the butanol productivity (QB) of 0.36 g/L∙h and butanol yield (YB/S) of 0.36 g/g. These values were higher than those using free cells (PB, 10.20 g/L, QB, 0.28 g/L∙h and YB/S, 0.32 g/g). In addition, it was found that a 24 h incubation time for cell immobilization was appropriate for the immobilization process, which was confirmed by the results of the scanning electron microscope (SEM) and atomic force microscopy (AFM) images and specific surface area measurement. When the fermentation using the immobilized cells was carried out in a stirred-tank reactor (STR), column reactor (CR) and CR coupled with STR, the results showed that all reactors could be used to produce butanol production from the immobilized cells on LS pieces. However, the PB using CR and CR coupled with STR were only 75% and 45% of those using the screw-capped bottle and STR.
Collapse
|
21
|
Gao Y, Zhou X, Zhang MM, Liu YJ, Guo XP, Lei CR, Li WJ, Lu D. Response characteristics of the membrane integrity and physiological activities of the mutant strain Y217 under exogenous butanol stress. Appl Microbiol Biotechnol 2021; 105:2455-2472. [PMID: 33606076 DOI: 10.1007/s00253-021-11174-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/30/2021] [Accepted: 02/10/2021] [Indexed: 01/05/2023]
Abstract
Butanol inhibits bacterial activity by destroying the cell membrane of Clostridium acetobutylicum strains and altering functionality. Butanol toxicity also results in destruction of the phosphoenolpyruvate-carbohydrate phosphotransferase system (PTS), thereby preventing glucose transport and phosphorylation and inhibiting transmembrane transport and assimilation of sugars, amino acids, and other nutrients. In this study, based on the addition of exogenous butanol, the tangible macro indicators of changes in the carbon ion beam irradiation-mutant Y217 morphology were observed using scanning electron microscopy (SEM). The mutant has lower microbial adhesion to hydrocarbon (MATH) value than C. acetobutylicum ATCC 824 strain. FDA fluorescence intensity and conductivity studies demonstrated the intrinsically low membrane permeability of the mutant membrane, with membrane potential remaining relatively stable. Monounsaturated FAs (MUFAs) accounted for 35.17% of the mutant membrane, and the saturated fatty acids (SFA)/unsaturated fatty acids (UFA) ratio in the mutant cell membrane was 1.65. In addition, we conducted DNA-level analysis of the mutant strain Y217. Expectedly, through screening, we found gene mutant sites encoding membrane-related functions in the mutant, including ATP-binding cassette (ABC) transporter-related genes, predicted membrane proteins, and the PTS transport system. It is noteworthy that an unreported predicted membrane protein (CAC 3309) may be related to changes in mutant cell membrane properties. KEY POINTS: • Mutant Y217 exhibited better membrane integrity and permeability. • Mutant Y217 was more resistant to butanol toxicity. • Some membrane-related genes of mutant Y217 were mutated.
Collapse
Affiliation(s)
- Yue Gao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, 100049, China
| | - Xiang Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, 100049, China
| | - Miao-Miao Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, 100049, China.,Gansu Key Laboratory of Microbial Resources Exploitation and Application, Lanzhou, 730070, China
| | - Ya-Jun Liu
- University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, 100049, China.,Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Xiao-Peng Guo
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Cai-Rong Lei
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, 100049, China
| | - Wen-Jian Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, 100049, China.,Gansu Key Laboratory of Microbial Resources Exploitation and Application, Lanzhou, 730070, China
| | - Dong Lu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China. .,University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, 100049, China. .,Gansu Key Laboratory of Microbial Resources Exploitation and Application, Lanzhou, 730070, China.
| |
Collapse
|
22
|
Influence of Culture Conditions on the Bioreduction of Organic Acids to Alcohols by Thermoanaerobacter pseudoethanolicus. Microorganisms 2021; 9:microorganisms9010162. [PMID: 33445711 PMCID: PMC7828175 DOI: 10.3390/microorganisms9010162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/24/2020] [Accepted: 01/08/2021] [Indexed: 11/17/2022] Open
Abstract
Thermoanaerobacter species have recently been observed to reduce carboxylic acids to their corresponding alcohols. The present investigation shows that Thermoanaerobacter pseudoethanolicus converts C2-C6 short-chain fatty acids (SCFAs) to their corresponding alcohols in the presence of glucose. The conversion yields varied from 21% of 3-methyl-1-butyrate to 57.9% of 1-pentanoate being converted to their corresponding alcohols. Slightly acidic culture conditions (pH 6.5) was optimal for the reduction. By increasing the initial glucose concentration, an increase in the conversion of SCFAs reduced to their corresponding alcohols was observed. Inhibitory experiments on C2-C8 alcohols showed that C4 and higher alcohols are inhibitory to T. pseudoethanolicus suggesting that other culture modes may be necessary to improve the amount of fatty acids reduced to the analogous alcohol. The reduction of SCFAs to their corresponding alcohols was further demonstrated using 13C-labelled fatty acids and the conversion was followed kinetically. Finally, increased activity of alcohol dehydrogenase (ADH) and aldehyde oxidation activity was observed in cultures of T. pseudoethanolicus grown on glucose as compared to glucose supplemented with either 3-methyl-1-butyrate or pentanoate, using both NADH and NADPH as cofactors, although the presence of the latter showed higher ADH and aldehyde oxidoreductase (ALDH) activity.
