1
|
The feruloyl esterase from Thermobacillus xylanilyticus shows broad specificity for processing pre-biotic feruloylated xylooligosaccharides at high temperatures. Food Chem 2022; 405:134939. [DOI: 10.1016/j.foodchem.2022.134939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
|
2
|
Liu X, Jiang Y, Liu H, Yuan H, Huang D, Wang T. Research progress and biotechnological applications of feruloyl esterases. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2116277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Xuejun Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Yi Jiang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Hongling Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Haibo Yuan
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Di Huang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Tengfei Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| |
Collapse
|
3
|
Centeno-Leija S, Espinosa-Barrera L, Velazquez-Cruz B, Cárdenas-Conejo Y, Virgen-Ortíz R, Valencia-Cruz G, Saenz RA, Marín-Tovar Y, Gómez-Manzo S, Hernández-Ochoa B, Rocha-Ramirez LM, Zataraín-Palacios R, Osuna-Castro JA, López-Munguía A, Serrano-Posada H. Mining for novel cyclomaltodextrin glucanotransferases unravels the carbohydrate metabolism pathway via cyclodextrins in Thermoanaerobacterales. Sci Rep 2022; 12:730. [PMID: 35031648 PMCID: PMC8760340 DOI: 10.1038/s41598-021-04569-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/20/2021] [Indexed: 11/21/2022] Open
Abstract
Carbohydrate metabolism via cyclodextrins (CM-CD) is an uncommon starch-converting pathway that thoroughly depends on extracellular cyclomaltodextrin glucanotransferases (CGTases) to transform the surrounding starch substrate to α-(1,4)-linked oligosaccharides and cyclodextrins (CDs). The CM-CD pathway has emerged as a convenient microbial adaptation to thrive under extreme temperatures, as CDs are functional amphipathic toroids with higher heat-resistant values than linear dextrins. Nevertheless, although the CM-CD pathway has been described in a few mesophilic bacteria and archaea, it remains obscure in extremely thermophilic prokaryotes (Topt ≥ 70 °C). Here, a new monophyletic group of CGTases with an exceptional three-domain ABC architecture was detected by (meta)genome mining of extremely thermophilic Thermoanaerobacterales living in a wide variety of hot starch-poor environments on Earth. Functional studies of a representative member, CldA, showed a maximum activity in a thermoacidophilic range (pH 4.0 and 80 °C) with remarkable product diversification that yielded a mixture of α:β:γ-CDs (34:62:4) from soluble starch, as well as G3-G7 linear dextrins and fermentable sugars as the primary products. Together, comparative genomics and predictive functional analysis, combined with data of the functionally characterized key proteins of the gene clusters encoding CGTases, revealed the CM-CD pathway in Thermoanaerobacterales and showed that it is involved in the synthesis, transportation, degradation, and metabolic assimilation of CDs.
Collapse
Affiliation(s)
- Sara Centeno-Leija
- Consejo Nacional de Ciencia y Tecnología, Laboratorio de Biología Sintética, Estructural y Molecular, Laboratorio de Agrobiotecnología, Tecnoparque CLQ, Universidad de Colima, Carretera Los Limones-Loma de Juárez, 28627, Colima, Colima, Mexico.
| | - Laura Espinosa-Barrera
- Laboratorio de Biología Sintética, Estructural y Molecular, Laboratorio de Agrobiotecnología, Tecnoparque CLQ, Universidad de Colima, Carretera Los Limones-Loma de Juárez, 28627, Colima, Colima, Mexico
| | - Beatriz Velazquez-Cruz
- Laboratorio de Biología Sintética, Estructural y Molecular, Laboratorio de Agrobiotecnología, Tecnoparque CLQ, Universidad de Colima, Carretera Los Limones-Loma de Juárez, 28627, Colima, Colima, Mexico
| | - Yair Cárdenas-Conejo
- Consejo Nacional de Ciencia y Tecnología, Laboratorio de Biología Sintética, Estructural y Molecular, Laboratorio de Agrobiotecnología, Tecnoparque CLQ, Universidad de Colima, Carretera Los Limones-Loma de Juárez, 28627, Colima, Colima, Mexico
| | - Raúl Virgen-Ortíz
- Laboratorio de Biología Sintética, Estructural y Molecular, Laboratorio de Agrobiotecnología, Tecnoparque CLQ, Universidad de Colima, Carretera Los Limones-Loma de Juárez, 28627, Colima, Colima, Mexico
| | - Georgina Valencia-Cruz
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Avenida 25 de julio 965, Colonia Villa de San Sebastián, 28045, Colima, Colima, Mexico
| | - Roberto A Saenz
- Facultad de Ciencias, Universidad de Colima, Bernal Díaz del Castillo 340, 28045, Colima, Colima, Mexico
| | - Yerli Marín-Tovar
- Laboratorio de Bioquímica Estructural, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Mexico
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, 04530, Mexico City, Mexico
| | - Beatriz Hernández-Ochoa
- Laboratorio de Inmunoquímica y Biología Celular, Hospital Infantil de México Federico Gómez, Secretaría de Salud, 06720, Mexico City, Mexico
| | - Luz María Rocha-Ramirez
- Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Colonia Doctores, 06720, Delegación Cuauhtémoc, Mexico
| | - Rocío Zataraín-Palacios
- Escuela de Medicina General, Universidad José Martí, Bosques del Decán 351, 28089, Colima, Colima, México
| | - Juan A Osuna-Castro
- Facultad de Ciencias Biológicas y Agropecuarias, Universidad de Colima, Autopista Colima-Manzanillo, 28100, Tecomán, Colima, Mexico
| | - Agustín López-Munguía
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Hugo Serrano-Posada
- Consejo Nacional de Ciencia y Tecnología, Laboratorio de Biología Sintética, Estructural y Molecular, Laboratorio de Agrobiotecnología, Tecnoparque CLQ, Universidad de Colima, Carretera Los Limones-Loma de Juárez, 28627, Colima, Colima, Mexico.
