1
|
Moenaert A, Bjornsdottir B, Haraldsson EB, Allahgholi L, Zieri A, Zangl I, Sigurðardóttir S, Örlygsson J, Nordberg Karlsson E, Friðjónsson ÓH, Hreggviðsson GÓ. Metabolic engineering of Thermoanaerobacterium AK17 for increased ethanol production in seaweed hydrolysate. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:135. [PMID: 37697400 PMCID: PMC10496261 DOI: 10.1186/s13068-023-02388-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023]
Abstract
Sustainably produced renewable biomass has the potential to replace fossil-based feedstocks, for generation of biobased fuels and chemicals of industrial interest, in biorefineries. In this context, seaweeds contain a large fraction of carbohydrates that are a promising source for enzymatic and/or microbial biorefinery conversions. The thermoanaerobe Thermoanaerobacterium AK17 is a versatile fermentative bacterium producing ethanol, acetate and lactate from various sugars. In this study, strain AK17 was engineered for more efficient production of ethanol by knocking out the lactate and acetate side-product pathways. This was successfully achieved, but the strain reverted to acetate production by recruiting enzymes from the butyrate pathway. Subsequently this pathway was knocked out and the resultant strain AK17_M6 could produce ethanol close to the maximum theoretical yield (90%), leading to a 1.5-fold increase in production compared to the wild-type strain. Strain AK17 was also shown to successfully ferment brown seaweed hydrolysate from Laminaria digitata to ethanol in a comparatively high yield of 0.45 g/g substrate, with the primary carbon sources for the fermentations being mannitol, laminarin-derived glucose and short laminari-oligosaccharides. As strain AK17 was successfully engineered and has a wide carbohydrate utilization range that includes mannitol from brown seaweed, as well as hexoses and pentoses found in both seaweeds and lignocellulose, the new strain AK17_M6 obtained in this study is an interesting candidate for production of ethanol from both second and third generations biomass.
Collapse
Affiliation(s)
- Antoine Moenaert
- Department of Biotechnology, Matís Ohf, Reykjavík, Iceland.
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland.
| | | | - Einar Baldvin Haraldsson
- Department of Biotechnology, Matís Ohf, Reykjavík, Iceland
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| | - Leila Allahgholi
- Biotechnology, Department of Chemistry, Lund University, Lund, Sweden
| | - Anna Zieri
- IMC University of Applied Sciences Krems, Krems, Austria
| | - Isabella Zangl
- IMC University of Applied Sciences Krems, Krems, Austria
| | | | - Jóhann Örlygsson
- Faculty of Natural Resource Sciences, University of Akureyri, Akureyri, Iceland
| | | | - Ólafur H Friðjónsson
- Department of Biotechnology, Matís Ohf, Reykjavík, Iceland
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| | - Guðmundur Óli Hreggviðsson
- Department of Biotechnology, Matís Ohf, Reykjavík, Iceland
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| |
Collapse
|
2
|
Bioethanol Production from Lignocellulosic Biomass-Challenges and Solutions. Molecules 2022; 27:molecules27248717. [PMID: 36557852 PMCID: PMC9785513 DOI: 10.3390/molecules27248717] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Regarding the limited resources for fossil fuels and increasing global energy demands, greenhouse gas emissions, and climate change, there is a need to find alternative energy sources that are sustainable, environmentally friendly, renewable, and economically viable. In the last several decades, interest in second-generation bioethanol production from non-food lignocellulosic biomass in the form of organic residues rapidly increased because of its abundance, renewability, and low cost. Bioethanol production fits into the strategy of a circular economy and zero waste plans, and using ethanol as an alternative fuel gives the world economy a chance to become independent of the petrochemical industry, providing energy security and environmental safety. However, the conversion of biomass into ethanol is a challenging and multi-stage process because of the variation in the biochemical composition of biomass and the recalcitrance of lignin, the aromatic component of lignocellulose. Therefore, the commercial production of cellulosic ethanol has not yet become well-received commercially, being hampered by high research and production costs, and substantial effort is needed to make it more widespread and profitable. This review summarises the state of the art in bioethanol production from lignocellulosic biomass, highlights the most challenging steps of the process, including pretreatment stages required to fragment biomass components and further enzymatic hydrolysis and fermentation, presents the most recent technological advances to overcome the challenges and high costs, and discusses future perspectives of second-generation biorefineries.
Collapse
|
3
|
Kazemi Shariat Panahi H, Dehhaghi M, Dehhaghi S, Guillemin GJ, Lam SS, Aghbashlo M, Tabatabaei M. Engineered bacteria for valorizing lignocellulosic biomass into bioethanol. BIORESOURCE TECHNOLOGY 2022; 344:126212. [PMID: 34715341 DOI: 10.1016/j.biortech.2021.126212] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Appropriate bioprocessing of lignocellulosic materials into ethanol could address the world's insatiable appetite for energy while mitigating greenhouse gases. Bioethanol is an ideal gasoline extender and is widely used in many countries in blended form with gasoline at specific ratios to improve fuel characteristics and engine performance. Although the bioethanol production industry has long been operational, finding a suitable microbial agent for the efficient conversion of lignocelluloses is still an active field of study. Among available microbial candidates, engineered bacteria may be promising ethanol producers while may show other desired traits such as thermophilic nature and high ethanol tolerance. This review provides the current knowledge on the introduction, overexpression, and deletion of the genes that have been performed in bacterial hosts to achieve higher ethanol yield, production rate and titer, and tolerance. The constraints and possible solutions and economic feasibility of the processes utilizing such engineered strains are also discussed.
Collapse
Affiliation(s)
- Hamed Kazemi Shariat Panahi
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, Henan, 450002, China; Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia; Biofuel Research Team (BRTeam), Terengganu, Malaysia
| | - Mona Dehhaghi
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia; Biofuel Research Team (BRTeam), Terengganu, Malaysia; PANDIS.org, Australia
| | - Somayeh Dehhaghi
- Department of Agricultural Extension and Education, Tarbiat Modares University, Tehran 14115-336, Iran
| | - Gilles J Guillemin
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia; PANDIS.org, Australia
| | - Su Shiung Lam
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, Henan, 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Meisam Tabatabaei
- Henan Province Engineering Research Center for Forest Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, Henan, 450002, China; Biofuel Research Team (BRTeam), Terengganu, Malaysia; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Microbial Biotechnology Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
4
|
Proteomic perspectives on thermotolerant microbes: an updated review. Mol Biol Rep 2021; 49:629-646. [PMID: 34671903 DOI: 10.1007/s11033-021-06805-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Thermotolerant microbes are a group of microorganisms that survive in elevated temperatures. The thermotolerant microbes, which are found in geothermal heat zones, grow at temperatures of or above 45°C. The proteins present in such microbes are optimally active at these elevated temperatures. Hence, therefore, serves as an advantage in various biotechnological applications. In the last few years, scientists have tried to understand the molecular mechanisms behind the maintenance of the structural integrity of the cell and to study the stability of various thermotolerant proteins at extreme temperatures. Proteomic analysis is the solution for this search. Applying novel proteomic tools determines the proteins involved in the thermostability of microbes at elevated temperatures. METHODS Advanced proteomic techniques like Mass spectrometry, nano-LC-MS, protein microarray, ICAT, iTRAQ, and SILAC could enable the screening and identification of novel thermostable proteins. RESULTS This review provides up-to-date details on the protein signature of various thermotolerant microbes analyzed through advanced proteomic tools concerning relevant research articles. The protein complex composition from various thermotolerant microbes cultured at different temperatures, their structural arrangement, and functional efficiency of the protein was reviewed and reported. CONCLUSION This review provides an overview of thermotolerant microbes, their enzymes, and the proteomic tools implemented to characterize them. This article also reviewed a comprehensive view of the current proteomic approaches for protein profiling in thermotolerant microbes.