Collapse
|
23
|
Gao Y, Zhang M, Zhou X, Guo X, Lei C, Li W, Lu D. Effects of Carbon Ion Beam Irradiation on Butanol Tolerance and Production of Clostridium acetobutylicum. Front Microbiol 2020; 11:602774. [PMID: 33391222 PMCID: PMC7775398 DOI: 10.3389/fmicb.2020.602774] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/30/2020] [Indexed: 01/25/2023] Open
Abstract
Clostridium acetobutylicum (C. acetobutylicum) has considerable potential for use in bioenergy development. Owing to the repeated use of traditional mutagenesis methods, the strains have developed a certain tolerance. The rheology of the bioprocess and the downstream processing of the product heavily depend on the ability of C. acetobutylicum mutants to produce butanol. Carbon ion beam irradiation has advantages over traditional mutation methods for fermentative production because of its dose conformity and superb biological effectiveness. However, its effects on the specific productivity of the strains have not been clearly understood. In this study, we screened five mutants through carbon ion beam irradiation; mutant Y217 achieved a butanol-production level of 13.67 g/L, exceeding that of wild-type strain ATCC 824 (i.e., 9.77 g/L). In addition, we found that the mutant maintained normal cell membrane integrity under the stimulation of 15 g/L butanol, whereas the intracellular macromolecules of wild-type strain ATCC 824 leaked significantly. Subsequently, we used the response surface methodology (RSM) to determine if the mutant cell membrane integrity improved the butanol tolerance. We verified that with the addition of butanol, the mutant could be fermented to produce 8.35 g/L butanol, and the final butanol concentration in the fermentation broth could reach 16.15 g/L. In this study, we proved that under butanol stress, mutant Y217 features excellent butanol production and tolerance and cell membrane integrity and permeability; no prior studies have attempted to do so. This will serve as an interesting and important illustration of the complexity of genetic control of the irradiation mutation of C. acetobutylicum strains. It may also prove to be useful in the bioengineering of strains of the mutant for use in the predevelopment stage.
Collapse
Affiliation(s)
- Yue Gao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Miaomiao Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China.,Gansu Key Laboratory of Microbial Resources Exploitation and Application, Lanzhou, China
| | - Xiang Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaopeng Guo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Cairong Lei
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wenjian Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China.,Gansu Key Laboratory of Microbial Resources Exploitation and Application, Lanzhou, China
| | - Dong Lu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China.,Gansu Key Laboratory of Microbial Resources Exploitation and Application, Lanzhou, China
| |
Collapse
|
24
|
Straub CT, Bing RG, Otten JK, Keller LM, Zeldes BM, Adams MW, Kelly RM. Metabolically engineered Caldicellulosiruptor bescii as a platform for producing acetone and hydrogen from lignocellulose. Biotechnol Bioeng 2020; 117:3799-3808. [PMID: 32770740 PMCID: PMC11719096 DOI: 10.1002/bit.27529] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/12/2020] [Accepted: 08/05/2020] [Indexed: 11/10/2022]
Abstract
The production of volatile industrial chemicals utilizing metabolically engineered extreme thermophiles offers the potential for processes with simultaneous fermentation and product separation. An excellent target chemical for such a process is acetone (Tb = 56°C), ideally produced from lignocellulosic biomass. Caldicellulosiruptor bescii (Topt 78°C), an extremely thermophilic fermentative bacterium naturally capable of deconstructing and fermenting lignocellulose, was metabolically engineered to produce acetone. When the acetone pathway construct was integrated into a parent strain containing the bifunctional alcohol dehydrogenase from Clostridium thermocellum, acetone was produced at 9.1 mM (0.53 g/L), in addition to minimal ethanol 3.3 mM (0.15 g/L), along with net acetate consumption. This demonstrates that C. bescii can be engineered with balanced pathways in which renewable carbohydrate sources are converted to useful metabolites, primarily acetone and H2 , without net production of its native fermentation products, acetate and lactate.
Collapse
Affiliation(s)
- Christopher T. Straub
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| | - Ryan G. Bing
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| | - Jonathan K. Otten
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| | - Lisa M. Keller
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| | - Benjamin M. Zeldes
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| | - Michael W.W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
25
|
Role of efflux in enhancing butanol tolerance of bacteria. J Biotechnol 2020; 320:17-27. [PMID: 32553531 DOI: 10.1016/j.jbiotec.2020.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 06/02/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022]
Abstract
N-butanol, a valued solvent and potential fuel extender, could possibly be produced by fermentation using either native producers, i.e. solventogenic Clostridia, or engineered platform organisms such as Escherichia coli or Pseudomonas species, if the main process obstacle, a low final butanol concentration, could be overcome. A low final concentration of butanol is the result of its high toxicity to production cells. Nevertheless, bacteria have developed several mechanisms to cope with this toxicity and one of them is active butanol efflux. This review presents information about a few well characterized butanol efflux pumps from Gram-negative bacteria (P. putida and E. coli) and summarizes knowledge about putative butanol efflux systems in Gram-positive bacteria.
Collapse
|
26
|
Ferrous-Iron-Activated Transcriptional Factor AdhR Regulates Redox Homeostasis in Clostridium beijerinckii. Appl Environ Microbiol 2020; 86:AEM.02782-19. [PMID: 32005735 DOI: 10.1128/aem.02782-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/27/2020] [Indexed: 11/20/2022] Open
Abstract
The AdhR regulatory protein is an activator of σ54-dependent transcription of adhA1 and adhA2 genes, which are required for alcohol synthesis in Clostridium beijerinckii Here, we identified the signal perceived by AdhR and determined the regulatory mechanism of AdhR activity. By assaying the activity of AdhR in N-terminally truncated forms, a negative control mechanism of AdhR activity was identified in which the central AAA+ domain is subject to repression by the N-terminal GAF and PAS domains. Binding of Fe2+ to the GAF domain was found to relieve intramolecular repression and stimulate the ATPase activity of AdhR, allowing the AdhR to activate transcription. This control mechanism enables AdhR to regulate transcription of adhA1 and adhA2 in response to cellular redox status. The mutants deficient in AdhR or σ54 showed large shifts in intracellular redox state indicated by the NADH/NAD+ ratio under conditions of increased electron availability or oxidative stress. We demonstrated that the Fe2+-activated transcriptional regulator AdhR and σ54 control alcohol synthesis to maintain redox homeostasis in clostridial cells. Expression of N-terminally truncated forms of AdhR resulted in improved solvent production by C. beijerinckii IMPORTANCE Solventogenic clostridia are anaerobic bacteria that can produce butanol, ethanol, and acetone, which can be used as biofuels or building block chemicals. Here, we show that AdhR, a σ54-dependent transcriptional activator, senses the intracellular redox status and controls alcohol synthesis in Clostridium beijerinckii AdhR provides a new example of a GAF domain coordinating a mononuclear non-heme iron to sense and transduce the redox signal. Our study reveals a previously unrecognized functional role of σ54 in control of cellular redox balance and provides new insights into redox signaling and regulation in clostridia. Our results reveal AdhR as a novel engineering target for improving solvent production by C. beijerinckii and other solventogenic clostridia.