| |
Collapse
|
4
|
Liers C, Ullrich R, Kellner H, Chi DH, Quynh DT, Luyen ND, Huong LM, Hofrichter M, Nghi DH. Bioconversion of Lignocellulosic Materials with the Contribution of a Multifunctional GH78 Glycoside Hydrolase from Xylaria polymorpha to Release Aromatic Fragments and Carbohydrates. J Microbiol Biotechnol 2021; 31:1438-1445. [PMID: 34409952 PMCID: PMC9705965 DOI: 10.4014/jmb.2106.06053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/06/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022]
Abstract
A bifunctional glycoside hydrolase GH78 from the ascomycete Xylaria polymorpha (XpoGH78) possesses catalytic versatility towards both glycosides and esters, which may be advantageous for the efficient degradation of the plant cell-wall complex that contains both diverse sugar residues and esterified structures. The contribution of XpoGH78 to the conversion of lignocellulosic materials without any chemical pretreatment to release the water-soluble aromatic fragments, carbohydrates, and methanol was studied. The disintegrating effect of enzymatic lignocellulose treatment can be significantly improved by using different kinds of hydrolases and phenoloxidases. The considerable changes in low (3 kDa), medium (30 kDa), and high (> 200 kDa) aromatic fragments were observed after the treatment with XpoGH78 alone or with this potent cocktail. Synergistic conversion of rape straw also resulted in a release of 17.3 mg of total carbohydrates (e.g., arabinose, galactose, glucose, mannose, xylose) per gram of substrate after incubating for 72 h. Moreover, the treatment of rape straw with XpoGH78 led to a marginal methanol release of approximately 17 μg/g and improved to 270 μg/g by cooperation with the above accessory enzymes. In the case of beech wood conversion, the combined catalysis by XpoGH78 and laccase caused an effect comparable with that of fungal strain X. polymorpha in woody cultures concerning the liberation of aromatic lignocellulose fragments.
Collapse
Affiliation(s)
- Christiane Liers
- International Graduate School of Zittau (IHI Zittau), Dresden University of Technology, D-03583 Zittau, Germany
| | - René Ullrich
- International Graduate School of Zittau (IHI Zittau), Dresden University of Technology, D-03583 Zittau, Germany
| | - Harald Kellner
- International Graduate School of Zittau (IHI Zittau), Dresden University of Technology, D-03583 Zittau, Germany
| | - Do Huu Chi
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Dang Thu Quynh
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam
| | - Nguyen Dinh Luyen
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam
| | - Le Mai Huong
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam
| | - Martin Hofrichter
- International Graduate School of Zittau (IHI Zittau), Dresden University of Technology, D-03583 Zittau, Germany
| | - Do Huu Nghi
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam
| |
Collapse
|
5
|
Abstract
Thermophilic microbes are an attractive bioproduction platform due to their inherently lower contamination risk and their ability to perform thermostable enzymatic processes which may be required for biomass processing and other industrial applications. The engineering of microbes for industrial scale processes requires a suite of genetic engineering tools to optimize existing biological systems as well as to design and incorporate new metabolic pathways within strains. Yet, such tools are often lacking and/or inadequate for novel microbes, especially thermophiles. This chapter focuses on genetic tool development and engineering strategies, in addition to challenges, for thermophilic microbes. We provide detailed instructions and techniques for tool development for an anaerobic thermophile, Caldanaerobacter subterraneus subsp. tengcongensis, including culturing, plasmid construction, transformation, and selection. This establishes a foundation for advanced genetic tool development necessary for the metabolic engineering of this microbe and potentially other thermophilic organisms.
