1
|
Hertle S, de Boni N, Schell H, Tiehm A. Electrochemical biostimulation of aerobic metabolic TCE degradation in a bioaugmentation approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:107673-107680. [PMID: 37735338 PMCID: PMC10611883 DOI: 10.1007/s11356-023-29839-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023]
Abstract
Chloroethenes are globally prevalent groundwater contaminants. Since 2014, TCE has been shown to be degradable in an aerobic metabolic process where it is used as sole energy source and growth substrate by a mixed bacteria culture (SF culture). In 2019, the SF culture was shown to be successfully used in bioaugmentation approaches under field-relevant conditions. In this study, a combined bio-/electro-approach to stimulate the TCE degradation by the SF culture was investigated in laboratory experiments. Column experiments were set up to compare a bioaugmentation approach with an electrochemical biostimulated bioaugmentation approach. Low strength direct current increased the amount of degraded TCE to about 150 % of the control. Through lowering the inflow concentration of oxygen, the effect of the electro-biostimulation in a low oxygen setting confirmed the potential of the bio-electro process for treatment of oxygen-deprived, TCE-contaminated sites.
Collapse
Affiliation(s)
- Steffen Hertle
- TZW:DVGW Technologiezentrum Wasser, Department Water Microbiology, Karlsruher Straße 84, 76139, Karlsruhe, Germany
| | - Nick de Boni
- TZW:DVGW Technologiezentrum Wasser, Department Water Microbiology, Karlsruher Straße 84, 76139, Karlsruhe, Germany
| | - Heico Schell
- TZW:DVGW Technologiezentrum Wasser, Department Water Microbiology, Karlsruher Straße 84, 76139, Karlsruhe, Germany
| | - Andreas Tiehm
- TZW:DVGW Technologiezentrum Wasser, Department Water Microbiology, Karlsruher Straße 84, 76139, Karlsruhe, Germany.
| |
Collapse
|
2
|
Wright CL, Lehtovirta-Morley LE. Nitrification and beyond: metabolic versatility of ammonia oxidising archaea. THE ISME JOURNAL 2023; 17:1358-1368. [PMID: 37452095 PMCID: PMC10432482 DOI: 10.1038/s41396-023-01467-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023]
Abstract
Ammonia oxidising archaea are among the most abundant living organisms on Earth and key microbial players in the global nitrogen cycle. They carry out oxidation of ammonia to nitrite, and their activity is relevant for both food security and climate change. Since their discovery nearly 20 years ago, major insights have been gained into their nitrogen and carbon metabolism, growth preferences and their mechanisms of adaptation to the environment, as well as their diversity, abundance and activity in the environment. Despite significant strides forward through the cultivation of novel organisms and omics-based approaches, there are still many knowledge gaps on their metabolism and the mechanisms which enable them to adapt to the environment. Ammonia oxidising microorganisms are typically considered metabolically streamlined and highly specialised. Here we review the physiology of ammonia oxidising archaea, with focus on aspects of metabolic versatility and regulation, and discuss these traits in the context of nitrifier ecology.
Collapse
Affiliation(s)
- Chloe L Wright
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | | |
Collapse
|
3
|
Saha M, Sarkar A, Bandyopadhyay B. Water quality assessment of East Kolkata Wetland with a special focus on bioremediation by nitrifying bacteria. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:2718-2736. [PMID: 34850689 DOI: 10.2166/wst.2021.223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
East Kolkata Wetlands (EKW) is designated as International Ramsar site and are the hotspot for large-scale wastewater aquaculture practices. However, the continued surveillance of physicochemical properties of water and application of an eco-friendly approach are essential to ensure safe aquaculture practices. In the present study, we assessed the seasonal variation in physicochemical parameters of water across EKW and investigated the role of nitrifying bacteria as probiotics. We statistically analyzed various physicochemical properties of water samples from EKW. Results of the statistical analysis indicated a significant variation in all the physicochemical parameters across the selected water bodies of EKW (p < 0.01). We isolated and enumerated Nitrosomonas sp. and Nitrobacter sp. and assessed their ability to degrade trichloroethylene (TCE). The role of Nitrosomonas sp. and Nitrobacter sp. were further investigated and established through a small-scale experiment. Two microbial isolates, NSW3 and NBW2, displayed superior TCE degradation ability at pH 5, and the application of these strains as probiotics were found to improve the quality of water and survival rate of fishes in the treated experimental tanks. Our findings suggest that the application of the above mixed bacterial cultures in aquaculture could be an effective and environment-friendly approach for safe and productive aquaculture operations.