Collapse
|
27
|
Li S, Huang L, Ke C, Pang Z, Liu L. Pathway dissection, regulation, engineering and application: lessons learned from biobutanol production by solventogenic clostridia. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:39. [PMID: 32165923 PMCID: PMC7060580 DOI: 10.1186/s13068-020-01674-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/04/2020] [Indexed: 06/01/2023]
Abstract
The global energy crisis and limited supply of petroleum fuels have rekindled the interest in utilizing a sustainable biomass to produce biofuel. Butanol, an advanced biofuel, is a superior renewable resource as it has a high energy content and is less hygroscopic than other candidates. At present, the biobutanol route, employing acetone-butanol-ethanol (ABE) fermentation in Clostridium species, is not economically competitive due to the high cost of feedstocks, low butanol titer, and product inhibition. Based on an analysis of the physiological characteristics of solventogenic clostridia, current advances that enhance ABE fermentation from strain improvement to product separation were systematically reviewed, focusing on: (1) elucidating the metabolic pathway and regulation mechanism of butanol synthesis; (2) enhancing cellular performance and robustness through metabolic engineering, and (3) optimizing the process of ABE fermentation. Finally, perspectives on engineering and exploiting clostridia as cell factories to efficiently produce various chemicals and materials are also discussed.
Collapse
Affiliation(s)
- Shubo Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
| | - Li Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
| | - Chengzhu Ke
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
| | - Zongwen Pang
- College of Life Science and Technology, Guangxi University, Nanning, 530005 China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| |
Collapse
|
28
|
Impacts of Initial Sugar, Nitrogen and Calcium Carbonate on Butanol Fermentation from Sugarcane Molasses by Clostridium beijerinckii. ENERGIES 2020. [DOI: 10.3390/en13030694] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Low-cost nitrogen sources, i.e., dried spent yeast (DSY), rice bran (RB), soybean meal (SM), urea and ammonium sulfate were used for batch butanol fermentation from sugarcane molasses by Clostridium beijerinckii TISTR 1461 under anaerobic conditions. Among these five low-cost nitrogen sources, DSY at 1.53 g/L (nitrogen content equal to that of 1 g/L of yeast extract) was found to be the most suitable. At an initial sugar level of 60 g/L, the maximum butanol concentration (PB), productivity (QB) and yield (YB/S) were 11.19 g/L, 0.23 g/L·h and 0.31 g/g, respectively. To improve the butanol production, the concentrations of initial sugar, DSY and calcium carbonate were varied using response surface methodology (RSM) based on Box–Behnken design. It was found that the optimal conditions for high butanol production were initial sugar, 50 g/L; DSY, 6 g/L and calcium carbonate, 6.6 g/L. Under these conditions, the highest experimental PB, QB and YB/S values were 11.38 g/L, 0.32 g/L·h and 0.40 g/g, respectively with 50% sugar consumption (SC). The PB with neither DSY nor CaCO3 was only 8.53 g/L. When an in situ gas stripping system was connected to the fermenter to remove butanol produced during the fermentation, the PB was increased to 15.33 g/L, whereas the YB/S (0.39 g/g) was not changed. However, the QB was decreased to 0.21 g/L·h with 75% SC.
Collapse
|
29
|
Yang B, Nie X, Gu Y, Jiang W, Yang C. Control of solvent production by sigma-54 factor and the transcriptional activator AdhR in Clostridium beijerinckii. Microb Biotechnol 2019; 13:328-338. [PMID: 31691520 PMCID: PMC7017808 DOI: 10.1111/1751-7915.13505] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 11/30/2022] Open
Abstract
Clostridia are obligate anaerobic bacteria that can produce solvents such as acetone, butanol and ethanol. Alcohol dehydrogenases (ADHs) play a key role in solvent production; however, their regulatory mechanisms remain largely unknown. In this study, we characterized the regulatory mechanisms of two ADH-encoding genes in C. beijerinckii. SigL (sigma factor σ54 ) was found to be required for transcription of adhA1 and adhA2 genes. Moreover, a novel transcriptional activator AdhR was identified, which binds to the σ54 promoter and activates σ54 -dependent transcription of adhA1 and adhA2. Clostridia beijerinckii mutants deficient in SigL or AdhR showed severely impaired butanol and ethanol production as well as altered acetone and butyrate synthesis. Overexpression of SigL resulted in significantly improved solvent production by C. beijerinckii when butyrate was added to cultures. Our results reveal SigL as a novel engineering target for improving solvent production by C. beijerinckii and other solvent-producing clostridia. Moreover, this study gains an insight into regulation of alcohol metabolism in diverse clostridia.