Collapse
|
6
|
Cloning, Characterization, and Functional Expression of a Thermostable Type B Feruloyl Esterase from Thermophilic Thielavia Terrestris. Appl Biochem Biotechnol 2019; 189:1304-1317. [DOI: 10.1007/s12010-019-03065-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 06/07/2019] [Indexed: 10/26/2022]
|
7
|
Sun Z, Liu Q, Qu G, Feng Y, Reetz MT. Utility of B-Factors in Protein Science: Interpreting Rigidity, Flexibility, and Internal Motion and Engineering Thermostability. Chem Rev 2019; 119:1626-1665. [PMID: 30698416 DOI: 10.1021/acs.chemrev.8b00290] [Citation(s) in RCA: 325] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Qian Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Manfred T. Reetz
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Chemistry Department, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| |
Collapse
|
8
|
Identification of a Novel Feruloyl Esterase by Functional Screening of a Soil Metagenomic Library. Appl Biochem Biotechnol 2018; 187:424-437. [DOI: 10.1007/s12010-018-2832-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 06/27/2018] [Indexed: 01/10/2023]
|
9
|
Heterologous expression of two Aspergillus niger feruloyl esterases in Trichoderma reesei for the production of ferulic acid from wheat bran. Bioprocess Biosyst Eng 2018; 41:593-601. [DOI: 10.1007/s00449-018-1894-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 01/07/2018] [Indexed: 01/20/2023]
|
10
|
Biochemical characteristics of three feruloyl esterases with a broad substrate spectrum from Bacillus amyloliquefaciens H47. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Watanabe M, Yoshida E, Fukada H, Inoue H, Tokura M, Ishikawa K. Characterization of a feruloyl esterase B from Talaromyces cellulolyticus. Biosci Biotechnol Biochem 2015; 79:1845-51. [DOI: 10.1080/09168451.2015.1058700] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Abstract
A feruloyl esterase catalyzes the hydrolysis of the 4-hydroxy-3-methoxycinnamoyl (feruloyl) group from esterified sugars in plant cell walls. Talaromyces cellulolyticus is a high cellulolytic-enzyme producing fungus. However, there is no report for feruloyl esterase activity of T. cellulolyticus. Analysis of the genome database of T. cellulolyticus identified a gene encoding a putative feruloyl esterase B. The recombinant enzyme was prepared using a T. cellulolyticus homologous expression system and characterized. The purified enzyme exhibited hydrolytic activity toward p-nitrophenyl acetate, p-nitrophenyl trans-ferulate, methyl ferulate, rice husk, and bagasse. HPLC assays showed that the enzyme released ferulic acid and p-coumaric acid from hydrothermal-treated rice husk and bagasse. Trichoderma sp. is well-known high cellulolytic-enzyme producing fungus useful for the lignocellulosic biomass saccharification. Interestingly, no feruloyl esterase has been reported from Trichoderma sp. The results show that this enzyme is expected to be industrially useful for biomass saccharification.
Collapse
Affiliation(s)
- Masahiro Watanabe
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Higashi-hiroshima, Japan
| | - Erika Yoshida
- Frontier Research Labs, Institute for Innovation Ajinomoto Co., Inc., Kawasaki, Japan
| | - Hiroaki Fukada
- Frontier Research Labs, Institute for Innovation Ajinomoto Co., Inc., Kawasaki, Japan
| | - Hiroyuki Inoue
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Higashi-hiroshima, Japan
| | - Mitsunori Tokura
- Frontier Research Labs, Institute for Innovation Ajinomoto Co., Inc., Kawasaki, Japan
| | - Kazuhiko Ishikawa
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Higashi-hiroshima, Japan
| |
Collapse
|
12
|
Sant'Anna FH, Lebedinsky AV, Sokolova TG, Robb FT, Gonzalez JM. Analysis of three genomes within the thermophilic bacterial species Caldanaerobacter subterraneus with a focus on carbon monoxide dehydrogenase evolution and hydrolase diversity. BMC Genomics 2015; 16:757. [PMID: 26446804 PMCID: PMC4596419 DOI: 10.1186/s12864-015-1955-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 09/19/2015] [Indexed: 11/22/2022] Open
Abstract
Background The Caldanaerobacter subterraneus species includes thermophilic fermentative bacteria able to grow on carbohydrates substrates with acetate and L-alanine as the main products. In this study, comprehensive analysis of three genomes of C. subterraneus subspecies was carried in order to identify genes encoding key metabolic enzymes and to document the genomic basis for the evolution of these organisms. Methods Average nucleotide identity and in silico DNA relatedness were estimated for the studied C. subterraneus genomes. Genome synteny was evaluated using R2CAT software. Protein conservation was analyzed using mGenome Subtractor. Horizontal gene transfer was predicted through the GOHTAM pipeline (using tetranucleotide composition) and phylogenetic analyses (by maximum likelihood). Hydrolases were identified through the MEROPS and CAZy platforms. Results The three genomes of C. subterraneus showed high similarity, although there are substantial differences in their gene composition and organization. Each subspecies possesses a gene cluster encoding a carbon monoxide dehydrogenase (CODH) and an energy converting hydrogenase (ECH). The CODH gene is associated with an operon that resembles the Escherichia coli hydrogenase hyc/hyf operons, a novel genetic context distinct from that found in archetypical hydrogenogenic carboxydotrophs. Apart from the CODH-associated hydrogenase, these bacteria also contain other hydrogenases, encoded by ech and hyd genes. An Mbx ferredoxin:NADP oxidoreductase homolog similar to that originally described in the archaeon Pyrococcus furiosus was uniquely encoded in the C. subterraneus subsp. yonseiensis genome. Compositional analysis demonstrated that some genes of the CODH-ECH and mbx operons present distinct sequence patterns in relation to the majority of the other genes of each genome. Phylogenetic reconstructions of the genes from these operons and those from the ech operon are incongruent to the species tree. Notably, the cooS gene of C. subterraneus subsp. pacificus and its homologs in C. subterraneus subsp. tengcongensis and C. subterraneus subsp. yonseiensis form distinct clades. The strains have diverse hydrolytic enzymes and they appear to be proteolytic and glycolytic. Divergent glycosidases from 14 families, among them amylases, chitinases, alpha-glucosidases, beta-glucosidases, and cellulases, were identified. Each of the three genomes also contains around 100 proteases from 50 subfamilies, as well about ten different esterases. Conclusions Genomic information suggests that multiple horizontal gene transfers conferred the adaptation of C. subterraneus subspecies to extreme niches throughout the carbon monoxide utilization and hydrogen production. The variety of hydrolases found in their genomes indicate the versatility of the species in obtaining energy and carbon from diverse substrates, therefore these organisms constitute a remarkable resource of enzymes with biotechnological potential. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1955-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- F H Sant'Anna
- Institute of Natural Resources and Agrobiology, Spanish Council for Research, IRNAS-CSIC, Avda. Reina Mercedes 10, 41012, Sevilla, Spain. .,CAPES Foundation, Ministry of Education of Brazil, Brasília, DF, 70040-020, Brazil.