Collapse
|
5
|
Fu H, Luo S, Dai K, Qu C, Wang J. Engineering Thermoanaerobacterium aotearoense SCUT27/Δldh with pyruvate formate lyase-activating protein (PflA) knockout for enhanced ethanol tolerance and production. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Genome Editing of the Anaerobic Thermophile Thermoanaerobacter ethanolicus Using Thermostable Cas9. Appl Environ Microbiol 2020; 87:AEM.01773-20. [PMID: 33067194 DOI: 10.1128/aem.01773-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/04/2020] [Indexed: 12/11/2022] Open
Abstract
Thermoanaerobacter ethanolicus can produce acetate, lactate, hydrogen, and ethanol from sugars resulting from plant carbohydrate polymer degradation at temperatures above 65°C. T. ethanolicus is a promising candidate for thermophilic ethanol fermentations due to the utilization of both pentose and hexose. Although an ethanol balance model in T. ethanolicus has been developed, only a few physiological or biochemical experiments regarding the function of important enzymes in ethanol formation have been carried out. To address this issue, we developed a thermostable Cas9-based system for genome editing of T. ethanolicus As a proof of principle, three genes, including the thymidine kinase gene (tdk), acetaldehyde-alcohol dehydrogenase gene (adhE), and redox sensing protein gene (rsp), were chosen as editing targets, and these genes were edited successfully. As a genetic tool, we tested the gene knockout and a small DNA fragment knock-in. After optimization of the transformation strategies, 77% genome-editing efficiency was observed. Furthermore, our in vivo results revealed that redox sensing protein (RSP) plays a more important role in regulation of energy metabolism, including hydrogen production and ethanol formation. The genetic system provides us with an effective strategy to identify genes involved in biosynthesis and energy metabolism.IMPORTANCE Interest in thermophilic microorganisms as emerging metabolic engineering platforms to produce biofuels and chemicals has surged. Thermophilic microbes for biofuels have attracted great attention, due to their tolerance of high temperature and wide range of substrate utilization. On the basis of the biochemical experiments of previous investigation, the formation of ethanol was controlled via transcriptional regulation and influenced by the relevant properties of specific enzymes in T. ethanolicus Thus, there is an urgent need to understand the physiological function of these key enzymes, which requires genetic manipulations such as deletion or overexpression of genes encoding putative key enzymes. Here, we developed a thermostable Cas9-based engineering tool for gene editing in T. ethanolicus The thermostable Cas9-based genome-editing tool may further be applied to metabolically engineer T. ethanolicus to produce biofuels. This genetic system represents an important expansion of the genetic tool box of anaerobic thermophile T. ethanolicus strains.
Collapse
|
7
|
Fongaro G, Maia GA, Rogovski P, Cadamuro RD, Lopes JC, Moreira RS, Camargo AF, Scapini T, Stefanski FS, Bonatto C, Marques Souza DS, Stoco PH, Duarte RTD, Cabral da Cruz AC, Wagner G, Treichel H. Extremophile Microbial Communities and Enzymes for Bioenergetic Application Based on Multi-Omics Tools. Curr Genomics 2020; 21:240-252. [PMID: 33071618 PMCID: PMC7521039 DOI: 10.2174/1389202921999200601144137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/02/2020] [Accepted: 04/20/2020] [Indexed: 12/03/2022] Open
Abstract
Abstract: Genomic and proteomic advances in extremophile microorganism studies are increasingly demonstrating their ability to produce a variety of enzymes capable of converting biomass into bioenergy. Such microorganisms are found in environments with nutritional restrictions, anaerobic environments, high salinity, varying pH conditions and extreme natural environments such as hydrothermal vents, soda lakes, and Antarctic sediments. As extremophile microorganisms and their enzymes are found in widely disparate locations, they generate new possibilities and opportunities to explore biotechnological prospecting, including biofuels (biogas, hydrogen and ethanol) with an aim toward using multi-omics tools that shed light on biotechnological breakthroughs.
Collapse
Affiliation(s)
- Gislaine Fongaro
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Guilherme Augusto Maia
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Paula Rogovski
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Rafael Dorighello Cadamuro
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Joana Camila Lopes
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Renato Simões Moreira
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Aline Frumi Camargo
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Thamarys Scapini
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Fábio Spitza Stefanski
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Charline Bonatto
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Doris Sobral Marques Souza
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Patrícia Hermes Stoco
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Rubens Tadeu Delgado Duarte
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Ariadne Cristiane Cabral da Cruz
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Glauber Wagner
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Helen Treichel
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
8
|
Qu C, Chen L, Fu H, Wang J. Engineering Thermoanaerobacterium aotearoense SCUT27 with argR knockout for enhanced ethanol production from lignocellulosic hydrolysates. BIORESOURCE TECHNOLOGY 2020; 310:123435. [PMID: 32361198 DOI: 10.1016/j.biortech.2020.123435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Although Thermoanaerobacterium aotearoense SCUT27 (SCUT27) could co-utilize glucose and xylose, the presence of glucose still repressed xylose catabolism. Arginine repressors (ArgRs) were involved in several key metabolic pathways and might be the global regulator. In SCUT27, three genes (V518_0585; V518_1870; V518_1864) were annotated as argR and only the deficiency of argR1864 could greatly improve the co-utilization of glucose and xylose, due to the enhanced activity of xylose isomerase, xylulokinase and the higher energy level. The metabolic flux of SCUT27/ΔargR1864 indicated that new carbon distribution had been re-established and the ethanol yield had increased by 82.95%, strains growth and acetate yield improved by ~35.91% without detectable lactate for the poor activity of lactate dehydrogenase. The improved concentration of ATP and NAD(H) in SCUT27/ΔargR1864 provided more energy to respond the stress, which enabled the mutant the better cell viability to utilize lignocellulosic hydrolysates for enhanced ethanol formation.