Collapse
Affiliation(s)
- Mousumi Saha
- Department of Biotechnology, Oriental Institute of Science and Technology, Affiliated to Vidyasagar University, Dewandighi, Katwa Road, Burdwan, West Bengal 713 102, India E-mail:
| | - Agniswar Sarkar
- Department of Biotechnology, University of Burdwan, Golapbag, Bardhaman 713 104, West Bengal, India
| | - Bidyut Bandyopadhyay
- Department of Biotechnology, Oriental Institute of Science and Technology, Affiliated to Vidyasagar University, Dewandighi, Katwa Road, Burdwan, West Bengal 713 102, India E-mail:
| |
Collapse
|
4
|
Awala SI, Gwak JH, Kim YM, Kim SJ, Strazzulli A, Dunfield PF, Yoon H, Kim GJ, Rhee SK. Verrucomicrobial methanotrophs grow on diverse C3 compounds and use a homolog of particulate methane monooxygenase to oxidize acetone. ISME JOURNAL 2021; 15:3636-3647. [PMID: 34158629 PMCID: PMC8630023 DOI: 10.1038/s41396-021-01037-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 11/26/2022]
Abstract
Short-chain alkanes (SCA; C2-C4) emitted from geological sources contribute to photochemical pollution and ozone production in the atmosphere. Microorganisms that oxidize SCA and thereby mitigate their release from geothermal environments have rarely been studied. In this study, propane-oxidizing cultures could not be grown from acidic geothermal samples by enrichment on propane alone, but instead required methane addition, indicating that propane was co-oxidized by methanotrophs. “Methylacidiphilum” isolates from these enrichments did not grow on propane as a sole energy source but unexpectedly did grow on C3 compounds such as 2-propanol, acetone, and acetol. A gene cluster encoding the pathway of 2-propanol oxidation to pyruvate via acetol was upregulated during growth on 2-propanol. Surprisingly, this cluster included one of three genomic operons (pmoCAB3) encoding particulate methane monooxygenase (PMO), and several physiological tests indicated that the encoded PMO3 enzyme mediates the oxidation of acetone to acetol. Acetone-grown resting cells oxidized acetone and butanone but not methane or propane, implicating a strict substrate specificity of PMO3 to ketones instead of alkanes. Another PMO-encoding operon, pmoCAB2, was induced only in methane-grown cells, and the encoded PMO2 could be responsible for co-metabolic oxidation of propane to 2-propanol. In nature, propane probably serves primarily as a supplemental growth substrate for these bacteria when growing on methane.
Collapse
Affiliation(s)
- Samuel Imisi Awala
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Joo-Han Gwak
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Yong-Man Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - So-Jeong Kim
- Geologic Environment Research Division, Korea Institute of Geoscience and Mineral Resources, Daejeon, 34132, Republic of Korea
| | - Andrea Strazzulli
- Department of Biology, University of Naples "Federico II", Complesso Universitario Di Monte S. Angelo, Via Cupa Nuova Cinthia 21, 80126, Naples, Italy
| | - Peter F Dunfield
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Hyeokjun Yoon
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, 42 Hwangyeong-ro, Seo-gu, Incheon, 22689, Republic of Korea
| | - Geun-Joong Kim
- Department of Biological Sciences and Research Center of Ecomimetics, College of Natural Sciences, Chonnam National University, Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Sung-Keun Rhee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
5
|
Balázs HE, Schmid CAO, Cruzeiro C, Podar D, Szatmari PM, Buegger F, Hufnagel G, Radl V, Schröder P. Post-reclamation microbial diversity and functions in hexachlorocyclohexane (HCH) contaminated soil in relation to spontaneous HCH tolerant vegetation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144653. [PMID: 33550064 DOI: 10.1016/j.scitotenv.2020.144653] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/24/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
The toxicity, volatility and persistence of the obsolete organochlorine pesticide hexachlorocyclohexane (HCH), makes reclamation of contaminated areas a priority for the health and welfare of neighboring human communities. Microbial diversity and functions and their relation to spontaneous vegetation in post-excavation situations, are essential indicators to consider in bioaugmentation or microbe-assisted phytoremediation strategies at field scale. Our study aimed to evaluate the effects of long-term HCH contamination on soil and plant-associated microbial communities, and whether contaminated soil has the potential to act as a bacterial inoculum in post-excavation bioremediation strategies. To scrutinize the role of vegetation, the potential nitrogen fixation of free-living and symbiotic diazotrophs of the legume Lotus tenuis was assessed as a measure of nutrient cycling functions in soil under HCH contamination. Potential nitrogen fixation was generally not affected by HCH, with the exception of lower nifH gene counts in excavated contaminated rhizospheres, most probably a short-term HCH effect on early bacterial succession in this compartment. HCH shaped microbial communities in long-term contaminated bulk soil, where we identified possible HCH tolerants such as Sphingomonas and Altererythrobacter. In L. tenuis rhizosphere, microbial community composition was additionally influenced by plant growth stage. Sphingobium and Massilia were the bacterial genera characteristic for HCH contaminated rhizospheres. Long-term HCH contamination negatively affected L. tenuis growth and development. However, root-associated bacterial community composition was driven solely by plant age, with negligible HCH effect. Results showed that L. tenuis acquired possible HCH tolerant bacteria such as the Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium clade, Sphingomonas, Massilia or Pantoea which could simultaneously offer plant growth promoting (PGP) benefits for the host. Finally, we identified an inoculum with possibly HCH tolerant, PGP bacteria transferred from the contaminated bulk soil to L. tenuis roots through the rhizosphere compartment, consisting of Mesorhizobium loti, Neorhizobium galegae, Novosphingobium lindaniclasticum, Pantoea agglomerans and Lysobacter bugurensis.
Collapse
Affiliation(s)
- Helga E Balázs
- Helmholtz Zentrum München GmbH, Research Unit for Comparative Microbiome Analysis, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; Babeş-Bolyai University, Department of Taxonomy and Ecology, 1 Kogălniceanu St., 400084 Cluj-Napoca, Romania
| | - Christoph A O Schmid
- Helmholtz Zentrum München GmbH, Research Unit for Comparative Microbiome Analysis, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Catarina Cruzeiro
- Helmholtz Zentrum München GmbH, Research Unit for Comparative Microbiome Analysis, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| | - Dorina Podar
- Babeş-Bolyai University, Department of Molecular Biology and Biotechnology, 1 Kogălniceanu St., 400084 Cluj-Napoca, Romania.