| | - A V Lebedinsky
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-letiya Oktyabrya 7/2, 117312, Moscow, Russia.
| | - T G Sokolova
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-letiya Oktyabrya 7/2, 117312, Moscow, Russia.
| | - F T Robb
- Department of Microbiology and Immunology, University of Maryland and Institute of Marine and Environmental Technology, 701 E Pratt Street, Baltimore, MD, 21202, USA.
| | - J M Gonzalez
- Institute of Natural Resources and Agrobiology, Spanish Council for Research, IRNAS-CSIC, Avda. Reina Mercedes 10, 41012, Sevilla, Spain.
| |
Collapse
|
13
|
Gopalan N, Rodríguez-Duran LV, Saucedo-Castaneda G, Nampoothiri KM. Review on technological and scientific aspects of feruloyl esterases: A versatile enzyme for biorefining of biomass. BIORESOURCE TECHNOLOGY 2015; 193:534-44. [PMID: 26159377 DOI: 10.1016/j.biortech.2015.06.117] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 05/11/2023]
Abstract
With increasing focus on sustainable energy, bio-refining from lignocellulosic biomass has become a thrust area of research. With most of the works being focused on biofuels, significant efforts are also being directed towards other value added products. Feruloyl esterases (EC. 3.1.1.73) can be used as a tool for bio-refining of lignocellulosic material for the recovery and purification of ferulic acid and related hydroxycinnamic acids ubiquitously found in the plant cell wall. More and more genes coding for feruloyl esterases have been mined out from various sources to allow efficient enzymatic release of ferulic acid and allied hydroxycinnamic acids (HCAs) from plant-based biomass. A sum up on enzymatic extraction of HCAs and its recovery from less explored agro residual by-products is still a missing link and this review brushes up the achieved landmarks so far in this direction and also covers a detailed patent search on this biomass refining enzyme.
Collapse
Affiliation(s)
- Nishant Gopalan
- Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), CSIR, New Delhi, India
| | - L V Rodríguez-Duran
- Metropolitan Autonomous University Campus Iztapalapa, Biotechnology Department, Mexico City, Iztapalapa Z.C. 09340, Mexico
| | - G Saucedo-Castaneda
- Metropolitan Autonomous University Campus Iztapalapa, Biotechnology Department, Mexico City, Iztapalapa Z.C. 09340, Mexico
| | - K Madhavan Nampoothiri
- Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), CSIR, New Delhi, India.
| |
Collapse
|
14
|
Cao LC, Chen R, Xie W, Liu YH. Enhancing the Thermostability of Feruloyl Esterase EstF27 by Directed Evolution and the Underlying Structural Basis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:8225-33. [PMID: 26329893 DOI: 10.1021/acs.jafc.5b03424] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
To improve the thermostability of EstF27, two rounds of random mutagenesis were performed. A thermostable mutant, M6, with six amino acid substitutions was obtained. The half-life of M6 at 55 °C is 1680 h, while that of EstF27 is 0.5 h. The Kcat/Km value of M6 is 1.9-fold higher than that of EstF27. The concentrations of ferulic acid released from destarched wheat bran by EstF27 and M6 at their respective optimal temperatures were 223.2 ± 6.8 and 464.8 ± 11.9 μM, respectively. To further understand the structural basis of the enhanced thermostability, the crystal structure of M6 is determined at 2.0 Å. Structural analysis shows that a new disulfide bond and hydrophobic interactions formed by the mutations may play an important role in stabilizing the protein. This study not only provides us with a robust catalyst, but also enriches our knowledge about the structure-function relationship of feruloyl esterase.