Collapse
Affiliation(s)
- Bin Yang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoqun Nie
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yang Gu
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Weihong Jiang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Chen Yang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
30
|
Li J, Du Y, Bao T, Dong J, Lin M, Shim H, Yang ST. n-Butanol production from lignocellulosic biomass hydrolysates without detoxification by Clostridium tyrobutyricum Δack-adhE2 in a fibrous-bed bioreactor. BIORESOURCE TECHNOLOGY 2019; 289:121749. [PMID: 31323711 DOI: 10.1016/j.biortech.2019.121749] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/30/2019] [Accepted: 07/01/2019] [Indexed: 06/10/2023]
Abstract
Acetone-butanol-ethanol fermentation suffers from high substrate cost and low butanol titer and yield. In this study, engineered Clostridium tyrobutyricum CtΔack-adhE2 immobilized in a fibrous-bed bioreactor was used for butanol production from glucose and xylose present in the hydrolysates of low-cost lignocellulosic biomass including corn fiber, cotton stalk, soybean hull, and sugarcane bagasse. The biomass hydrolysates obtained after acid pretreatment and enzymatic hydrolysis were supplemented with corn steep liquor and used in repeated-batch fermentations. Butanol production with high titer (∼15 g/L), yield (∼0.3 g/g), and productivity (∼0.3 g/L∙h) was obtained from cotton stalk, soybean hull, and sugarcane bagasse hydrolysates, while corn fiber hydrolysate with higher inhibitor contents gave somewhat inferior results. The fermentation process was stable for long-term operation without any noticeable degeneration, demonstrating its potential for industrial application. A techno-economic analysis showed that n-butanol could be produced from lignocellulosic biomass using this novel fermentation process at ∼$2.5/gal for biofuel application.
Collapse
Affiliation(s)
- Jing Li
- College of Biology & Engineering, Hebei University of Economics & Business, Shijiazhuang 050061, PR China; William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Yinming Du
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Teng Bao
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Jie Dong
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Meng Lin
- Bioprocessing Innovative Company, 4734 Bridle Path Ct., Dublin, OH 43017, USA
| | - Hojae Shim
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA; Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR 999078, PR China
| | - Shang-Tian Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
31
|
Bacteria for Butanol Production: Bottlenecks, Achievements and Prospects. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.3.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
32
|
Abo BO, Gao M, Wang Y, Wu C, Wang Q, Ma H. Production of butanol from biomass: recent advances and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:20164-20182. [PMID: 31115808 DOI: 10.1007/s11356-019-05437-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/09/2019] [Indexed: 05/24/2023]
Abstract
At present, diminishing oil resources and increasing environmental concerns have led to a shift toward the production of alternative biofuels. In the last few decades, butanol, as liquid biofuel, has received considerable research attention due to its advantages over ethanol. Several studies have focused on the production of butanol through the fermentation from raw renewable biomass, such as lignocellulosic materials. However, the low concentration and productivity of butanol production and the price of raw materials are limitations for butanol fermentation. Moreover, these limitations are the main causes of industrial decline in butanol production. This study reviews butanol fermentation, including the metabolism and characteristics of acetone-butanol-ethanol (ABE) producing clostridia. Furthermore, types of butanol production from biomass feedstock are detailed in this study. Specifically, this study introduces the recent progress on the efficient butanol production of "designed" and modified biomass. Additionally, the recent advances in the butanol fermentation process, such as multistage continuous fermentation, metabolic flow change of the electron carrier supplement, continuous fermentation with immobilization and recycling of cell, and the recent technical separation of the products from the fermentation broth, are described in this study.
Collapse
Affiliation(s)
- Bodjui Olivier Abo
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Ming Gao
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
- Beijing Key Laboratory on Disposal and Resource Recovery of Industry Typical Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yonglin Wang
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Chuanfu Wu
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
- Beijing Key Laboratory on Disposal and Resource Recovery of Industry Typical Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qunhui Wang
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
- Beijing Key Laboratory on Disposal and Resource Recovery of Industry Typical Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongzhi Ma
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China.
- Beijing Key Laboratory on Disposal and Resource Recovery of Industry Typical Pollutants, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
33
|
Li S, Chen Z, Yang Y, Si Z, Li P, Qin P, Tan T. Improving the pervaporation performance of PDMS membranes for n-butanol by incorporating silane-modified ZIF-8 particles. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.12.078] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
34
|
Luo H, Zheng P, Xie F, Yang R, Liu L, Han S, Zhao Y, Bilal M. Co-production of solvents and organic acids in butanol fermentation by Clostridium acetobutylicum in the presence of lignin-derived phenolics. RSC Adv 2019; 9:6919-6927. [PMID: 35518483 PMCID: PMC9061099 DOI: 10.1039/c9ra00325h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 02/21/2019] [Indexed: 12/16/2022] Open
Abstract