| | - Paul-Marian Szatmari
- Babeş-Bolyai University, Department of Taxonomy and Ecology, 1 Kogălniceanu St., 400084 Cluj-Napoca, Romania; Biological Research Center, Botanical Garden "Vasile Fati", 16 Wesselényi Miklós St., 455200 Jibou, Romania
| | - Franz Buegger
- Helmholtz Zentrum München GmbH, Research Unit for Biochemical Plant Pathology, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| | - Gudrun Hufnagel
- Helmholtz Zentrum München GmbH, Research Unit for Comparative Microbiome Analysis, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| | - Viviane Radl
- Helmholtz Zentrum München GmbH, Research Unit for Comparative Microbiome Analysis, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| | - Peter Schröder
- Helmholtz Zentrum München GmbH, Research Unit for Comparative Microbiome Analysis, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| |
Collapse
|
6
|
Ebrahimbabaie P, Pichtel J. Biotechnology and nanotechnology for remediation of chlorinated volatile organic compounds: current perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:7710-7741. [PMID: 33403642 DOI: 10.1007/s11356-020-11598-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Chlorinated volatile organic compounds (CVOCs) are persistent organic pollutants which are harmful to public health and the environment. Many CVOCs occur in substantial quantities in groundwater and soil, even though their use has been more carefully managed and restricted in recent years. This review summarizes recent data on several innovative treatment solutions for CVOC-affected media including bioremediation, phytoremediation, nanoscale zero-valent iron (nZVI)-based reductive dehalogenation, and photooxidation. There is no optimally developed single technology; therefore, the possibility of using combined technologies for CVOC remediation, for example bioremediation integrated with reduction by nZVI, is presented. Some methods are still in the development stage. Advantages and disadvantages of each treatment strategy are provided. It is hoped that this paper can provide a basic framework for selection of successful CVOC remediation strategies.
Collapse
Affiliation(s)
- Parisa Ebrahimbabaie
- Department of Environment, Geology, and Natural Resources, Ball State University, Muncie, IN, 47306, USA
| | - John Pichtel
- Department of Environment, Geology, and Natural Resources, Ball State University, Muncie, IN, 47306, USA.
| |
Collapse
|
7
|
Cai P, Ning Z, Liu Y, He Z, Shi J, Niu M. Diagnosing bioremediation of crude oil-contaminated soil and related geochemical processes at the field scale through microbial community and functional genes. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01580-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Abstract
Purpose
Bioremediation is widely considered the most desirable procedure for remediation of oil-contaminated soil. Few studies have focused on the relationships among microbial community, functional genes of biodegradation, and geochemical processes during field bioremediation, which provide crucial information for bioremediation.
Methods
In the current study, the microbial community and functional genes related to hydrocarbon and nitrogen metabolism, combined with the soil physico-chemical properties, were used to diagnose a set of bioremediation experiments, including bioaugmentation, biostimulation, and phytoremediation, at the field scale.
Result
The results showed that the added nutrients stimulated a variety of microorganisms, including hydrocarbon degradation bacteria and nitrogen metabolism microorganisms. The functional genes reflected the possibility of aerobic denitrification in the field, which may be helpful in biodegradation. Biostimulation was found to be the most suitable of the studied bioremediation methods in the field.
Conclusion
We offer a feasible approach to obtain useful bioremediation information and assist with the development of appropriate remediation procedures. The findings improve our knowledge of the interactions between microorganisms and edaphic parameters.
Collapse
|
8
|
Wright CL, Schatteman A, Crombie AT, Murrell JC, Lehtovirta-Morley LE. Inhibition of Ammonia Monooxygenase from Ammonia-Oxidizing Archaea by Linear and Aromatic Alkynes. Appl Environ Microbiol 2020; 86:e02388-19. [PMID: 32086308 PMCID: PMC7170481 DOI: 10.1128/aem.02388-19] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/15/2020] [Indexed: 01/20/2023] Open
Abstract
Ammonia monooxygenase (AMO) is a key nitrogen-transforming enzyme belonging to the same copper-dependent membrane monooxygenase family (CuMMO) as the particulate methane monooxygenase (pMMO). The AMO from ammonia-oxidizing archaea (AOA) is very divergent from both the AMO of ammonia-oxidizing bacteria (AOB) and the pMMO from methanotrophs, and little is known about the structure or substrate range of the archaeal AMO. This study compares inhibition by C2 to C8 linear 1-alkynes of AMO from two phylogenetically distinct strains of AOA, "Candidatus Nitrosocosmicus franklandus" C13 and "Candidatus Nitrosotalea sinensis" Nd2, with AMO from Nitrosomonas europaea and pMMO from Methylococcus capsulatus (Bath). An increased sensitivity of the archaeal AMO to short-chain-length alkynes (≤C5) appeared to be conserved across AOA lineages. Similarities in C2 to C8 alkyne inhibition profiles between AMO from AOA and pMMO from M. capsulatus suggested that the archaeal AMO has a narrower substrate range than N. europaea AMO. Inhibition of AMO from "Ca Nitrosocosmicus franklandus" and N. europaea by the aromatic alkyne phenylacetylene was also investigated. Kinetic data revealed that the mechanisms by which phenylacetylene inhibits "Ca Nitrosocosmicus franklandus" and N. europaea are different, indicating differences in the AMO active site between AOA and AOB. Phenylacetylene was found to be a specific and irreversible inhibitor of AMO from "Ca Nitrosocosmicus franklandus," and it does not compete with NH3 for binding at the active site.IMPORTANCE Archaeal and bacterial ammonia oxidizers (AOA and AOB, respectively) initiate nitrification by oxidizing ammonia to hydroxylamine, a reaction catalyzed by ammonia monooxygenase (AMO). AMO enzyme is difficult to purify in its active form, and its structure and biochemistry remain largely unexplored. The bacterial AMO and the closely related particulate methane monooxygenase (pMMO) have a broad range of hydrocarbon cooxidation substrates. This study provides insights into the AMO of previously unstudied archaeal genera, by comparing the response of the archaeal AMO, a bacterial AMO, and pMMO to inhibition by linear 1-alkynes and the aromatic alkyne, phenylacetylene. Reduced sensitivity to inhibition by larger alkynes suggests that the archaeal AMO has a narrower hydrocarbon substrate range than the bacterial AMO, as previously reported for other genera of AOA. Phenylacetylene inhibited the archaeal and bacterial AMOs at different thresholds and by different mechanisms of inhibition, highlighting structural differences between the two forms of monooxygenase.