Collapse
Affiliation(s)
- Li-chuang Cao
- School of Life Sciences, ‡State Key Laboratory for Biocontrol, School of Life Sciences, and §South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University , Guangzhou 510275, People's Republic of China
| | - Ran Chen
- School of Life Sciences, ‡State Key Laboratory for Biocontrol, School of Life Sciences, and §South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University , Guangzhou 510275, People's Republic of China
| | - Wei Xie
- School of Life Sciences, ‡State Key Laboratory for Biocontrol, School of Life Sciences, and §South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University , Guangzhou 510275, People's Republic of China
| | - Yu-huan Liu
- School of Life Sciences, ‡State Key Laboratory for Biocontrol, School of Life Sciences, and §South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University , Guangzhou 510275, People's Republic of China
| |
Collapse
|
15
|
Zhang SB, Wang L, Liu Y, Zhai HC, Cai JP, Hu YS. Expression of feruloyl esterase A from Aspergillus terreus and its application in biomass degradation. Protein Expr Purif 2015; 115:153-7. [PMID: 26282562 DOI: 10.1016/j.pep.2015.08.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/13/2015] [Accepted: 08/13/2015] [Indexed: 10/23/2022]
Abstract
Feruloyl esterases (FAEs) are key enzymes involved in the complete biodegradation of lignocelluloses, which could hydrolyze the ester bonds between hemicellulose and lignin. The coding sequence of a feruloyl esterase A (AtFaeA) was cloned from Aspergillus terreus and the recombinant AtFaeA was constitutively expressed in Pichia pastoris. The SDS-PAGE analysis of purified AtFaeA showed two protein bands owing to the different extent of glycosylation, and the recombinant AtFaeA had an optimum temperature of 50°C and an optimum pH of 5.0. The substrate utilization and primary sequence identity of AtFaeA demonstrated that it is a type-A feruloyl esterase. The hydrolysis of corn stalk and corncob by xylanase from Aspergillus niger could be significantly improved in concert with recombinant AfFaeA.
Collapse
Affiliation(s)
- Shuai-Bing Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Le Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yan Liu
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, China
| | - Huan-Chen Zhai
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jing-Ping Cai
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yuan-Sen Hu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
16
|
Improvement in the thermostability of a type A feruloyl esterase, AuFaeA, from Aspergillus usamii by iterative saturation mutagenesis. Appl Microbiol Biotechnol 2015; 99:10047-56. [PMID: 26266754 DOI: 10.1007/s00253-015-6889-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/05/2015] [Accepted: 07/28/2015] [Indexed: 10/23/2022]
Abstract
Feruloyl or ferulic acid esterase (Fae, EC 3.1.1.73) catalyzes the hydrolysis of ester bonds between polysaccharides and phenolic acid compounds in xylan side chain. In this study, the thermostability of a type A feruloyl esterase (AuFaeA) from Aspergillus usamii was increased by iterative saturation mutagenesis (ISM). Two amino acids, Ser33 and Asn92, were selected for saturation mutagenesis according to the B-factors analyzed by B-FITTER software and ΔΔG values predicted by PoPMuSiC algorithm. After screening the saturation mutagenesis libraries constructed in Pichia pastoris, 15 promising variants were obtained. The best variant S33E/N92-4 (S33E/N92R) produced a T m value of 44.5 °C, the half-lives (t1/2) of 35 and 198 min at 55 and 50 °C, respectively, corresponding to a 4.7 °C, 2.33- and 3.96-fold improvement compared to the wild type. Additionally, the best S33 variant S33-6 (S33E) was thermostable at 50 °C with a t1/2 of 82 min, which was 32 min longer than that of the wild type. All the screened S33E/N92 variants were more thermostable than the best S33 variant S33-6 (S33E). This work would contribute to the further studies on higher thermostability modification of type A feruloyl esterases, especially those from fungi. The thermostable feruloyl esterase variants were expected to be potential candidates for industrial application in prompting the enzymic degradation of plant biomass materials at elevated temperatures.
Collapse
|
17
|
Abstract
SUMMARY Biomass is constructed of dense recalcitrant polymeric materials: proteins, lignin, and holocellulose, a fraction constituting fibrous cellulose wrapped in hemicellulose-pectin. Bacteria and fungi are abundant in soil and forest floors, actively recycling biomass mainly by extracting sugars from holocellulose degradation. Here we review the genome-wide contents of seven Aspergillus species and unravel hundreds of gene models encoding holocellulose-degrading enzymes. Numerous apparent gene duplications followed functional evolution, grouping similar genes into smaller coherent functional families according to specialized structural features, domain organization, biochemical activity, and genus genome distribution. Aspergilli contain about 37 cellulase gene models, clustered in two mechanistic categories: 27 hydrolyze and 10 oxidize glycosidic bonds. Within the oxidative enzymes, we found two cellobiose dehydrogenases that produce oxygen radicals utilized by eight lytic polysaccharide monooxygenases that oxidize glycosidic linkages, breaking crystalline cellulose chains and making them accessible to hydrolytic enzymes. Among the hydrolases, six cellobiohydrolases with a tunnel-like structural fold embrace single crystalline cellulose chains and cooperate at nonreducing or reducing end termini, splitting off cellobiose. Five endoglucanases group into four structural families and interact randomly and internally with cellulose through an open cleft catalytic domain, and finally, seven extracellular β-glucosidases cleave cellobiose and related oligomers into glucose. Aspergilli contain, on average, 30 hemicellulase and 7 accessory gene models, distributed among 9 distinct functional categories: the backbone-attacking enzymes xylanase, mannosidase, arabinase, and xyloglucanase, the short-side-chain-removing enzymes xylan α-1,2-glucuronidase, arabinofuranosidase, and xylosidase, and the accessory enzymes acetyl xylan and feruloyl esterases.