Collapse
Affiliation(s)
- Chunyun Qu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Lili Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Hongxin Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; The State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
9
|
Soleimani SS, Adiguzel A, Nadaroglu H. Production of bioethanol by facultative anaerobic bacteria. JOURNAL OF THE INSTITUTE OF BREWING 2017. [DOI: 10.1002/jib.437] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Seyedeh Sara Soleimani
- Faculty of Engineering, Department of Nano-Science and Nano-Engineering; Ataturk University; 25240 Erzurum Turkey
| | - Ahmet Adiguzel
- Department of Molecular Biology and Genetic, Faculty of Science; Ataturk University; 25240 Erzurum Turkey
| | - Hayrunnisa Nadaroglu
- Faculty of Engineering, Department of Nano-Science and Nano-Engineering; Ataturk University; 25240 Erzurum Turkey
- Erzurum Vocational Training School, Department of Food Technology; Ataturk University; 25240 Erzurum Turkey
| |
Collapse
|
10
|
Straub CT, Zeldes BM, Schut GJ, Adams MWW, Kelly RM. Extremely thermophilic energy metabolisms: biotechnological prospects. Curr Opin Biotechnol 2017; 45:104-112. [DOI: 10.1016/j.copbio.2017.02.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/14/2017] [Accepted: 02/24/2017] [Indexed: 12/16/2022]
|
11
|
Keller MW, Lipscomb GL, Nguyen DM, Crowley AT, Schut GJ, Scott I, Kelly RM, Adams MWW. Ethanol production by the hyperthermophilic archaeon Pyrococcus furiosus by expression of bacterial bifunctional alcohol dehydrogenases. Microb Biotechnol 2017; 10:1535-1545. [PMID: 28194879 PMCID: PMC5658578 DOI: 10.1111/1751-7915.12486] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/03/2016] [Accepted: 11/14/2016] [Indexed: 01/25/2023] Open
Abstract
Ethanol is an important target for the renewable production of liquid transportation fuels. It can be produced biologically from pyruvate, via pyruvate decarboxylase, or from acetyl‐CoA, by alcohol dehydrogenase E (AdhE). Thermophilic bacteria utilize AdhE, which is a bifunctional enzyme that contains both acetaldehyde dehydrogenase and alcohol dehydrogenase activities. Many of these organisms also contain a separate alcohol dehydrogenase (AdhA) that generates ethanol from acetaldehyde, although the role of AdhA in ethanol production is typically not clear. As acetyl‐CoA is a key central metabolite that can be generated from a wide range of substrates, AdhE can serve as a single gene fuel module to produce ethanol through primary metabolic pathways. The focus here is on the hyperthermophilic archaeon Pyrococcus furiosus, which grows by fermenting sugar to acetate, CO2 and H2. Previously, by the heterologous expression of adhA from a thermophilic bacterium, P. furiosus was shown to produce ethanol by a novel mechanism from acetate, mediated by AdhA and the native enzyme aldehyde oxidoreductase (AOR). In this study, the AOR gene was deleted from P. furiosus to evaluate ethanol production directly from acetyl‐CoA by heterologous expression of the adhE gene from eight thermophilic bacteria. Only AdhEs from two Thermoanaerobacter strains showed significant activity in cell‐free extracts of recombinant P. furiosus and supported ethanol production in vivo. In the AOR deletion background, the highest amount of ethanol (estimated 61% theoretical yield) was produced when adhE and adhA from Thermoanaerobacter were co‐expressed.
Collapse
Affiliation(s)
- Matthew W Keller
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Gina L Lipscomb
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Diep M Nguyen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Alexander T Crowley
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Gerrit J Schut
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Israel Scott
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
12
|
Lange L. Fungal Enzymes and Yeasts for Conversion of Plant Biomass to Bioenergy and High-Value Products. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0007-2016. [PMID: 28155810 PMCID: PMC11687429 DOI: 10.1128/microbiolspec.funk-0007-2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Indexed: 12/20/2022] Open
Abstract
Fungi and fungal enzymes play important roles in the new bioeconomy. Enzymes from filamentous fungi can unlock the potential of recalcitrant lignocellulose structures of plant cell walls as a new resource, and fungi such as yeast can produce bioethanol from the sugars released after enzyme treatment. Such processes reflect inherent characteristics of the fungal way of life, namely, that fungi as heterotrophic organisms must break down complex carbon structures of organic materials to satisfy their need for carbon and nitrogen for growth and reproduction. This chapter describes major steps in the conversion of plant biomass to value-added products. These products provide a basis for substituting fossil-derived fuels, chemicals, and materials, as well as unlocking the biomass potential of the agricultural harvest to yield more food and feed. This article focuses on the mycological basis for the fungal contribution to biorefinery processes, which are instrumental for improved resource efficiency and central to the new bioeconomy. Which types of processes, inherent to fungal physiology and activities in nature, are exploited in the new industrial processes? Which families of the fungal kingdom and which types of fungal habitats and ecological specializations are hot spots for fungal biomass conversion? How can the best fungal enzymes be found and optimized for industrial use? How can they be produced most efficiently-in fungal expression hosts? How have industrial biotechnology and biomass conversion research contributed to mycology and environmental research? Future perspectives and approaches are listed, highlighting the importance of fungi in development of the bioeconomy.
Collapse
Affiliation(s)
- Lene Lange
- Technical University of Denmark, Department of Chemical and Biochemical Engineering, Center for Bioprocess Engineering, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
13
|
Loder AJ, Zeldes BM, Conway JM, Counts JA, Straub CT, Khatibi PA, Lee LL, Vitko NP, Keller MW, Rhaesa AM, Rubinstein GM, Scott IM, Lipscomb GL, Adams MW, Kelly RM. Extreme Thermophiles as Metabolic Engineering Platforms: Strategies and Current Perspective. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Andrew J. Loder
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Benjamin M. Zeldes
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Jonathan M. Conway
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - James A. Counts
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Christopher T. Straub
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Piyum A. Khatibi
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Laura L. Lee
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Nicholas P. Vitko
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Matthew W. Keller
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Amanda M. Rhaesa
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Gabe M. Rubinstein
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Israel M. Scott
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Gina L. Lipscomb
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Michael W.W. Adams
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Robert M. Kelly
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| |
Collapse
|
14
|
Abstract
Thermophilic microorganisms as well as acetogenic bacteria are both considered ancient. Interestingly, only a few species of bacteria, all belonging to the family Thermoanaerobacteraceae, are described to conserve energy from acetate formation with hydrogen as electron donor and carbon dioxide as electron acceptor. This review reflects the metabolic differences between Moorella spp., Thermoanaerobacter kivui and Thermacetogenium phaeum, with focus on the biochemistry of autotrophic growth and energy conservation. The potential of these thermophilic acetogens for biotechnological applications is discussed briefly.
Collapse
Affiliation(s)
- Mirko Basen
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt Am Main, Germany
| | - Volker Müller
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt Am Main, Germany.
| |
Collapse
|
15
|
Peng T, Pan S, Christopher LP, Sparling R, Levin DB. Growth and metabolic profiling of the novel thermophilic bacterium Thermoanaerobacter sp. strain YS13. Can J Microbiol 2016; 62:762-71. [PMID: 27569998 DOI: 10.1139/cjm-2016-0040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A strictly anaerobic, thermophilic bacterium, designated strain YS13, was isolated from a geothermal hot spring. Phylogenetic analysis using the 16S rRNA genes and cpn60 UT genes suggested strain YS13 as a species of Thermoanaerobacter. Using cellobiose or xylose as carbon source, YS13 was able to grow over a wide range of temperatures (45-70 °C), and pHs (pH 5.0-9.0), with optimum growth at 65 °C and pH 7.0. Metabolic profiling on cellobiose, glucose, or xylose in 1191 medium showed that H2, CO2, ethanol, acetate, and lactate were the major metabolites. Lactate was the predominant end product from glucose or cellobiose fermentations, whereas H2 and acetate were the dominant end products from xylose fermentation. The metabolic balance shifted away from ethanol to H2, acetate, and lactate when YS13 was grown on cellobiose as temperatures increased from 45 to 70 °C. When YS13 was grown on xylose, a metabolic shift from lactate to H2, CO2, and acetate was observed in cultures as the temperature of incubation increased from 45 to 65 °C, whereas a shift from ethanol and CO2 to H2, acetate, and lactate was observed in cultures incubated at 70 °C.