Collapse
Affiliation(s)
- Chloë L Wright
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Arne Schatteman
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Andrew T Crombie
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - J Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| | | |
Collapse
|
9
|
Gafni A, Gelman F, Ronen Z, Bernstein A. Variable carbon and chlorine isotope fractionation in TCE co-metabolic oxidation. CHEMOSPHERE 2020; 242:125130. [PMID: 31669996 DOI: 10.1016/j.chemosphere.2019.125130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/12/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Identifying co-metabolic TCE oxidation in polluted groundwater is challenging due to lack of indicative by-products. This challenge may theoretically be resolved if the oxidation process can be characterized by a distinct dual isotope enrichment. In this work, we aimed to explore the carbon and chlorine isotope effects associated with TCE oxidation by a variety of oxygenases. These included pure strains and enrichment cultures of methane, toluene and ammonia oxidizers, as well as experiments with crude extracts. Isotope effects determined for TCE oxidation by toluene and ammonia oxidizers were mostly in line with expected values for epoxidation mechanism (ϵ13C -11.0 ± 0.7 to -24.8 ± 0.2‰ and ϵ37Cl +0.9 ± 0.5 to +1.0 ± 0.4‰), whereas, the methanotrophs resulted in distinctively different isotope effects (ϵ13C -2.4 ± 0.4 to -3.4 ± 0.8‰ and ϵ37Cl -1.8 ± 0.2 to -2.9 ± 0.9‰). It is suggested that in TCE oxidation by methanotrophs, substrate binding rather than bond cleavage is rate limiting, leading to this unexpected isotope effect. On the environmental level, our results imply that the oxidative process can be differentiated if catalyzed by toluene and ammonia oxidizers or by methanotrophs. Additionally, the oxidative process can be distinguished from the reductive one. However, using dual isotope analysis in the field may result in an under-estimation of the overall co-metabolic process if methanotrophs are to be excluded due to low isotope effects.
Collapse
Affiliation(s)
- Almog Gafni
- Zuckerberg Institute for Water Research, Department of Environmental Hydrology and Microbiology, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Faina Gelman
- Geological Survey of Israel, 32 Yesha'ayahu Leibowitz St, Jerusalem, 9692100, Israel
| | - Zeev Ronen
- Zuckerberg Institute for Water Research, Department of Environmental Hydrology and Microbiology, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Anat Bernstein
- Zuckerberg Institute for Water Research, Department of Environmental Hydrology and Microbiology, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel.
| |
Collapse
|
10
|
Ampicillin biotransformation by a nitrifying consortium. World J Microbiol Biotechnol 2020; 36:21. [DOI: 10.1007/s11274-020-2798-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/07/2020] [Indexed: 10/25/2022]
|
11
|
Reid T, Droppo IG, Weisener CG. Tracking functional bacterial biomarkers in response to a gradient of contaminant exposure within a river continuum. WATER RESEARCH 2020; 168:115167. [PMID: 31639591 DOI: 10.1016/j.watres.2019.115167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/11/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Within all aquatic environments, aside from the physical dispersal of dissolved and/or particulate phase contaminants, alteration from both biological and chemical processes are shown to change the chemistry of the parent compounds. Often these alterations can lead to secondary influences because of cooperative microbial processes (i.e. coupled respiratory pathways and/or energy and biodegradation cycles), complicating our understanding of the biological impact that these mobile compounds impose on ecosystem health. The McMurray Formation (MF) (the formation constituting the minable bituminous oil sands) is a natural, ongoing source of hydrocarbon-bound sediments to river ecosystems in the region (via terrestrial and aquatic erosion), providing a natural "mesocosm" to track and characterize the effects of these compounds on regional aquatic primary productivity. Here we characterize the natural, in-situ microbial response to increasing hydrocarbon exposure along a river continuum in the downstream direction. Using the Steepbank River (STB), suspended and bed sediment samples were collected at 3 sites from upstream to downstream, as the water flows into and through the MF. Samples were then analyzed for the active, in-situ gene expression of the microbial communities. Results from both suspended and bed sediments show clear and significant shifts in the microbial metabolic processes within each respective compartment, in response to the elevated polycyclic aromatic compound (PAC) concentrations. Specific genes likely responsible for hydrocarbon breakdown (Alkane Monooxygenase, Benzoyl-CoA Reductase etc.) experience elevated expression levels, while certain energy metabolism genes (nitrogen, sulfur, methane) reveal fundamental shifts in their pathway specificity, indicating an adaptation response in their basic energy metabolism. Expression from suspended sediments reveal subtle yet delayed metabolic response further downstream compared to bed sediments, indicative of the erosion and transport dynamics within a lotic system. These results provide insight into the use of novel clusters of gene biomarkers to track the active, in-situ microbial response of both emerging and legacy contaminants. Such information will be important in determining the best management strategies for the monitoring and assessment of aquatic health in both natural and contaminated ecosystems.