Collapse
|
18
|
Yin X, Hu D, Li JF, He Y, Zhu TD, Wu MC. Contribution of Disulfide Bridges to the Thermostability of a Type A Feruloyl Esterase from Aspergillus usamii. PLoS One 2015; 10:e0126864. [PMID: 25969986 PMCID: PMC4429965 DOI: 10.1371/journal.pone.0126864] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 04/08/2015] [Indexed: 11/18/2022] Open
Abstract
The contribution of disulfide bridges to the thermostability of a type A feruloyl esterase (AuFaeA) from Aspergillus usamii E001 was studied by introducing an extra disulfide bridge or eliminating a native one from the enzyme. MODIP and DbD, two computational tools that can predict the possible disulfide bridges in proteins for thermostability improvement, and molecular dynamics (MD) simulations were used to design the extra disulfide bridge. One residue pair A126-N152 was chosen, and the respective amino acid residues were mutated to cysteine. The wild-type AuFaeA and its variants were expressed in Pichia pastoris GS115. The temperature optimum of the recombinant (re-) AuFaeAA126C-N152C was increased by 6°C compared to that of re-AuFaeA. The thermal inactivation half-lives of re-AuFaeAA126C-N152C at 55 and 60°C were 188 and 40 min, which were 12.5- and 10-folds longer than those of re-AuFaeA. The catalytic efficiency (kcat/Km) of re-AuFaeAA126C-N152C was similar to that of re-AuFaeA. Additionally, after elimination of each native disulfide bridge in AuFaeA, a great decrease in expression level and at least 10°C decrease in thermal stability of recombinant AuEaeA variants were also observed.
Collapse
Affiliation(s)
- Xin Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Die Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jian-Fang Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yao He
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Tian-Di Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Min-Chen Wu
- Wuxi Medical School, Jiangnan University, Wuxi, China
| |
Collapse
|
19
|
Watanabe M, Ishikawa K. Crystallization and preliminary X-ray crystallographic analysis of a putative feruloyl esterase from Talaromyces cellulolyticus. Acta Crystallogr F Struct Biol Commun 2014; 70:1664-7. [PMID: 25484222 PMCID: PMC4259236 DOI: 10.1107/s2053230x14024650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 11/10/2014] [Indexed: 11/10/2022] Open
Abstract
Feruloyl esterase (FAE; EC 3.1.1.73) catalyzes the cleavage of the ester bond between ferulic acid and polysaccharides in plant cell walls, and thus holds significant potential for the industrial utilization of biomass saccharification. A feruloyl esterase was identified from the genome database of Talaromyces cellulolyticus (formerly known as Acremonium cellulolyticus). The gene consists of the catalytic domain and a carbohydrate-binding module connected through a serine/threonine-rich linker region. The recombinant enzyme was prepared, purified and crystallized at 293 K using 0.1 M imidazole pH 8.0, 0.2 M calcium acetate, 14% PEG 8000 as the precipitant. The crystal diffracted to 2.6 Å resolution and the crystal system is primitive orthorhombic, with unit-cell parameters a = 90.9, b = 123.4, c = 135.4 Å. Four molecules are assumed to be present per asymmetric unit, corresponding to a Matthews coefficient of 2.50 Å(3) Da(-1) and a solvent content of 50.88%(v/v).
Collapse
Affiliation(s)
- Masahiro Watanabe
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science, 3-11-32 Kagamiyama, Higashi-Hiroshima 739-0046, Japan
| | - Kazuhiko Ishikawa
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science, 3-11-32 Kagamiyama, Higashi-Hiroshima 739-0046, Japan
| |
Collapse
|
20
|
Overexpression of Aspergillus tubingensis faeA in protease-deficient Aspergillus niger enables ferulic acid production from plant material. ACTA ACUST UNITED AC 2014; 41:1027-34. [DOI: 10.1007/s10295-014-1430-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/25/2014] [Indexed: 10/25/2022]
Abstract
Abstract
The production of ferulic acid esterase involved in the release of ferulic acid side groups from xylan was investigated in strains of Aspergillus tubingensis, Aspergillus carneus, Aspergillus niger and Rhizopus oryzae. The highest activity on triticale bran as sole carbon source was observed with the A. tubingensis T8.4 strain, which produced a type A ferulic acid esterase active against methyl p-coumarate, methyl ferulate and methyl sinapate. The activity of the A. tubingensis ferulic acid esterase (AtFAEA) was inhibited twofold by glucose and induced twofold in the presence of maize bran. An initial accumulation of endoglucanase was followed by the production of endoxylanase, suggesting a combined action with ferulic acid esterase on maize bran. A genomic copy of the A. tubingensis faeA gene was cloned and expressed in A. niger D15#26 under the control of the A. niger gpd promoter. The recombinant strain has reduced protease activity and does not acidify the media, therefore promoting high-level expression of recombinant enzymes. It produced 13.5 U/ml FAEA after 5 days on autoclaved maize bran as sole carbon source, which was threefold higher than for the A. tubingensis donor strain. The recombinant AtFAEA was able to extract 50 % of the available ferulic acid from non-pretreated maize bran, making this enzyme suitable for the biological production of ferulic acid from lignocellulosic plant material.