Co-production of solvents (butanol, acetone, and ethanol) and organic acids (butyrate and acetate) by Clostridium acetobutylicum using lignocellulosic biomass as a substrate could further enlarge the application scope of butanol fermentation. This is mainly because solvents and organic acids could be used for production of fine chemicals such as butyl butyrate, butyl oleate, etc. However, many phenolic fermentation inhibitors are formed during the pretreatment process because of lignin degradation. The present study investigated the effects of five typical lignin-derived phenolics on the biosynthesis of solvents and organic acids in C. acetobutylicum ATCC 824. Results obtained in 100 mL anaerobic bottles indicated that butanol concentration was enhanced from 10.29 g L−1 to 11.36 g L−1 by the addition of 0.1 g L−1 vanillin. Subsequently, a pH-control strategy was proposed in a 5 L anaerobic fermenter to alleviate the “acid crash” phenomenon and improve butanol fermentation performance, simultaneously. Notably, organic acid concentration was enhanced from 6.38 g L−1 (control) to a high level of 9.21–12.57 g L−1 with vanillin or/and vanillic acid addition (0.2 g L−1) under the pH-control strategy. Furthermore, the butyrate/butanol ratio reached the highest level of 0.80 g g−1 with vanillin/vanillic acid co-addition, and solvent concentration reached 13.85 g L−1, a comparable level to the control (13.69 g L−1). The effectiveness and robustness of the strategy for solvent and organic acid co-production was also verified under five typical phenolic environments. In conclusion, these results suggest that the proposed process strategy would potentially promote butanol fermentative products from renewable biomass. Lignin-derived phenolics enhance solvent and organic acid biosynthesis in butanol fermentation by Clostridium acetobutylicum ATCC 824.![]()
Collapse
Affiliation(s)
- Hongzhen Luo
- School of Life Science and Food Engineering
- Huaiyin Institute of Technology
- Huaian 223003
- China
| | - Panli Zheng
- School of Life Science and Food Engineering
- Huaiyin Institute of Technology
- Huaian 223003
- China
| | - Fang Xie
- School of Life Science and Food Engineering
- Huaiyin Institute of Technology
- Huaian 223003
- China
| | - Rongling Yang
- School of Life Science and Food Engineering
- Huaiyin Institute of Technology
- Huaian 223003
- China
| | - Lina Liu
- School of Life Science and Food Engineering
- Huaiyin Institute of Technology
- Huaian 223003
- China
| | - Shuo Han
- Department of Chemistry
- Missouri University of Science and Technology
- Rolla
- USA
| | - Yuping Zhao
- School of Life Science and Food Engineering
- Huaiyin Institute of Technology
- Huaian 223003
- China
| | - Muhammad Bilal
- School of Life Science and Food Engineering
- Huaiyin Institute of Technology
- Huaian 223003
- China
| |
Collapse
|
35
|
Yang J, Pan X, Zheng F, Cui P, Wang Y, Gao J. Vapor–liquid equilibrium of three binary systems for acetone, diethylamine and N-methyl pyrrolidone at atmospheric pressure. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.10.140] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
36
|
Qureshi N, Harry-O'kuru R, Liu S, Saha B. Yellow top (Physaria fendleri) presscake: A novel substrate for butanol production and reduction in environmental pollution. Biotechnol Prog 2018; 35:e2767. [PMID: 30565888 DOI: 10.1002/btpr.2767] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/23/2018] [Accepted: 12/17/2018] [Indexed: 11/07/2022]
Abstract
Yellow Top (Physaria fendleri) is a plant that belongs to the mustard family. This plant is used to produce seeds that are rich in hydroxy oil. After extraction of oil, the presscake is land filled. The seedcake is rich in polymeric sugars and can be used for various bioconversions. For the present case, the seedcake or presscake was hydrolyzed with dilute (0.50% [v/v]) H2 SO4 and enzymes to release sugars including glucose, xylose, galactose, arabinose, and mannose. Then, the hydrolyzate was used to produce acetone-butanol-ethanol (ABE). Using 100 gL-1 presscake (prior to pretreatment), 19.22 gL-1 of ABE was successfully produced of which butanol was the major product. In this process, an ABE productivity of 0.48 gL-1 h-1 was obtained. These results are superior to glucose fermentation to produce ABE in which an ABE productivity of 0.42 gL-1 h-1 was obtained. Use of Yellow Top to produce butanol has the following advantages: (i) it is an economic feedstock and is expected to produce butanol economically; (ii) it avoids pollution concerns when not land filled; and (iii) rate of ABE production is not inhibited when fermented this substrate. It is suggested that the potential of this feedstock be further explored by optimizing process parameters for this valuable fermentation. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2767, 2019.
Collapse
Affiliation(s)
- Nasib Qureshi
- Bioenergy Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Peoria, IL, 61604
| | - Rogers Harry-O'kuru
- Bio-Oils Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Peoria, IL, 61604
| | - Siqing Liu
- Renewable Product Technology Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Peoria, IL, 61604
| | - Badal Saha
- Bioenergy Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Peoria, IL, 61604
| |
Collapse
|
37
|
Li S, Zhou Y, Luo Z, Cui Y, Xu Y, Lin L, Zhao M, Guo Y, Pang Z. Dual function of ammonium acetate in acetone-butanol-ethanol fermentation by Clostridium acetobutylicum. BIORESOURCE TECHNOLOGY 2018; 267:319-325. [PMID: 30029177 DOI: 10.1016/j.biortech.2018.07.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
In this study, a compound nitrogen source, integrating the advantages of ammonium acetate and soybean meal, was proposed to further improve acetone-butanol-ethanol fermentation. Unfortunately, this compound nitrogen source was found to effectively inhibit cellular performance, as the introduction of NH4+ significantly decreased the yield of butanol and total solvents by 34.78% and 35.14%, to only 6.62 g/L and 10.76 g/L, respectively. Meanwhile, the regulatory mechanism was further elucidated at different levels. As a result, the NH4+ could down-regulate the transcriptional levels of key genes involved in butanol synthesis, and the activity of acetoacetyl-CoA/acyl-CoA transferase, and then decrease the accumulation of key intermediates. Therefore, ammonium acetate has a dual function in ABE fermentation, as it effectively improves ABE fermentation when it is the sole nitrogen source but significantly decreases fermentation performance in the presence of soybean meal, broadening the understanding of nitrogen regulation mechanism of C. acetobutylicum.