Collapse
Affiliation(s)
- T Reid
- Environment and Climate Change Canada, 867 Lakeshore Rd., Burlington, Ontario, L7S 1A1, Canada.
| | - I G Droppo
- Environment and Climate Change Canada, 867 Lakeshore Rd., Burlington, Ontario, L7S 1A1, Canada
| | - C G Weisener
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Ave, Windsor, Ontario, N9B 3P4, Canada
| |
Collapse
|
12
|
Gaza S, Schmidt KR, Weigold P, Heidinger M, Tiehm A. Aerobic metabolic trichloroethene biodegradation under field-relevant conditions. WATER RESEARCH 2019; 151:343-348. [PMID: 30616046 DOI: 10.1016/j.watres.2018.12.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 12/01/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Chloroethenes belong to the most widely distributed groundwater contaminants. Since 2014, it has been known that trichloroethene (TCE) can be degraded aerobically and metabolically as growth substrate by a mixed bacterial enrichment culture (named SF culture). In this study, the degradation capabilities under a range of field-relevant conditions were investigated in fixed-bed reactors as well as in batch experiments. Aerobic metabolic TCE degradation was stable over the long term, with degradation optima at 22 °C and pH 7. Degradation of up to 400 μM TCE was observed. The longest starvation period after which degradation of TCE was regained was 112 days. The possible co-contaminants perchloroethene, trans-1,2-dichloroethene, and cis-1,2-dichloroethene did not inhibit TCE degradation, even though they were not degraded themselves. The presence of equimolar amounts of 1,1-dichloroethene and vinyl chloride inhibited TCE degradation. Experiments with groundwater from different chloroethene-contaminated field sites proved the potential of the SF culture for bioaugmentation. Thus, aerobic metabolic TCE degradation should be considered as a promising method for the bioremediation of field sites with TCE as the main contaminant.
Collapse
Affiliation(s)
- Sarah Gaza
- Department of Environmental Biotechnology, Water Technology Center, Karlsruher Str. 84, 76139, Karlsruhe, Germany
| | - Kathrin R Schmidt
- Department of Environmental Biotechnology, Water Technology Center, Karlsruher Str. 84, 76139, Karlsruhe, Germany
| | - Pascal Weigold
- Department of Environmental Biotechnology, Water Technology Center, Karlsruher Str. 84, 76139, Karlsruhe, Germany
| | | | - Andreas Tiehm
- Department of Environmental Biotechnology, Water Technology Center, Karlsruher Str. 84, 76139, Karlsruhe, Germany.
| |
Collapse
|
13
|
Zhang Y, Xue J, Liu Y, Gamal El-Din M. The role of ozone pretreatment on optimization of membrane bioreactor for treatment of oil sands process-affected water. JOURNAL OF HAZARDOUS MATERIALS 2018; 347:470-477. [PMID: 29367155 DOI: 10.1016/j.jhazmat.2017.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 12/02/2017] [Accepted: 12/05/2017] [Indexed: 06/07/2023]
Abstract
Previously, anoxic-aerobic membrane bioreactor (MBR) coupled with mild ozonation pretreatment has been applied to remove toxic naphthenic acids (NAs) in oil sands process-affected water (OSPW). To further improve MBR performance, the optimal operation conditions including hydraulic retention time (HRT) and initial ammonia nitrogen (NH4+-N) need to be explored. In this study, the role of ozone pretreatment on MBR optimization was investigated. Compared with MBR treating raw OSPW, MBR treating ozonated OSPW had the same optimal operation conditions (HRT of 12 h and NH4+-N concentration of 25 mg/L). Nevertheless, MBR performance benefited from HRT adjustment more after ozone pretreatment. HRT adjustment resulted in NA removal in the range of 33-50% for the treatment of ozonated OSPW whereas NA removal for raw OSPW only fluctuated between 27% and 38%. Compared with the removal of classical NAs, the degradation of oxidized NAs was more sensitive to the adjustment of operation conditions. Adjusting HRT increased the removal of oxidized NAs in ozonated OSPW substantially (from 6% to 35%). It was also noticed that microbial communities in MBR treating ozonated OSPW were more responsive to the adjustment of operation conditions as indicated by the noticeable increase of Shannon index and extended genetic distances.
Collapse
Affiliation(s)
- Yanyan Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada; Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, United States
| | - Jinkai Xue
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| |
Collapse
|
14
|
Treatment of raw and ozonated oil sands process-affected water under decoupled denitrifying anoxic and nitrifying aerobic conditions: a comparative study. Biodegradation 2016; 27:247-264. [PMID: 27558502 DOI: 10.1007/s10532-016-9770-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/18/2016] [Indexed: 10/21/2022]
Abstract
Batch experiments were performed to evaluate biodegradation of raw and ozonated oil sands process-affected water (OSPW) under denitrifying anoxic and nitrifying aerobic conditions for 33 days. The results showed both the anoxic and aerobic conditions are effective in degrading OSPW classical and oxidized naphthenic acids (NAs) with the aerobic conditions demonstrating higher removal efficiency. The reactors under nitrifying aerobic condition reduced the total classical NAs of raw OSPW by 69.1 %, with better efficiency for species of higher hydrophobicity. Compared with conventional aerobic reactor, nitrifying aerobic condition substantially shortened the NA degradation half-life to 16 days. The mild-dose ozonation remarkably accelerated the subsequent aerobic biodegradation of classical NAs within the first 14 days, especially for those with long carbon chains. Moreover, the ozone pretreatment enhanced the biological removal of OSPW classical NAs by leaving a considerably lower final residual concentration of 10.4 mg/L under anoxic conditions, and 5.7 mg/L under aerobic conditions. The combination of ozonation and nitrifying aerobic biodegradation removed total classical NAs by 76.5 % and total oxy-NAs (O3-O6) by 23.6 %. 454 Pyrosequencing revealed that microbial species capable of degrading recalcitrant hydrocarbons were dominant in all reactors. The most abundant genus in the raw and ozonated anoxic reactors was Thauera (~56 % in the raw OSPW anoxic reactor, and ~65 % in the ozonated OSPW anoxic reactor); whereas Rhodanobacter (~40 %) and Pseudomonas (~40 %) dominated the raw and ozonated aerobic reactors, respectively. Therefore, the combination of mild-dose ozone pretreatment and subsequent biological process could be a competent choice for OSPW treatment.