Collapse
Affiliation(s)
- Tingting Peng
- a Department of Food Science, Huazhong Agricultural University, Wuhan, China.,d Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 3N3, Canada
| | - Siyi Pan
- a Department of Food Science, Huazhong Agricultural University, Wuhan, China
| | - Lew P Christopher
- b Biorefining Research Institute, Lakehead University, Thunder Bay, ON P7B 5Z5, Canada
| | - Richard Sparling
- c Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 3N3, Canada
| | - David B Levin
- d Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 3N3, Canada
| |
Collapse
|
16
|
Zhou J, Wu K, Rao CV. Evolutionary engineering of Geobacillus thermoglucosidasius
for improved ethanol production. Biotechnol Bioeng 2016; 113:2156-67. [DOI: 10.1002/bit.25983] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 02/12/2016] [Accepted: 03/18/2016] [Indexed: 01/30/2023]
Affiliation(s)
- Jiewen Zhou
- Department of Chemical and Biomolecular Engineering; University of Illinois at Urbana-Champaign; 600 S. Mathews Ave Urbana Illinois 61801
| | - Kang Wu
- Department of Chemical Engineering; University of New Hampshire; Durham New Hampshire
| | - Christopher V. Rao
- Department of Chemical and Biomolecular Engineering; University of Illinois at Urbana-Champaign; 600 S. Mathews Ave Urbana Illinois 61801
| |
Collapse
|
17
|
Zeldes BM, Keller MW, Loder AJ, Straub CT, Adams MWW, Kelly RM. Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals. Front Microbiol 2015; 6:1209. [PMID: 26594201 PMCID: PMC4633485 DOI: 10.3389/fmicb.2015.01209] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/19/2015] [Indexed: 01/06/2023] Open
Abstract
Enzymes from extremely thermophilic microorganisms have been of technological interest for some time because of their ability to catalyze reactions of industrial significance at elevated temperatures. Thermophilic enzymes are now routinely produced in recombinant mesophilic hosts for use as discrete biocatalysts. Genome and metagenome sequence data for extreme thermophiles provide useful information for putative biocatalysts for a wide range of biotransformations, albeit involving at most a few enzymatic steps. However, in the past several years, unprecedented progress has been made in establishing molecular genetics tools for extreme thermophiles to the point that the use of these microorganisms as metabolic engineering platforms has become possible. While in its early days, complex metabolic pathways have been altered or engineered into recombinant extreme thermophiles, such that the production of fuels and chemicals at elevated temperatures has become possible. Not only does this expand the thermal range for industrial biotechnology, it also potentially provides biodiverse options for specific biotransformations unique to these microorganisms. The list of extreme thermophiles growing optimally between 70 and 100°C with genetic toolkits currently available includes archaea and bacteria, aerobes and anaerobes, coming from genera such as Caldicellulosiruptor, Sulfolobus, Thermotoga, Thermococcus, and Pyrococcus. These organisms exhibit unusual and potentially useful native metabolic capabilities, including cellulose degradation, metal solubilization, and RuBisCO-free carbon fixation. Those looking to design a thermal bioprocess now have a host of potential candidates to choose from, each with its own advantages and challenges that will influence its appropriateness for specific applications. Here, the issues and opportunities for extremely thermophilic metabolic engineering platforms are considered with an eye toward potential technological advantages for high temperature industrial biotechnology.
Collapse
Affiliation(s)
- Benjamin M Zeldes
- Department of Chemical and Biomolecular Engineering, North Carolina State University Raleigh, NC, USA
| | - Matthew W Keller
- Department of Biochemistry and Molecular Biology, University of Georgia Athens, GA, USA
| | - Andrew J Loder
- Department of Chemical and Biomolecular Engineering, North Carolina State University Raleigh, NC, USA
| | - Christopher T Straub
- Department of Chemical and Biomolecular Engineering, North Carolina State University Raleigh, NC, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia Athens, GA, USA
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University Raleigh, NC, USA
| |
Collapse
|
18
|
Deletion of nfnAB in Thermoanaerobacterium saccharolyticum and Its Effect on Metabolism. J Bacteriol 2015; 197:2920-9. [PMID: 26124241 DOI: 10.1128/jb.00347-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/23/2015] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED NfnAB catalyzes the reversible transfer of electrons from reduced ferredoxin and NADH to 2 NADP(+). The NfnAB complex has been hypothesized to be the main enzyme for ferredoxin oxidization in strains of Thermoanaerobacterium saccharolyticum engineered for increased ethanol production. NfnAB complex activity was detectable in crude cell extracts of T. saccharolyticum. Activity was also detected using activity staining of native PAGE gels. The nfnAB gene was deleted in different strains of T. saccharolyticum to determine its effect on end product formation. In wild-type T. saccharolyticum, deletion of nfnAB resulted in a 46% increase in H2 formation but otherwise little change in other fermentation products. In two engineered strains with 80% theoretical ethanol yield, loss of nfnAB caused two different responses: in one strain, ethanol yield decreased to about 30% of the theoretical value, while another strain had no change in ethanol yield. Biochemical analysis of cell extracts showed that the ΔnfnAB strain with decreased ethanol yield had NADPH-linked alcohol dehydrogenase (ADH) activity, while the ΔnfnAB strain with unchanged ethanol yield had NADH-linked ADH activity. Deletion of nfnAB caused loss of NADPH-linked ferredoxin oxidoreductase activity in all cell extracts. Significant NADH-linked ferredoxin oxidoreductase activity was seen in all cell extracts, including those that had lost nfnAB. This suggests that there is an unidentified NADH:ferredoxin oxidoreductase (distinct from nfnAB) playing a role in ethanol formation. The NfnAB complex plays a key role in generating NADPH in a strain that had become reliant on NADPH-ADH activity. IMPORTANCE Thermophilic anaerobes that can convert biomass-derived sugars into ethanol have been investigated as candidates for biofuel formation. Many anaerobes have been genetically engineered to increase biofuel formation; however, key aspects of metabolism remain unknown and poorly understood. One example is the mechanism for ferredoxin oxidation and transfer of electrons to NAD(P)(+). The electron-bifurcating enzyme complex NfnAB is known to catalyze the reversible transfer of electrons from reduced ferredoxin and NADH to 2 NADP(+) and is thought to play key roles linking NAD(P)(H) metabolism with ferredoxin metabolism. We report the first deletion of nfnAB and demonstrate a role for NfnAB in metabolism and ethanol formation in Thermoanaerobacterium saccharolyticum and show that this may be an important feature among other thermophilic ethanologenic anaerobes.
Collapse
|
19
|
Olson DG, Sparling R, Lynd LR. Ethanol production by engineered thermophiles. Curr Opin Biotechnol 2015; 33:130-41. [PMID: 25745810 DOI: 10.1016/j.copbio.2015.02.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/11/2015] [Accepted: 02/13/2015] [Indexed: 12/17/2022]
Abstract
We compare a number of different strategies that have been pursued to engineer thermophilic microorganisms for increased ethanol production. Ethanol production from pyruvate can proceed via one of four pathways, which are named by the key pyruvate dissimilating enzyme: pyruvate decarboxylase (PDC), pyruvate dehydrogenase (PDH), pyruvate formate lyase (PFL), and pyruvate ferredoxin oxidoreductase (PFOR). For each of these pathways except PFL, we see examples where ethanol production has been engineered with a yield of >90% of the theoretical maximum. In each of these cases, this engineering was achieved mainly by modulating expression of native genes. We have not found an example where a thermophilic ethanol production pathway has been transferred to a non-ethanol-producing organism to produce ethanol at high yield. A key reason for the lack of transferability of ethanol production pathways is the current lack of understanding of the enzymes involved.