Collapse
Affiliation(s)
- Shubo Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yuan Zhou
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Zhiting Luo
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yanyan Cui
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yu Xu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Lihua Lin
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530007, China
| | - Mouming Zhao
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yuan Guo
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530007, China
| | - Zongwen Pang
- College of Life Science and Technology, Guangxi University, Nanning 530005, China.
| |
Collapse
|
38
|
Zhou W, Liu J, Fan S, Xiao Z, Qiu B, Wang Y, Li J, Liu Y. Biofilm immobilization of Clostridium acetobutylicum on particulate carriers for acetone-butanol-ethanol (ABE) production. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.biteb.2018.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
39
|
Díaz VHG, Tost GO. Economic optimization of in situ extraction of inhibitors in acetone-ethanol-butanol (ABE) fermentation from lignocellulose. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Construction of Halomonas bluephagenesis capable of high cell density growth for efficient PHA production. Appl Microbiol Biotechnol 2018; 102:4499-4510. [DOI: 10.1007/s00253-018-8931-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/07/2018] [Accepted: 03/10/2018] [Indexed: 12/13/2022]
|
41
|
Biswas S, Katiyar R, Gurjar BR, Pruthi V. Role of Different Feedstocks on the Butanol Production Through Microbial and Catalytic Routes. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2018. [DOI: 10.1515/ijcre-2016-0215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Among the renewable fuels, butanol has become an attractive, economic and sustainable choice because of cost elevation in petroleum fuel, diminishing the oil reserves and an increase of green house effect. Butanol can be derived from renewable sources by using the natural bio-resources and agro-wastes such as orchard wastes, peanut wastes, wheat straw, barley straw and grasses via Acetone Butanol Ethanol (ABE) process. On the other hand, butanol can be directly formed from chemical route involving catalysts also such as from ethanol through aldol condensation. This review presents extensive evaluation for the production of butanol deploying microbial and catalytic routes.
Collapse
Affiliation(s)
- Shalini Biswas
- Centre for Transportation Systems , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| | - Richa Katiyar
- Centre for Transportation Systems , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| | - B. R. Gurjar
- Centre for Transportation Systems , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| | - Vikas Pruthi
- Centre for Transportation Systems , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
- Department of Biotechnology , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| |
Collapse
|
42
|
Lu C, Yu L, Varghese S, Yu M, Yang ST. Enhanced robustness in acetone-butanol-ethanol fermentation with engineered Clostridium beijerinckii overexpressing adhE2 and ctfAB. BIORESOURCE TECHNOLOGY 2017; 243:1000-1008. [PMID: 28747008 DOI: 10.1016/j.biortech.2017.07.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 06/07/2023]
Abstract
Clostridium beijerinckii CC101 was engineered to overexpress aldehyde/alcohol dehydrogenase (adhE2) and CoA-transferase (ctfAB). Solvent production and acid assimilation were compared between the parental and engineered strains expressing only adhE2 (CC101-SV4) and expressing adhE2, ald and ctfAB (CC101-SV6). CC101-SV4 showed an early butanol production from glucose but stopped pre-maturely at a low butanol concentration of ∼6g/L. Compared to CC101, CC101-SV6 produced more butanol (∼12g/L) from glucose and was able to re-assimilate more acids, which prevented "acid crash" and increased butanol production, under all conditions studied. CC101-SV6 also showed better ability in using glucose and xylose present in sugarcane bagasse hydrolysate, and produced 9.4g/L solvents (acetone, butanol and ethanol) compared to only 2.6g/L by CC101, confirming its robustness and better tolerance to hydrolysate inhibitors. The engineered strain of C. beijerinckii overexpressing adhE2 and ctfAB should have good potential for producing butanol from lignocellulosic biomass hydrolysates.
Collapse
Affiliation(s)
- Congcong Lu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Ave., Columbus, OH 43210, United States
| | - Le Yu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Ave., Columbus, OH 43210, United States
| | - Saju Varghese
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Ave., Columbus, OH 43210, United States
| | - Mingrui Yu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Ave., Columbus, OH 43210, United States
| | - Shang-Tian Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Ave., Columbus, OH 43210, United States.
| |
Collapse
|
43
|
Lin Z, Liu H, Yan X, Zhou Y, Cheng K, Zhang J. High-efficiency acetone-butanol-ethanol production and recovery in non-strict anaerobic gas-stripping fed-batch fermentation. Appl Microbiol Biotechnol 2017; 101:8029-8039. [PMID: 28929200 DOI: 10.1007/s00253-017-8520-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/22/2017] [Accepted: 09/07/2017] [Indexed: 11/30/2022]
Abstract
Conventional acetone-butanol-ethanol (ABE) fermentation coupled with gas stripping is conducted under strict anaerobic conditions. In this work, a fed-batch ABE fermentation integrated with gas stripping (FAFIGS) system using a non-strict anaerobic butanol-producing symbiotic system, TSH06, was investigated for the efficient production of butanol. To save energy and keep a high gas-stripping efficiency, the integrated fermentation was conducted by adjusting the butanol recovery rate. The gas-stripping efficiency increased when the butanol concentration increased from 6 to 12 g/L. However, in consideration of the butanol toxicity to TSH06, 8 g/L butanol was the optimal concentration for this FAFIGS process. A model for describing the relationship between the butanol recovery rate and the gas flow rate was developed, and the model was subsequently applied to adjust the butanol recovery rate during the FAFIGS process. In the integrated system under non-strict anaerobic condition, relatively stable butanol concentrations of 7 to 9 g/L were achieved by controlling the gas flow rate which varied between 1.6 and 3.5 vvm based on the changing butanol productivity. 185.65 g/L of butanol (267.15 g/L of ABE) was produced in 288 h with a butanol recovery ratio of 97.36%. The overall yield and productivity of butanol were 0.23 g/g and 0.64 g/L/h, respectively. This study demonstrated the feasibility of using FAFIGS under non-strict anaerobic conditions with TSH06. This work is helpful in characterizing the butanol anabolism performance of TSH06 and provides a simple and efficient scheme for butanol production.