Collapse
|
15
|
Li F, Jiang B, Nastold P, Kolvenbach BA, Chen J, Wang L, Guo H, Corvini PFX, Ji R. Enhanced transformation of tetrabromobisphenol a by nitrifiers in nitrifying activated sludge. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:4283-4292. [PMID: 25754048 DOI: 10.1021/es5059007] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The fate of the most commonly used brominated flame retardant, tetrabromobisphenol A (TBBPA), in wastewater treatment plants is obscure. Using a (14)C-tracer, we studied TBBPA transformation in nitrifying activated sludge (NAS). During the 31-day incubation, TBBPA transformation (half-life 10.3 days) was accompanied by mineralization (17% of initial TBBPA). Twelve metabolites, including those with single benzene ring, O-methyl TBBPA ether, and nitro compounds, were identified. When allylthiourea was added to the sludge to completely inhibit nitrification, TBBPA transformation was significantly reduced (half-life 28.9 days), formation of the polar and single-ring metabolites stopped, but O-methylation was not significantly affected. Abiotic experiments confirmed the generation of mono- and dinitro-brominated forms of bisphenol A in NAS by the abiotic nitration of TBBPA by nitrite, a product of ammonia-oxidizing microorganisms (AOMs). Three biotic (type II ipso-substitution, oxidative skeletal cleavage, and O-methylation) and one abiotic (nitro-debromination) pathways were proposed for TBBPA transformation in NAS. Apart from O-methylation, AOMs were involved in three other pathways. Our results are the first to provide information about the complex metabolism of TBBPA in NAS, and they are consistent with a determining role for nitrifiers in TBBPA degradation by initiating its cleavage into single-ring metabolites that are substrates for the growth of heterotrophic bacteria.
Collapse
Affiliation(s)
- Fangjie Li
- †State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, 210023 Nanjing, China
| | - Bingqi Jiang
- ‡Fujian Provincial Academy of Environmental Science, No. 10, Huan Bei San Cun, Fuzhou 350013, China
| | - Peter Nastold
- §Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Gründenstrasse 40, Muttenz CH-4132, Switzerland
| | - Boris Alexander Kolvenbach
- §Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Gründenstrasse 40, Muttenz CH-4132, Switzerland
| | - Jianqiu Chen
- ∥Department of Environmental Science, China Pharmaceutical University, Tongjia Alley 24, 210009 Nanjing, China
| | - Lianhong Wang
- †State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, 210023 Nanjing, China
| | - Hongyan Guo
- †State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, 210023 Nanjing, China
| | - Philippe François-Xavier Corvini
- †State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, 210023 Nanjing, China
- §Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Gründenstrasse 40, Muttenz CH-4132, Switzerland
| | - Rong Ji
- †State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, 210023 Nanjing, China
| |
Collapse
|
16
|
Frascari D, Zanaroli G, Danko AS. In situ aerobic cometabolism of chlorinated solvents: a review. JOURNAL OF HAZARDOUS MATERIALS 2014; 283:382-399. [PMID: 25306537 DOI: 10.1016/j.jhazmat.2014.09.041] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 06/04/2023]
Abstract
The possible approaches for in situ aerobic cometabolism of aquifers and vadose zones contaminated by chlorinated solvents are critically evaluated. Bioaugmentation of resting-cells previously grown in a fermenter and in-well addition of oxygen and growth substrate appear to be the most promising approaches for aquifer bioremediation. Other solutions involving the sparging of air lead to satisfactory pollutant removals, but must be integrated by the extraction and subsequent treatment of vapors to avoid the dispersion of volatile chlorinated solvents in the atmosphere. Cometabolic bioventing is the only possible approach for the aerobic cometabolic bioremediation of the vadose zone. The examined studies indicate that in situ aerobic cometabolism leads to the biodegradation of a wide range of chlorinated solvents within remediation times that vary between 1 and 17 months. Numerous studies include a simulation of the experimental field data. The modeling of the process attained a high reliability, and represents a crucial tool for the elaboration of field data obtained in pilot tests and for the design of the full-scale systems. Further research is needed to attain higher concentrations of chlorinated solvent degrading microbes and more reliable cost estimates. Lastly, a procedure for the design of full-scale in situ aerobic cometabolic bioremediation processes is proposed.
Collapse
Affiliation(s)
- Dario Frascari
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| | - Giulio Zanaroli
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| | - Anthony S Danko
- Geo-Environmental and Resources Research Center, Department of Mining Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; Centre for Natural Resources and the Environment (CERENA), Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
17
|
Schmidt KR, Gaza S, Voropaev A, Ertl S, Tiehm A. Aerobic biodegradation of trichloroethene without auxiliary substrates. WATER RESEARCH 2014; 59:112-118. [PMID: 24793109 DOI: 10.1016/j.watres.2014.04.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 03/18/2014] [Accepted: 04/06/2014] [Indexed: 06/03/2023]
Abstract
Trichloroethene (TCE) represents a priority pollutant and is among the most frequently detected contaminants in groundwater. The current bioremediation measures have certain drawbacks like e.g. the need for auxiliary substrates. Here, the aerobic biodegradation of TCE as the sole growth substrate is demonstrated. This new process of metabolic TCE degradation was first detected in groundwater samples. TCE degradation was stable in an enriched mixed bacterial culture in mineral salts medium for over five years and repeated transfers of the culture resulting in a 10(10) times dilution of the original groundwater. Aerobic TCE degradation resulted in stoichiometric chloride formation. Stable carbon isotope fractionation was observed providing a reliable analytical tool to assess this new biodegradation process at field sites. The results suggest that aerobic biodegradation of TCE without auxiliary substrate could be considered as an option for natural attenuation or engineered bioremediation of contaminated sites.