Collapse
|
21
|
Rashamuse K, Ronneburg T, Sanyika W, Mathiba K, Mmutlane E, Brady D. Metagenomic mining of feruloyl esterases from termite enteric flora. Appl Microbiol Biotechnol 2013; 98:727-37. [DOI: 10.1007/s00253-013-4909-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/20/2013] [Accepted: 04/07/2013] [Indexed: 10/26/2022]
|
22
|
Cheng F, Sheng J, Dong R, Men Y, Gan L, Shen L. Novel xylanase from a holstein cattle rumen metagenomic library and its application in xylooligosaccharide and ferulic Acid production from wheat straw. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:12516-12524. [PMID: 23134352 DOI: 10.1021/jf302337w] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A novel gene fragment containing a xylanase was identified from a Holstein cattle rumen metagenomic library. The novel xylanase (Xyln-SH1) belonged to the glycoside hydrolase family 10 (GH10) and exhibited a maximum of 44% identity to the glycoside hydrolase from Clostridium thermocellum ATCC 27405. Xyln-SH1 was heterologously expressed, purified, and characterized. A high level of activity was obtained under the optimum conditions of pH 6.5 and 40 °C. A substrate utilization study indicated that Xyln-SH1 was cellulase-free and strictly specific to xylan from softwood. The synergistic effects of Xyln-SH1 and feruloyl esterase (FAE-SH1) were observed for the release of xylooligosaccharides (XOS) and ferulic acid (FA) from wheat straw. In addition, a high dose of Xyln-SH1 alone was observed to improve the release of FA from wheat straw. These features suggest that this enzyme has substantial potential to improve biomass degradation and industrial applications.
Collapse
Affiliation(s)
- Fansheng Cheng
- College of Food Science and Nutritional Engineering, China Agricultural University , Beijing 100083, China
| | | | | | | | | | | |
Collapse
|
23
|
Chen SK, Wang K, Liu Y, Hu X. Crystallization and preliminary X-ray analysis of a novel halotolerant feruloyl esterase identified from a soil metagenomic library. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:767-70. [PMID: 22750860 PMCID: PMC3388917 DOI: 10.1107/s1744309112017812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 04/21/2012] [Indexed: 11/10/2022]
Abstract
Feruloyl esterase cleaves the ester linkage formed between ferulic acid and polysaccharides in plant cell walls and thus has wide potential industrial applications. A novel feruloyl esterase (EstF27) identified from a soil metagenomic library was crystallized and a complete data set was collected from a single cooled crystal using an in-house X-ray source. The crystal diffracted to 2.9 Å resolution and belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 94.35, b = 106.19, c = 188.51 Å, α = β = γ = 90.00°. A Matthews coefficient of 2.55 Å(3) Da(-1), with a corresponding solvent content of 51.84%, suggested the presence of ten protein subunits in the asymmetric unit.
Collapse
Affiliation(s)
- Shang-ke Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, Guangdong 510006, People’s Republic of China
| | - Kui Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, People’s Republic of China
| | - Yuhuan Liu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, People’s Republic of China
| | - Xiaopeng Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, Guangdong 510006, People’s Republic of China
| |
Collapse
|
24
|
Cheng F, Sheng J, Cai T, Jin J, Liu W, Lin Y, Du Y, Zhang M, Shen L. A protease-insensitive feruloyl esterase from China Holstein cow rumen metagenomic library: expression, characterization, and utilization in ferulic acid release from wheat straw. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:2546-2553. [PMID: 22352374 DOI: 10.1021/jf204556u] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A metagenomic library of China Holstein cow rumen microbes was constructed and screened for novel gene cluster. A novel feruloyl esterase (FAE) gene was identified with a length of 789 bp and encoded a protein displaying 56% identity to known esterase sequences. The gene was functionally expressed in Escherichia coli BL21 (DE3), and the total molecular weight of the recombined protein was 32.4 kDa. The purified enzyme showed a broad specificity against the four methyl esters of hydroxycinnamic acids and high activity (259.5 U/mg) to methyl ferulate at optimum conditions (pH 8.0, 40 °C). High thermal and pH stability were also observed. Moreover, the enzyme showed broad resistance to proteases. FAE-SH1 can enhance the release of ferulic acid from wheat straw with cellulase, β-1,4-endoxylanase, β-1,3-glucanase, and pectase. These features suggest FAE-SH1 as a good candidate to enhance biomass degradation and improve the health effects of food and forage.
Collapse
Affiliation(s)
- Fansheng Cheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Cereal bran: the next super food with significant antioxidant and anticancer potential. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2012. [DOI: 10.1007/s12349-012-0091-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
26
|
Xiao Z, Bergeron H, Lau PCK. Alternaria alternata as a new fungal enzyme system for the release of phenolic acids from wheat and triticale brans. Antonie van Leeuwenhoek 2012; 101:837-44. [PMID: 22287032 DOI: 10.1007/s10482-012-9700-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/14/2012] [Indexed: 10/14/2022]
Abstract
This study describes the release of antioxidant ferulic acid from wheat and triticale brans by mixtures of extracellular enzymes produced in culture by a strain FC007 of Alternaria alternata, a dark mold originally isolated from Canadian wood log. The genus of the mold was confirmed as Alternaria by 18S ribosomal DNA characterization. Enzyme activities for feruloyl esterase (FAE) and polysaccharide hydrolyzing enzymes were measured, and conditions for release of ferulic acid and reducing sugars from the mentioned brans were evaluated. The highest level of FAE activity (89 ± 7 mU ml(-1) fermentation culture) was obtained on the fifth day of fermentation on wheat bran as growth substrate. Depending on biomass and processing condition, up to 91.2 or 72.3% of the ferulic acid was released from wheat bran and triticale bran, respectively, indicating the proficiency of A. alternata extracellular enzymes in plant cell wall deconstruction. The apparent high extraction of ferulic acid from wheat and triticale brans represents a potential advantage of using a whole fungal cell enzyme complement over yields reported previously through an artificial assembly of cloned FAE with a particular xylanase in a cocktail format.