Collapse
Affiliation(s)
- Daniel G Olson
- Thayer School of Engineering at Dartmouth College, Hanover, NH 03755, United States; BioEnergy Science Center, Oak Ridge, TN 37830, United States
| | - Richard Sparling
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada R3T 5V6
| | - Lee R Lynd
- Thayer School of Engineering at Dartmouth College, Hanover, NH 03755, United States; BioEnergy Science Center, Oak Ridge, TN 37830, United States.
| |
Collapse
|
20
|
Moshi AP, Hosea KMM, Elisante E, Mamo G, Mattiasson B. High temperature simultaneous saccharification and fermentation of starch from inedible wild cassava (Manihot glaziovii) to bioethanol using Caloramator boliviensis. BIORESOURCE TECHNOLOGY 2015; 180:128-136. [PMID: 25594508 DOI: 10.1016/j.biortech.2014.12.087] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/23/2014] [Accepted: 12/24/2014] [Indexed: 06/04/2023]
Abstract
The thermoanaerobe, Caloramator boliviensis was used to ferment starch hydrolysate from inedible wild cassava to ethanol at 60°C. A raw starch degrading α-amylase was used to hydrolyse the cassava starch. During fermentation, the organism released CO2 and H2 gases, and Gas Endeavour System was successfully used for monitoring and recording formation of these gaseous products. The bioethanol produced in stoichiometric amounts to CO2 was registered online in Gas Endeavour software and correlated strongly (R(2)=0.99) with values measured by HPLC. The organism was sensitive to cyanide that exists in cassava flour. However, after acclimatisation, it was able to grow and ferment cassava starch hydrolysate containing up to 0.2ppm cyanide. The reactor hydrogen partial pressure had influence on the bioethanol production. In fed-batch fermentation by maintaining the hydrogen partial pressure around 590Pa, the organism was able to ferment up to 76g/L glucose and produced 33g/L ethanol.
Collapse
Affiliation(s)
- Anselm P Moshi
- Division of Biotechnology, Lund University, P.O. Box 124, SE-22100 Lund, Sweden; Department of Molecular Biology and Biotechnology, College of Natural and Applied Sciences, Uvumbuzi Road, Mwalimu J.K. Nyerere Mlimani Campus, University of Dar es Salaam, P.O. Box 35179, Dar es Salaam, Tanzania; Tanzania Industrial Research and Development Organization (TIRDO), Kimweri Avenue, TIRDO Complex, Msasani, P.O. Box 23235, Dar-es salaam, Tanzania.
| | - Ken M M Hosea
- Department of Molecular Biology and Biotechnology, College of Natural and Applied Sciences, Uvumbuzi Road, Mwalimu J.K. Nyerere Mlimani Campus, University of Dar es Salaam, P.O. Box 35179, Dar es Salaam, Tanzania.
| | - Emrode Elisante
- Department of Molecular Biology and Biotechnology, College of Natural and Applied Sciences, Uvumbuzi Road, Mwalimu J.K. Nyerere Mlimani Campus, University of Dar es Salaam, P.O. Box 35179, Dar es Salaam, Tanzania.
| | - G Mamo
- Division of Biotechnology, Lund University, P.O. Box 124, SE-22100 Lund, Sweden.
| | - Bo Mattiasson
- Division of Biotechnology, Lund University, P.O. Box 124, SE-22100 Lund, Sweden; also at Indienz AB, Annebergs Gård, SE-26873 Billeberga, Sweden.
| |
Collapse
|
21
|
Vishnivetskaya TA, Hamilton-Brehm SD, Podar M, Mosher JJ, Palumbo AV, Phelps TJ, Keller M, Elkins JG. Community analysis of plant biomass-degrading microorganisms from Obsidian Pool, Yellowstone National Park. MICROBIAL ECOLOGY 2015; 69:333-345. [PMID: 25319238 DOI: 10.1007/s00248-014-0500-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 09/16/2014] [Indexed: 06/04/2023]
Abstract
The conversion of lignocellulosic biomass into biofuels can potentially be improved by employing robust microorganisms and enzymes that efficiently deconstruct plant polysaccharides at elevated temperatures. Many of the geothermal features of Yellowstone National Park (YNP) are surrounded by vegetation providing a source of allochthonic material to support heterotrophic microbial communities adapted to utilize plant biomass as a primary carbon and energy source. In this study, a well-known hot spring environment, Obsidian Pool (OBP), was examined for potential biomass-active microorganisms using cultivation-independent and enrichment techniques. Analysis of 33,684 archaeal and 43,784 bacterial quality-filtered 16S rRNA gene pyrosequences revealed that archaeal diversity in the main pool was higher than bacterial; however, in the vegetated area, overall bacterial diversity was significantly higher. Of notable interest was a flooded depression adjacent to OBP supporting a stand of Juncus tweedyi, a heat-tolerant rush commonly found growing near geothermal features in YNP. The microbial community from heated sediments surrounding the plants was enriched in members of the Firmicutes including potentially (hemi)cellulolytic bacteria from the genera Clostridium, Anaerobacter, Caloramator, Caldicellulosiruptor, and Thermoanaerobacter. Enrichment cultures containing model and real biomass substrates were established at a wide range of temperatures (55-85 °C). Microbial activity was observed up to 80 °C on all substrates including Avicel, xylan, switchgrass, and Populus sp. Independent of substrate, Caloramator was enriched at lower (<65 °C) temperatures while highly active cellulolytic bacteria Caldicellulosiruptor were dominant at high (>65 °C) temperatures.
Collapse
Affiliation(s)
- Tatiana A Vishnivetskaya
- BioEnergy Science Center, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Isolation and screening of thermophilic bacilli from compost for electrotransformation and fermentation: characterization of Bacillus smithii ET 138 as a new biocatalyst. Appl Environ Microbiol 2015; 81:1874-83. [PMID: 25556192 DOI: 10.1128/aem.03640-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thermophilic bacteria are regarded as attractive production organisms for cost-efficient conversion of renewable resources to green chemicals, but their genetic accessibility is a major bottleneck in developing them into versatile platform organisms. In this study, we aimed to isolate thermophilic, facultatively anaerobic bacilli that are genetically accessible and have potential as platform organisms. From compost, we isolated 267 strains that produced acids from C5 and C6 sugars at temperatures of 55°C or 65°C. Subsequently, 44 strains that showed the highest production of acids were screened for genetic accessibility by electroporation. Two Geobacillus thermodenitrificans isolates and one Bacillus smithii isolate were found to be transformable with plasmid pNW33n. Of these, B. smithii ET 138 was the best-performing strain in laboratory-scale fermentations and was capable of producing organic acids from glucose as well as from xylose. It is an acidotolerant strain able to produce organic acids until a lower limit of approximately pH 4.5. As genetic accessibility of B. smithii had not been described previously, six other B. smithii strains from the DSMZ culture collection were tested for electroporation efficiencies, and we found the type strain DSM 4216(T) and strain DSM 460 to be transformable. The transformation protocol for B. smithii isolate ET 138 was optimized to obtain approximately 5 × 10(3) colonies per μg plasmid pNW33n. Genetic accessibility combined with robust acid production capacities on C5 and C6 sugars at a relatively broad pH range make B. smithii ET 138 an attractive biocatalyst for the production of lactic acid and potentially other green chemicals.