Collapse
Affiliation(s)
- Kathrin R Schmidt
- Department of Environmental Biotechnology, Water Technology Center, Karlsruher Str. 84, 76139 Karlsruhe, Germany
| | - Sarah Gaza
- Department of Environmental Biotechnology, Water Technology Center, Karlsruher Str. 84, 76139 Karlsruhe, Germany
| | - Andrey Voropaev
- Hydroisotop GmbH, Woelkestr. 9, 85301 Schweitenkirchen, Germany
| | - Siegmund Ertl
- Hydroisotop GmbH, Woelkestr. 9, 85301 Schweitenkirchen, Germany
| | - Andreas Tiehm
- Department of Environmental Biotechnology, Water Technology Center, Karlsruher Str. 84, 76139 Karlsruhe, Germany.
| |
Collapse
|
18
|
Fischer K, Majewsky M. Cometabolic degradation of organic wastewater micropollutants by activated sludge and sludge-inherent microorganisms. Appl Microbiol Biotechnol 2014; 98:6583-97. [PMID: 24866947 DOI: 10.1007/s00253-014-5826-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/10/2014] [Accepted: 05/13/2014] [Indexed: 11/30/2022]
Abstract
Municipal wastewaters contain a multitude of organic trace pollutants. Often, their biodegradability by activated sludge microorganisms is decisive for their elimination during wastewater treatment. Since the amounts of micropollutants seem too low to serve as growth substrate, cometabolism is supposed to be the dominating biodegradation process. Nevertheless, as many biodegradation studies were performed without the intention to discriminate between metabolic and cometabolic processes, the specific contribution of the latter to substance transformations is often not clarified. This minireview summarizes current knowledge about the cometabolic degradation of organic trace pollutants by activated sludge and sludge-inherent microorganisms. Due to their relevance for communal wastewater contamination, the focus is laid on pharmaceuticals, personal care products, antibiotics, estrogens, and nonylphenols. Wherever possible, reference is made to the molecular process level, i.e., cometabolic pathways, involved enzymes, and formed transformation products. Particular cometabolic capabilities of different activated sludge consortia and various microbial species are highlighted. Process conditions favoring cometabolic activities are emphasized. Finally, knowledge gaps are identified, and research perspectives are outlined.
Collapse
Affiliation(s)
- Klaus Fischer
- Department of Analytical and Ecological Chemistry, University of Trier, Behringstr. 21, 54296, Trier, Germany,
| | | |
Collapse
|
19
|
Kjeldal H, Pell L, Pommerening-Röser A, Nielsen JL. Influence of p-cresol on the proteome of the autotrophic nitrifying bacterium Nitrosomonas eutropha C91. Arch Microbiol 2014; 196:497-511. [PMID: 24777776 DOI: 10.1007/s00203-014-0985-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/04/2014] [Accepted: 04/09/2014] [Indexed: 12/22/2022]
Abstract
In this study, the effect of the organic micropollutant and known inhibitor of nitrification, p-cresol, was investigated on the metabolism of the ammonia oxidizing bacteria (AOB) Nitrosomonas eutropha C91 using MS-based quantitative proteomics. Several studies have demonstrated that AOB are capable of biotransforming a wide variety of aromatic compounds making them suitable candidates for bioremediation, yet the underlying molecular mechanisms are poorly described. The effect of two different concentrations of the aromatic micropollutant p-cresol (1 and 10 mg L(-1)) on the metabolism of N. eutropha C91, relative to a p-cresol absent control, was investigated. Though the rate of nitrification in N. eutropha C91 appeared essentially unaffected at both concentrations of p-cresol relative to the control, the expressional pattern of the proteins of N. eutropha C91 changed significantly. The presence of p-cresol resulted in the repressed expression of several key proteins related to N-metabolism, seemingly impairing energy production in N. eutropha C91, contradicting the observed unaltered rates of nitrification. However, the expression of proteins of the TCA cycle and proteins related to xenobiotic degradation, including a p-cresol dehydrogenase, was found to be stimulated by the presence of p-cresol. This indicates that N. eutropha C91 is capable of degrading p-cresol and that it assimilates degradation intermediates into the TCA cycle. The results reveal a pathway for p-cresol degradation and subsequent entry point in the TCA cycle in N. eutropha C91. The obtained data indicate that mixotrophy, rather than cometabolism, is the major mechanism behind p-cresol degradation in N. eutropha C91.