Collapse
Affiliation(s)
- Zhangnan Lin
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Hongjuan Liu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Xiang Yan
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Yujie Zhou
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Keke Cheng
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, 523808, China.
| | - Jian'an Zhang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
44
|
Saturated mutagenesis of ketoisovalerate decarboxylase V461 enabled specific synthesis of 1-pentanol via the ketoacid elongation cycle. Sci Rep 2017; 7:11284. [PMID: 28900255 PMCID: PMC5595793 DOI: 10.1038/s41598-017-11624-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/25/2017] [Indexed: 11/25/2022] Open
Abstract
Iterative ketoacid elongation has been an essential tool in engineering artificial metabolism, in particular the synthetic alcohols. However, precise control of product specificity is still greatly challenged by the substrate promiscuity of the ketoacid decarboxylase, which unselectively hijacks ketoacid intermediates from the elongation cycle along with the target ketoacid. In this work, preferential tuning of the Lactococcus lactis ketoisovalerate decarboxylase (Kivd) specificity toward 1-pentanol synthesis was achieved via saturated mutagenesis of the key residue V461 followed by screening of the resulting alcohol spectrum. Substitution of V461 with the small and polar amino acid glycine or serine significantly improved the Kivd selectivity toward the 1-pentanol precursor 2-ketocaproate by lowering its catalytic efficiency for the upstream ketoacid 2-ketobutyrate and 2-ketovalerate. Conversely, replacing V461 with bulky or charged side chains displayed severely adverse effect. Increasing supply of the iterative addition unit acetyl-CoA by acetate feeding further drove 2-ketoacid flux into the elongation cycle and enhanced 1-pentanol productivity. The Kivd V461G variant enabled a 1-pentanol production specificity around 90% of the total alcohol content with or without oleyl alcohol extraction. This work adds insight to the selectivity of Kivd active site.
Collapse
|
45
|
Van der Perre S, Gelin P, Claessens B, Martin-Calvo A, Cousin Saint Remi J, Duerinck T, Baron GV, Palomino M, Sánchez LY, Valencia S, Shang J, Singh R, Webley PA, Rey F, Denayer JFM. Intensified Biobutanol Recovery by using Zeolites with Complementary Selectivity. CHEMSUSCHEM 2017; 10:2968-2977. [PMID: 28585778 DOI: 10.1002/cssc.201700667] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Indexed: 06/07/2023]
Abstract
A vapor-phase adsorptive recovery process is proposed as an alternative way to isolate biobutanol from acetone-butanol-ethanol (ABE) fermentation media, offering several advantages compared to liquid phase separation. The effect of water, which is still present in large quantities in the vapor phase, on the adsorption of the organics could be minimized by using hydrophobic zeolites. Shape-selective all-silica zeolites CHA and LTA were prepared and evaluated with single-component isotherms and breakthrough experiments. These zeolites show opposite selectivities; adsorption of ethanol is favorable on all-silica CHA, whereas the LTA topology has a clear preference for butanol. The molecular sieving properties of both zeolites allow easy elimination of acetone from the mixture. The molecular interaction mechanisms are studied by density functional theory (DFT) simulations. The effects of mixture composition, humidity and total pressure of the vapor stream on the selectivity and separation behavior are investigated. Desorption profiles are studied to maximize butanol purity and recovery. The combination of LTA with CHA-type zeolites (Si-CHA or SAPO-34) in sequential adsorption columns with alternating adsorption and desorption steps allows butanol to be recovered in unpreceded purity and yield. A butanol purity of 99.7 mol % could be obtained at nearly complete butanol recovery, demonstrating the effectiveness of this technique for biobutanol separation processes.
Collapse
Affiliation(s)
- Stijn Van der Perre
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Pierre Gelin
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Benjamin Claessens
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Ana Martin-Calvo
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Julien Cousin Saint Remi
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Tim Duerinck
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Gino V Baron
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Miguel Palomino
- Instituto de Tecnologia Quimica, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos, s/n, Valencia, 46022, Spain
| | - Ledys Y Sánchez
- Instituto de Tecnologia Quimica, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos, s/n, Valencia, 46022, Spain
| | - Susana Valencia
- Instituto de Tecnologia Quimica, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos, s/n, Valencia, 46022, Spain
| | - Jin Shang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, SAR, P.R. China
| | - Ranjeet Singh
- Chemical and Biomolecular Engineering, The University of Melbourne, Melbourne, 3010, Australia
| | - Paul A Webley
- Chemical and Biomolecular Engineering, The University of Melbourne, Melbourne, 3010, Australia
| | - Fernando Rey
- Instituto de Tecnologia Quimica, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos, s/n, Valencia, 46022, Spain
| | - Joeri F M Denayer
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| |
Collapse
|
46
|
Sorokina KN, Samoylova YV, Piligaev AV, Sivakumar U, Parmon VN. New methods for the one-pot processing of polysaccharide components (cellulose and hemicelluloses) of lignocellulose biomass into valuable products. Part 3: Products synthesized via the biotechnological conversion of poly- and monosaccharides of biomass. CATALYSIS IN INDUSTRY 2017. [DOI: 10.1134/s2070050417030138] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Syngas Fermentation: A Microbial Conversion Process of Gaseous Substrates to Various Products. FERMENTATION-BASEL 2017. [DOI: 10.3390/fermentation3020028] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biomass and other carbonaceous materials can be gasified to produce syngas with high concentrations of CO and H2. Feedstock materials include wood, dedicated energy crops, grain wastes, manufacturing or municipal wastes, natural gas, petroleum and chemical wastes, lignin, coal and tires. Syngas fermentation converts CO and H2 to alcohols and organic acids and uses concepts applicable in fermentation of gas phase substrates. The growth of chemoautotrophic microbes produces a wide range of chemicals from the enzyme platform of native organisms. In this review paper, the Wood–Ljungdahl biochemical pathway used by chemoautotrophs is described including balanced reactions, reaction sites physically located within the cell and cell mechanisms for energy conservation that govern production. Important concepts discussed include gas solubility, mass transfer, thermodynamics of enzyme-catalyzed reactions, electrochemistry and cellular electron carriers and fermentation kinetics. Potential applications of these concepts include acid and alcohol production, hydrogen generation and conversion of methane to liquids or hydrogen.