Collapse
|
23
|
Recent Advances in Second Generation Ethanol Production by Thermophilic Bacteria. ENERGIES 2014. [DOI: 10.3390/en8010001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
24
|
Isolation and characterization of a thermotolerant ene reductase from Geobacillus sp. 30 and its heterologous expression in Rhodococcus opacus. Appl Microbiol Biotechnol 2014; 98:5925-35. [PMID: 24927695 DOI: 10.1007/s00253-014-5668-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/04/2014] [Accepted: 03/05/2014] [Indexed: 01/04/2023]
Abstract
Rhodococcus opacus B-4 cells are adhesive to and even dispersible in water-immiscible hydrocarbons owing to their highly lipophilic nature. In this study, we focused on the high operational stability of thermophilic enzymes and applied them to a biocatalytic conversion in an organic reaction medium using R. opacus B-4 as a lipophilic capsule of enzymes to deliver them into the organic medium. A novel thermo- and organic-solvent-tolerant ene reductase, which can catalyze the enantioselective reduction of ketoisophorone to (6R)-levodione, was isolated from Geobacillus sp. 30, and the gene encoding the enzyme was heterologously expressed in R. opacus B-4. Another thermophilic enzyme which catalyzes NAD(+)-dependent dehydrogenation of cyclohexanol was identified from the gene-expression library of Thermus thermophilus and the gene was coexpressed in R. opacus B-4 for cofactor regeneration. While the recombinant cells were not viable in the mixture due to high reaction temperature, 634 mM of (6R)-levodione could be produced with an enantiopurity of 89.2 % ee by directly mixing the wet cells of the recombinant R. opacus with a mixture of ketoisophorone and cyclohexanol at 50 °C. The conversion rate observed with the heat-killed recombinant cells was considerably higher than that obtained with a cell-free enzyme solution, demonstrating that the accessibility between the substrates and enzymes could be improved by employing R. opacus cells as a lipophilic enzyme capsule. These results imply that a combination of thermophilic enzymes and lipophilic cells can be a promising approach for the biocatalytic production of water-insoluble chemicals.
Collapse
|
25
|
Clarkson SM, Hamilton-Brehm SD, Giannone RJ, Engle NL, Tschaplinski TJ, Hettich RL, Elkins JG. A comparative multidimensional LC-MS proteomic analysis reveals mechanisms for furan aldehyde detoxification in Thermoanaerobacter pseudethanolicus 39E. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:165. [PMID: 25506391 PMCID: PMC4265447 DOI: 10.1186/s13068-014-0165-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/07/2014] [Indexed: 05/07/2023]
Abstract
BACKGROUND Chemical and physical pretreatment of lignocellulosic biomass improves substrate reactivity for increased microbial biofuel production, but also restricts growth via the release of furan aldehydes, such as furfural and 5-hydroxymethylfurfural (5-HMF). The physiological effects of these inhibitors on thermophilic, fermentative bacteria are important to understand; especially as cellulolytic strains are being developed for consolidated bioprocessing (CBP) of lignocellulosic feedstocks. Identifying mechanisms for detoxification of aldehydes in naturally resistant strains, such as Thermoanaerobacter spp., may also enable improvements in candidate CBP microorganisms. RESULTS Thermoanaerobacter pseudethanolicus 39E, an anaerobic, saccharolytic thermophile, was found to grow readily in the presence of 30 mM furfural and 20 mM 5-HMF and reduce these aldehydes to their respective alcohols in situ. The proteomes of T. pseudethanolicus 39E grown in the presence or absence of 15 mM furfural were compared to identify upregulated enzymes potentially responsible for the observed reduction. A total of 225 proteins were differentially regulated in response to the 15 mM furfural treatment with 152 upregulated versus 73 downregulated. Only 87 proteins exhibited a twofold or greater change in abundance in either direction. Of these, 54 were upregulated in the presence of furfural and 33 were downregulated. Two oxidoreductases were upregulated at least twofold by furfural and were targeted for further investigation. Teth39_1597 encodes a predicted butanol dehydrogenase (BdhA) and Teth39_1598, a predicted aldo/keto reductase (AKR). Both genes were cloned from T. pseudethanolicus 39E, with the respective enzymes overexpressed in E. coli and specific activities determined against a variety of aldehydes. Overexpressed BdhA showed significant activity with all aldehydes tested, including furfural and 5-HMF, using NADPH as the cofactor. Cell extracts with AKR also showed activity with NADPH, but only with four-carbon butyraldehyde and isobutyraldehyde. CONCLUSIONS T. pseudethanolicus 39E displays intrinsic tolerance to the common pretreatment inhibitors furfural and 5-HMF. Multidimensional proteomic analysis was used as an effective tool to identify putative mechanisms for detoxification of furfural and 5-HMF. T. pseudethanolicus was found to upregulate an NADPH-dependent alcohol dehydrogenase 6.8-fold in response to furfural. In vitro enzyme assays confirmed the reduction of furfural and 5-HMF to their respective alcohols.
Collapse
Affiliation(s)
- Sonya M Clarkson
- />BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6341 USA
- />Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6341 USA
| | - Scott D Hamilton-Brehm
- />BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6341 USA
- />Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6341 USA
- />Current address: Division of Earth and Ecosystem Sciences, Desert Research Institute, Las Vegas, NV USA
| | - Richard J Giannone
- />BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6341 USA
- />Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6341 USA
| | - Nancy L Engle
- />BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6341 USA
- />Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6341 USA
| | - Timothy J Tschaplinski
- />BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6341 USA
- />Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6341 USA
| | - Robert L Hettich
- />BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6341 USA
- />Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6341 USA
| | - James G Elkins
- />BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6341 USA
- />Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6341 USA
| |
Collapse
|
26
|
Lin L, Xu J. Dissecting and engineering metabolic and regulatory networks of thermophilic bacteria for biofuel production. Biotechnol Adv 2013; 31:827-37. [DOI: 10.1016/j.biotechadv.2013.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/06/2013] [Accepted: 03/10/2013] [Indexed: 01/08/2023]
|
27
|
Eram MS, Ma K. Decarboxylation of pyruvate to acetaldehyde for ethanol production by hyperthermophiles. Biomolecules 2013; 3:578-96. [PMID: 24970182 PMCID: PMC4030962 DOI: 10.3390/biom3030578] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/02/2013] [Accepted: 08/15/2013] [Indexed: 11/16/2022] Open
Abstract
Pyruvate decarboxylase (PDC encoded by pdc) is a thiamine pyrophosphate (TPP)-containing enzyme responsible for the conversion of pyruvate to acetaldehyde in many mesophilic organisms. However, no pdc/PDC homolog has yet been found in fully sequenced genomes and proteomes of hyper/thermophiles. The only PDC activity reported in hyperthermophiles was a bifunctional, TPP- and CoA-dependent pyruvate ferredoxin oxidoreductase (POR)/PDC enzyme from the hyperthermophilic archaeon Pyrococcus furiosus. Another enzyme known to be involved in catalysis of acetaldehyde production from pyruvate is CoA-acetylating acetaldehyde dehydrogenase (AcDH encoded by mhpF and adhE). Pyruvate is oxidized into acetyl-CoA by either POR or pyruvate formate lyase (PFL), and AcDH catalyzes the reduction of acetyl-CoA to acetaldehyde in mesophilic organisms. AcDH is present in some mesophilic (such as clostridia) and thermophilic bacteria (e.g., Geobacillus and Thermoanaerobacter). However, no AcDH gene or protein homologs could be found in the released genomes and proteomes of hyperthermophiles. Moreover, no such activity was detectable from the cell-free extracts of different hyperthermophiles under different assay conditions. In conclusion, no commonly-known PDCs was found in hyperthermophiles. Instead of the commonly-known PDC, it appears that at least one multifunctional enzyme is responsible for catalyzing the non-oxidative decarboxylation of pyruvate to acetaldehyde in hyperthermophiles.