Collapse
Affiliation(s)
- Zhizhuang Xiao
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Hélène Bergeron
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Peter C K Lau
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada.
| |
Collapse
|
27
|
Wu M, Abokitse K, Grosse S, Leisch H, Lau PCK. New Feruloyl Esterases to Access Phenolic Acids from Grass Biomass. Appl Biochem Biotechnol 2011; 168:129-43. [DOI: 10.1007/s12010-011-9359-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 08/30/2011] [Indexed: 11/24/2022]
|
28
|
Li J, Cai S, Luo Y, Dong X. Three feruloyl esterases in Cellulosilyticum ruminicola H1 act synergistically to hydrolyze esterified polysaccharides. Appl Environ Microbiol 2011; 77:6141-7. [PMID: 21764976 PMCID: PMC3165382 DOI: 10.1128/aem.00657-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 07/01/2011] [Indexed: 11/20/2022] Open
Abstract
Feruloyl esterases (Faes) constitute a subclass of carboxyl esterases that specifically hydrolyze the ester linkages between ferulate and polysaccharides in plant cell walls. Until now, the described microbial Faes were mainly from fungi. In this study, we report that Cellulosilyticum ruminicola H1, a previously described fibrolytic rumen bacterium, possesses three different active feruloyl esterases, FaeI, FaeII, and FaeIII. Phylogenetic analysis classified the described bacterial Faes into two types, FaeI and FaeII in type I and FaeIII in type II. Substrate specificity assays indicated that FaeI is more active against the ester bonds in natural hemicelluloses and FaeIII preferentially attacks the ferulate esters with a small moiety, such as methyl groups, while FaeII is active on both types of substrates. Among the three feruloyl esterase genes, faeI was the only one induced significantly by xylose and xylan, while pectin appeared to moderately induce the three genes during the late log phase to stationary phase. Western blot analysis determined that FaeI and FaeIII were secreted and cytoplasmic proteins, respectively, whereas FaeII seemed to be cell associated. The addition of FaeI and FaeII but not FaeIII enhanced the activity of a xylanase on maize cob, suggesting a synergy of the former two with xylanase. Hence, we propose that the three feruloyl esterases work in concert to hydrolyze ferulate esters in natural hemicelluloses.
Collapse
Affiliation(s)
- Jiabao Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Shichun Cai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Yuanming Luo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| |
Collapse
|
29
|
Huang YC, Chen YF, Chen CY, Chen WL, Ciou YP, Liu WH, Yang CH. Production of ferulic acid from lignocellulolytic agricultural biomass by Thermobifida fusca thermostable esterase produced in Yarrowia lipolytica transformant. BIORESOURCE TECHNOLOGY 2011; 102:8117-8122. [PMID: 21683590 DOI: 10.1016/j.biortech.2011.05.062] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 05/20/2011] [Accepted: 05/22/2011] [Indexed: 05/30/2023]
Abstract
A gene (axe) encoding the AXE thermostable esterase in Thermobifida fusca NTU22 was cloned into a Yarrowia lipolytica P01g host strain. Recombinant expression resulted in extracellular esterase production at levels as high as 70.94 U/ml in Hinton flask culture broth, approximately 140 times higher than observed in a Pichia pastoris expression system. After 72 h of fermentation by the Y. lipolytica transformant in the fed-batch fermentor, the fermentation broth accumulated 41.11 U/ml esterase activity. Rice bran, wheat bran, bagasse and corncob were used as hydrolysis substrates for the esterase, with corncob giving the best ferulic acid yield. The corncob was incubated with T. fusca xylanase (Tfx) for 12h and then with the AXE esterase for an additional 12h. Ferulic acid accumulated to 396 μM in the culture broth, a higher concentration than with esterase alone or with Tfx and esterase together for 24 h.
Collapse
Affiliation(s)
- Yu-Chun Huang
- Department of Cosmetic Science, Providence University, Taichung 43301, Taiwan
| | | | | | | | | | | | | |
Collapse
|
30
|
Sang SL, Li G, Hu XP, Liu YH. Molecular Cloning, Overexpression and Characterization of a Novel Feruloyl Esterase from a Soil Metagenomic Library. J Mol Microbiol Biotechnol 2011; 20:196-203. [DOI: 10.1159/000329833] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
31
|
A thermostable feruloyl-esterase from the hemicellulolytic bacterium Thermobacillus xylanilyticus releases phenolic acids from non-pretreated plant cell walls. Appl Microbiol Biotechnol 2011; 90:541-52. [DOI: 10.1007/s00253-011-3103-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 12/22/2010] [Accepted: 12/23/2010] [Indexed: 10/18/2022]
|