Collapse
|
48
|
Tanaka Y, Kasahara K, Hirose Y, Morimoto Y, Izawa M, Ochi K. Enhancement of butanol production by sequential introduction of mutations conferring butanol tolerance and streptomycin resistance. J Biosci Bioeng 2017; 124:400-407. [PMID: 28566234 DOI: 10.1016/j.jbiosc.2017.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/01/2017] [Accepted: 05/06/2017] [Indexed: 12/19/2022]
Abstract
Ribosome engineering, originally applied to Streptomyces lividans, has been widely utilized for strain improvement, especially for the activation of bacterial secondary metabolism. This study assessed ribosome engineering technology to modulate primary metabolism, taking butanol production as a representative example. The introduction into Clostridium saccharoperbutylacetonicum of mutations conferring resistance to butanol (ButR) and of the str mutation (SmR; a mutation in the rpsL gene encoding ribosomal protein S12), conferring high-level resistance to streptomycin, increased butanol production 1.6-fold, to 16.5 g butanol/L. Real-time qPCR analysis demonstrated that the genes involved in butanol metabolism by C. saccharoperbutylacetonicum were activated at the transcriptional level in the drug-resistant mutants, providing a mechanism for the higher yields of butanol by the mutants. Moreover, the activity of enzymes butyraldehyde dehydrogenase (AdhE) and butanol dehydrogenases (BdhAB), the key enzymes involved in butanol synthesis, was both markedly increased in the ButR SmR mutant, reflecting the significant up-regulation of adhE and bdhA at transcriptional level in this mutant strain. These results demonstrate the efficacy of ribosome engineering for the production of not only secondary metabolites but of industrially important primary metabolites. The possible ways to overcome the reduced growth rate and/or fitness cost caused by the mutation were also discussed.
Collapse
Affiliation(s)
- Yukinori Tanaka
- Department of Life Sciences, Hiroshima Institute of Technology, Saeki-ku, Hiroshima 731-5193, Japan
| | - Ken Kasahara
- Chitose Laboratory Corp., Biotechnology Research Center, Nogawa, Miyamae-ku, Kawasaki 216-0001, Japan
| | - Yutaka Hirose
- Chitose Laboratory Corp., Biotechnology Research Center, Nogawa, Miyamae-ku, Kawasaki 216-0001, Japan
| | - Yu Morimoto
- Department of Life Sciences, Hiroshima Institute of Technology, Saeki-ku, Hiroshima 731-5193, Japan
| | - Masumi Izawa
- Department of Life Sciences, Hiroshima Institute of Technology, Saeki-ku, Hiroshima 731-5193, Japan
| | - Kozo Ochi
- Department of Life Sciences, Hiroshima Institute of Technology, Saeki-ku, Hiroshima 731-5193, Japan.
| |
Collapse
|
49
|
Volmer J, Schmid A, Bühler B. The application of constitutively solvent-tolerantP. taiwanensisVLB120ΔCΔttgVfor stereospecific epoxidation of toxic styrene alleviates carrier solvent use. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201600558] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/15/2017] [Accepted: 03/24/2017] [Indexed: 01/15/2023]
Affiliation(s)
- Jan Volmer
- Chair for Bioprocess engineering; Department of Biochemical and Chemical Engineering; TU Dortmund University; Dortmund Germany
| | - Andreas Schmid
- Department Solar Materials; Helmholtz Centre for Environmental Research GmbH - UFZ; Leipzig Germany
| | - Bruno Bühler
- Department Solar Materials; Helmholtz Centre for Environmental Research GmbH - UFZ; Leipzig Germany
| |
Collapse
|
50
|
Luo H, Zeng Q, Han S, Wang Z, Dong Q, Bi Y, Zhao Y. High-efficient n-butanol production by co-culturing Clostridium acetobutylicum and Saccharomyces cerevisiae integrated with butyrate fermentative supernatant addition. World J Microbiol Biotechnol 2017; 33:76. [PMID: 28337710 DOI: 10.1007/s11274-017-2246-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 03/15/2017] [Indexed: 01/22/2023]
Abstract
Butanol is not only an important chemical intermediate and solvent in pharmaceutical and cosmetics industries, but also considered as an advanced biofuel. Although species of the natural host Clostridium have been engineered, butanol titers in the anaerobe seem to be limited by its intolerance to butanol less than 13 g/L. Here we aimed to develop a technology for enhancing butanol production by a co-culture system with butyrate fermentative supernatant addition. First, when adding 4.0 g/L butyrate into the acetone-butanol-ethanol (ABE) fermentation broth with single-shot at 24 h, the "acid crash" phenomenon occurred and the ABE fermentation performance deteriorated. Subsequently, we found that adding certain amino acids could effectively enhance butyrate re-assimilation, butanol tolerance and titer (from 11.1 to 14.8 g/L). Additionally, in order to decrease the raw material cost, butyrate fermentative supernatant produced by Clostridium tyrobutyricum was applied to butanol production in the Clostridium acetobutylicum/Saccharomyces cerevisiae co-culture system, instead of adding synthetic butyrate. Final butanol and total ABE concentrations reached higher levels of 16.3 and 24.8 g/L with increments of 46.8 and 37.8%, respectively. These results show that the proposed fermentation strategy has great potential for efficiently butanol production with an economic approach.
Collapse
Affiliation(s)
- Hongzhen Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China. .,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Qingwei Zeng
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Shuo Han
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Zhaoyu Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Qing Dong
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Yanhong Bi
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| |
Collapse
|