Collapse
Affiliation(s)
- Mohammad S Eram
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
| | - Kesen Ma
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
28
|
Thapa LP, Lee SJ, Yoo HY, Choi HS, Park C, Kim SW. Development of glycerol-utilizing Escherichia coli strain for the production of bioethanol. Enzyme Microb Technol 2013; 53:206-15. [DOI: 10.1016/j.enzmictec.2013.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 04/20/2013] [Accepted: 04/25/2013] [Indexed: 10/26/2022]
|
29
|
Ibraheem O, Ndimba BK. Molecular adaptation mechanisms employed by ethanologenic bacteria in response to lignocellulose-derived inhibitory compounds. Int J Biol Sci 2013; 9:598-612. [PMID: 23847442 PMCID: PMC3708040 DOI: 10.7150/ijbs.6091] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 04/26/2013] [Indexed: 11/12/2022] Open
Abstract
Current international interest in finding alternative sources of energy to the diminishing supplies of fossil fuels has encouraged research efforts in improving biofuel production technologies. In countries which lack sufficient food, the use of sustainable lignocellulosic feedstocks, for the production of bioethanol, is an attractive option. In the pre-treatment of lignocellulosic feedstocks for ethanol production, various chemicals and/or enzymatic processes are employed. These methods generally result in a range of fermentable sugars, which are subjected to microbial fermentation and distillation to produce bioethanol. However, these methods also produce compounds that are inhibitory to the microbial fermentation process. These compounds include products of sugar dehydration and lignin depolymerisation, such as organic acids, derivatised furaldehydes and phenolic acids. These compounds are known to have a severe negative impact on the ethanologenic microorganisms involved in the fermentation process by compromising the integrity of their cell membranes, inhibiting essential enzymes and negatively interact with their DNA/RNA. It is therefore important to understand the molecular mechanisms of these inhibitions, and the mechanisms by which these microorganisms show increased adaptation to such inhibitors. Presented here is a concise overview of the molecular adaptation mechanisms of ethanologenic bacteria in response to lignocellulose-derived inhibitory compounds. These include general stress response and tolerance mechanisms, which are typically those that maintain intracellular pH homeostasis and cell membrane integrity, activation/regulation of global stress responses and inhibitor substrate-specific degradation pathways. We anticipate that understanding these adaptation responses will be essential in the design of 'intelligent' metabolic engineering strategies for the generation of hyper-tolerant fermentation bacteria strains.
Collapse
Affiliation(s)
- Omodele Ibraheem
- Research and Services Unit, Agricultural Research Council/Infruitech & The University of Western Cape, Biotechnology Department, Private Bag X17, Bellville, Cape Town, South Africa
| | | |
Collapse
|
30
|
Verbeke TJ, Zhang X, Henrissat B, Spicer V, Rydzak T, Krokhin OV, Fristensky B, Levin DB, Sparling R. Genomic evaluation of Thermoanaerobacter spp. for the construction of designer co-cultures to improve lignocellulosic biofuel production. PLoS One 2013; 8:e59362. [PMID: 23555660 PMCID: PMC3608648 DOI: 10.1371/journal.pone.0059362] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 02/13/2013] [Indexed: 02/07/2023] Open
Abstract
The microbial production of ethanol from lignocellulosic biomass is a multi-component process that involves biomass hydrolysis, carbohydrate transport and utilization, and finally, the production of ethanol. Strains of the genus Thermoanaerobacter have been studied for decades due to their innate abilities to produce comparatively high ethanol yields from hemicellulose constituent sugars. However, their inability to hydrolyze cellulose, limits their usefulness in lignocellulosic biofuel production. As such, co-culturing Thermoanaerobacter spp. with cellulolytic organisms is a plausible approach to improving lignocellulose conversion efficiencies and yields of biofuels. To evaluate native lignocellulosic ethanol production capacities relative to competing fermentative end-products, comparative genomic analysis of 11 sequenced Thermoanaerobacter strains, including a de novo genome, Thermoanaerobacter thermohydrosulfuricus WC1, was conducted. Analysis was specifically focused on the genomic potential for each strain to address all aspects of ethanol production mentioned through a consolidated bioprocessing approach. Whole genome functional annotation analysis identified three distinct clades within the genus. The genomes of Clade 1 strains encode the fewest extracellular carbohydrate active enzymes and also show the least diversity in terms of lignocellulose relevant carbohydrate utilization pathways. However, these same strains reportedly are capable of directing a higher proportion of their total carbon flux towards ethanol, rather than non-biofuel end-products, than other Thermoanaerobacter strains. Strains in Clade 2 show the greatest diversity in terms of lignocellulose hydrolysis and utilization, but proportionately produce more non-ethanol end-products than Clade 1 strains. Strains in Clade 3, in which T. thermohydrosulfuricus WC1 is included, show mid-range potential for lignocellulose hydrolysis and utilization, but also exhibit extensive divergence from both Clade 1 and Clade 2 strains in terms of cellular energetics. The potential implications regarding strain selection and suitability for industrial ethanol production through a consolidated bioprocessing co-culturing approach are examined throughout the manuscript.
Collapse
Affiliation(s)
- Tobin J. Verbeke
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Xiangli Zhang
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Bernard Henrissat
- Centre national de la recherche scientifique, Aix-Marseille Université, Marseille, France
| | - Vic Spicer
- Department of Physics & Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Thomas Rydzak
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Oleg V. Krokhin
- Department of Internal Medicine & Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Brian Fristensky
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - David B. Levin
- Biosystems Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Richard Sparling
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
31
|
Xia Y, Fang HHP, Zhang T. Recent studies on thermophilic anaerobic bioconversion of lignocellulosic biomass. RSC Adv 2013. [DOI: 10.1039/c3ra40866c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
32
|
Bhalla A, Bansal N, Kumar S, Bischoff KM, Sani RK. Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes. BIORESOURCE TECHNOLOGY 2013; 128:751-9. [PMID: 23246299 DOI: 10.1016/j.biortech.2012.10.145] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 09/20/2012] [Accepted: 10/29/2012] [Indexed: 05/07/2023]
Abstract
Second-generation feedstock, especially nonfood lignocellulosic biomass is a potential source for biofuel production. Cost-intensive physical, chemical, biological pretreatment operations and slow enzymatic hydrolysis make the overall process of lignocellulosic conversion into biofuels less economical than available fossil fuels. Lignocellulose conversions carried out at ≤ 50 °C have several limitations. Therefore, this review focuses on the importance of thermophilic bacteria and thermostable enzymes to overcome the limitations of existing lignocellulosic biomass conversion processes. The influence of high temperatures on various existing lignocellulose conversion processes and those that are under development, including separate hydrolysis and fermentation, simultaneous saccharification and fermentation, and extremophilic consolidated bioprocess are also discussed.