Collapse
Affiliation(s)
- H Kjeldal
- Departments of Biotechnology, Chemistry and Environmental Engineering, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | | | | | | |
Collapse
|
20
|
Lee DG, Chu KH. Effects of growth substrate on triclosan biodegradation potential of oxygenase-expressing bacteria. CHEMOSPHERE 2013; 93:1904-1911. [PMID: 23890965 DOI: 10.1016/j.chemosphere.2013.06.069] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 06/10/2013] [Accepted: 06/24/2013] [Indexed: 06/02/2023]
Abstract
Triclosan is an antimicrobial agent, an endocrine disrupting compound, and an emerging contaminant in the environment. This is the first study investigating triclosan biodegradation potential of four oxygenase-expressing bacteria: Rhodococcus jostii RHA1, Mycobacterium vaccae JOB5, Rhodococcus ruber ENV425, and Burkholderia xenovorans LB400. B. xenovorans LB400 and R. ruber ENV425 were unable to degrade triclosan. Propane-grown M. vaccae JOB5 can completely degrade triclosan (5 mg L(-1)). R. jostii RHA1 grown on biphenyl, propane, and LB medium with dicyclopropylketone (DCPK), an alkane monooxygenase inducer, was able to degrade the added triclosan (5 mg L(-1)) to different extents. Incomplete degradation of triclosan by RHA1 is probably due to triclosan product toxicity. The highest triclosan transformation capacity (Tc, defined as the amount of triclosan degraded/the number of cells inactivated; 5.63×10(-3) ng triclosan/16S rRNA gene copies) was observed for biphenyl-grown RHA1 and the lowest Tc (0.20×10(-3) ng-triclosan/16S rRNA gene copies) was observed for propane-grown RHA1. No triclosan degradation metabolites were detected during triclosan degradation by propane- and LB+DCPK-grown RHA1. When using biphenyl-grown RHA1 for degradation, four chlorinated metabolites (2,4-dichlorophenol, monohydroxy-triclosan, dihydroxy-triclosan, and 2-chlorohydroquinone (a new triclosan metabolite)) were detected. Based on the detected metabolites, a meta-cleavage pathway was proposed for triclosan degradation.
Collapse
Affiliation(s)
- Do Gyun Lee
- Zachry Department of Civil Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| | | |
Collapse
|
21
|
A potentiometric flow biosensor based on ammonia-oxidizing bacteria for the detection of toxicity in water. SENSORS 2013; 13:6936-45. [PMID: 23708274 PMCID: PMC3715250 DOI: 10.3390/s130606936] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 05/17/2013] [Accepted: 05/20/2013] [Indexed: 11/17/2022]
Abstract
A flow biosensor for the detection of toxicity in water using the ammonia-oxidizing bacterium (AOB) Nitrosomonas europaea as a bioreceptor and a polymeric membrane ammonium-selective electrode as a transducer is described. The system is based on the inhibition effects of toxicants on the activity of AOB, which can be evaluated by measuring the ammonium consumption rates with the ammonium-selective membrane electrode. The AOB cells are immobilized on polyethersulfone membranes packed in a holder, while the membrane electrode is placed downstream in the flow cell. Two specific inhibitors of the ammonia oxidation—allylthiourea and thioacetamide—have been tested. The IC50 values defined as the concentration of an inhibitor causing a 50% reduction in the ammonia oxidation activity have been measured as 0.17 μM and 0.46 μM for allylthiourea and thioacetamide, respectively. The proposed sensor offers advantages of simplicity, speed and high sensitivity for measuring toxicity in water.
Collapse
|
22
|
Kinetic and Physiological Evaluation of Ammonium and Nitrite Oxidation Processes in Presence of 2-Chlorophenol. Appl Biochem Biotechnol 2013; 169:990-1000. [DOI: 10.1007/s12010-012-0065-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 12/26/2012] [Indexed: 10/27/2022]
|
23
|
Yan D, Wang Q, Mao L, Li W, Xie H, Guo M, Cao A. Quantification of the effects of various soil fumigation treatments on nitrogen mineralization and nitrification in laboratory incubation and field studies. CHEMOSPHERE 2013; 90:1210-1215. [PMID: 23062947 DOI: 10.1016/j.chemosphere.2012.09.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 08/31/2012] [Accepted: 09/12/2012] [Indexed: 06/01/2023]
Abstract
Better quantification of nitrogen mineralization and nitrification after fumigation would indicate if any adjustment is needed in fertilizer application. The effects of chloropicrin (Pic), 1,3-dichloropropene (1,3-D), dimethyl disulfide (DMDS) and metham sodium (MS) fumigation on soil nitrogen dynamics were evaluated in lab incubation and field studies. Although some differences were observed in NH(4)(+)-N and NO(3)(-)-N concentrations in lab incubation and field experiments, both studies led to the same conclusions: (1) Soil fumigation was shown to increase soil mineral nitrogen only during the first 2 weeks after fumigation (WAF). In particular, Pic significantly increased soil mineral nitrogen in both studies at 1 WAF. However, for all fumigant treatments the observed effect was temporary; the soil mineral content of treated samples recovered to the general level observed in the untreated control. (2) All the fumigation treatments depressed nitrification temporarily, although the treatments exhibited significant differences in the duration of nitrification inhibition. In both studies, for a limited period of time, Pic showed a stronger inhibitory effect on nitrification compared to other fumigant treatments. An S-shaped function was fitted to the concentrations of NO(3)(-)-N in lab incubation samples. The times of maximum nitrification (t(max)) in DMDS and MS treatments were 0.97 week and 1.03 week, which is similar to the untreated control (t(max)=1.02 week). While Pic has the longest effect on nitrifying bacteria, nitrification appears to restart at a later time (t(max)=14.37 week).
Collapse
Affiliation(s)
- Dongdong Yan
- Department of Pesticides, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
24
|
Tiehm A, Schmidt KR. Sequential anaerobic/aerobic biodegradation of chloroethenes—aspects of field application. Curr Opin Biotechnol 2011; 22:415-21. [DOI: 10.1016/j.copbio.2011.02.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 02/02/2011] [Accepted: 02/03/2011] [Indexed: 10/18/2022]
|