Collapse
Affiliation(s)
- Aditya Bhalla
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | | | | | | | | |
Collapse
|
33
|
Ye X, Honda K, Sakai T, Okano K, Omasa T, Hirota R, Kuroda A, Ohtake H. Synthetic metabolic engineering-a novel, simple technology for designing a chimeric metabolic pathway. Microb Cell Fact 2012; 11:120. [PMID: 22950411 PMCID: PMC3512521 DOI: 10.1186/1475-2859-11-120] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 08/31/2012] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The integration of biotechnology into chemical manufacturing has been recognized as a key technology to build a sustainable society. However, the practical applications of biocatalytic chemical conversions are often restricted due to their complexities involving the unpredictability of product yield and the troublesome controls in fermentation processes. One of the possible strategies to overcome these limitations is to eliminate the use of living microorganisms and to use only enzymes involved in the metabolic pathway. Use of recombinant mesophiles producing thermophilic enzymes at high temperature results in denaturation of indigenous proteins and elimination of undesired side reactions; consequently, highly selective and stable biocatalytic modules can be readily prepared. By rationally combining those modules together, artificial synthetic pathways specialized for chemical manufacturing could be designed and constructed. RESULTS A chimeric Embden-Meyerhof (EM) pathway with balanced consumption and regeneration of ATP and ADP was constructed by using nine recombinant E. coli strains overproducing either one of the seven glycolytic enzymes of Thermus thermophilus, the cofactor-independent phosphoglycerate mutase of Pyrococcus horikoshii, or the non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase of Thermococcus kodakarensis. By coupling this pathway with the Thermus malate/lactate dehydrogenase, a stoichiometric amount of lactate was produced from glucose with an overall ATP turnover number of 31. CONCLUSIONS In this study, a novel and simple technology for flexible design of a bespoke metabolic pathway was developed. The concept has been testified via a non-ATP-forming chimeric EM pathway. We designated this technology as "synthetic metabolic engineering". Our technology is, in principle, applicable to all thermophilic enzymes as long as they can be functionally expressed in the host, and thus would be potentially applicable to the biocatalytic manufacture of any chemicals or materials on demand.
Collapse
Affiliation(s)
- Xiaoting Ye
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Olson DG, McBride JE, Joe Shaw A, Lynd LR. Recent progress in consolidated bioprocessing. Curr Opin Biotechnol 2012; 23:396-405. [DOI: 10.1016/j.copbio.2011.11.026] [Citation(s) in RCA: 370] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/08/2011] [Accepted: 11/23/2011] [Indexed: 12/30/2022]
|
35
|
Taylor MP, Mulako I, Tuffin M, Cowan D. Understanding physiological responses to pre-treatment inhibitors in ethanologenic fermentations. Biotechnol J 2012; 7:1169-81. [PMID: 22331581 DOI: 10.1002/biot.201100335] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 12/15/2011] [Accepted: 01/17/2012] [Indexed: 11/10/2022]
Abstract
Alcohol-based liquid fuels feature significantly in the political and social agendas of many countries, seeking energy sustainability. It is certain that ethanol will be the entry point for many sustainable processes. Conventional ethanol production using maize- and sugarcane-based carbohydrates with Saccharomyces cerevisiae is well established, while lignocellulose-based processes are receiving growing interest despite posing greater technical and scientific challenges. A significant challenge that arises from the chemical hydrolysis of lignocellulose is the generation of toxic compounds in parallel with the release of sugars. These compounds, collectively termed pre-treatment inhibitors, impair metabolic functionality and growth. Their removal, pre-fermentation or their abatement, via milder hydrolysis, are currently uneconomic options. It is widely acknowledged that a more cost effective strategy is to develop resistant process strains. Here we describe and classify common inhibitors and describe in detail the reported physiological responses that occur in second-generation strains, which include engineered yeast and mesophilic and thermophilic prokaryotes. It is suggested that a thorough understanding of tolerance to common pre-treatment inhibitors should be a major focus in ongoing strain engineering. This review is a useful resource for future metabolic engineering strategies.
Collapse
Affiliation(s)
- Mark P Taylor
- TMO Renewables Ltd., The Surrey Research Park, Guildford, UK
| | | | | | | |
Collapse
|
36
|
Crespo CF, Badshah M, Alvarez MT, Mattiasson B. Ethanol production by continuous fermentation of D-(+)-cellobiose, D-(+)-xylose and sugarcane bagasse hydrolysate using the thermoanaerobe Caloramator boliviensis. BIORESOURCE TECHNOLOGY 2012; 103:186-191. [PMID: 22055102 DOI: 10.1016/j.biortech.2011.10.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 09/19/2011] [Accepted: 10/06/2011] [Indexed: 05/31/2023]
Abstract
The recently isolated anaerobic bacterium Caloramator boliviensis with an optimum growth temperature of 60 °C can efficiently convert hexoses and pentoses into ethanol. When fermentations of pure sugars and a pentose-rich sugarcane bagasse hydrolysate were carried out in a packed bed reactor with immobilized cells of C. boliviensis, more than 98% of substrates were converted. Ethanol yields of 0.40-0.46 g/g of sugar were obtained when sugarcane bagasse hydrolysate was fermented. These features reveal interesting properties of C. boliviensis in producing ethanol from a renewable feedstock.
Collapse
Affiliation(s)
- Carla F Crespo
- Department of Biotechnology, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| | | | | | | |
Collapse
|
37
|
Thermophilic, lignocellulolytic bacteria for ethanol production: current state and perspectives. Appl Microbiol Biotechnol 2011; 92:13-27. [DOI: 10.1007/s00253-011-3456-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 06/15/2011] [Accepted: 06/15/2011] [Indexed: 10/17/2022]
|
38
|
Taylor MP, van Zyl L, Tuffin IM, Leak DJ, Cowan DA. Genetic tool development underpins recent advances in thermophilic whole-cell biocatalysts. Microb Biotechnol 2011; 4:438-48. [PMID: 21310009 PMCID: PMC3815256 DOI: 10.1111/j.1751-7915.2010.00246.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 12/07/2010] [Indexed: 11/29/2022] Open
Abstract
The environmental value of sustainably producing bioproducts from biomass is now widely appreciated, with a primary target being the economic production of fuels such as bioethanol from lignocellulose. The application of thermophilic prokaryotes is a rapidly developing niche in this field, driven by their known catabolic versatility with lignocellulose-derived carbohydrates. Fundamental to the success of this work has been the development of reliable genetic and molecular systems. These technical tools are now available to assist in the development of other (hyper)thermophilic strains with diverse phenotypes such as hemicellulolytic and cellulolytic properties, branched chain alcohol production and other 'valuable bioproduct' synthetic capabilities. Here we present an insight into the historical limitations, recent developments and current status of a number of genetic systems for thermophiles. We also highlight the value of reliable genetic methods for increasing our knowledge of thermophile physiology. We argue that the development of robust genetic systems is paramount in the evolution of future thermophilic based bioprocesses and make suggestions for future approaches and genetic targets that will facilitate this process.
Collapse
Affiliation(s)
- M. P. Taylor
- Institute for Microbial Biotechnology and Metagenomics (IMBM), University of the Western Cape, Modderdam Road, Bellville 7535, Cape Town, South Africa
- TMO Renewables Limited, 40 Alan Turing Road, The Surrey Research Park, Guildford, Surrey GU2 7YF, UK
| | - L. van Zyl
- Institute for Microbial Biotechnology and Metagenomics (IMBM), University of the Western Cape, Modderdam Road, Bellville 7535, Cape Town, South Africa
| | - I. M. Tuffin
- Institute for Microbial Biotechnology and Metagenomics (IMBM), University of the Western Cape, Modderdam Road, Bellville 7535, Cape Town, South Africa
| | - D. J. Leak
- Division of Biology, Faculty of Natural Sciences, Imperial College London, Exhibition Road, South Kensington SW7 2AZ, UK
| | - D. A. Cowan
- Institute for Microbial Biotechnology and Metagenomics (IMBM), University of the Western Cape, Modderdam Road, Bellville 7535, Cape Town, South Africa
| |
Collapse
|