1
|
Yang G, Pećanac O, Wijma HJ, Rozeboom HJ, de Gonzalo G, Fraaije MW, Mascotti ML. Evolution of the catalytic mechanism at the dawn of the Baeyer-Villiger monooxygenases. Cell Rep 2024; 43:114130. [PMID: 38640062 DOI: 10.1016/j.celrep.2024.114130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/15/2024] [Accepted: 04/04/2024] [Indexed: 04/21/2024] Open
Abstract
Enzymes are crucial for the emergence and sustenance of life on earth. How they became catalytically active during their evolution is still an open question. Two opposite explanations are plausible: acquiring a mechanism in a series of discrete steps or all at once in a single evolutionary event. Here, we use molecular phylogeny, ancestral sequence reconstruction, and biochemical characterization to follow the evolution of a specialized group of flavoprotein monooxygenases, the bacterial Baeyer-Villiger monooxygenases (BVMOs). These enzymes catalyze an intricate chemical reaction relying on three different elements: a reduced nicotinamide cofactor, dioxygen, and a substrate. Characterization of ancestral BVMOs shows that the catalytic mechanism evolved in a series of steps starting from a FAD-binding protein and further acquiring reactivity and specificity toward each of the elements participating in the reaction. Together, the results of our work portray how an intrinsically complex catalytic mechanism emerged during evolution.
Collapse
Affiliation(s)
- Guang Yang
- Molecular Enzymology Group, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Ognjen Pećanac
- Molecular Enzymology Group, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Hein J Wijma
- Molecular Enzymology Group, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Henriëtte J Rozeboom
- Molecular Enzymology Group, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Gonzalo de Gonzalo
- Departamento de Química Orgánica, Universidad de Sevilla, and Centro de Innovación en Química Avanzada (ORFEO-CINQA), 41012 Sevilla, Spain
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Maria Laura Mascotti
- Molecular Enzymology Group, University of Groningen, 9747 AG Groningen, the Netherlands; IMIBIO-SL CONICET, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina.
| |
Collapse
|
2
|
Núñez-Navarro N, Salazar Muñoz J, Castillo F, Ramírez-Sarmiento CA, Poblete-Castro I, Zacconi FC, Parra LP. Discovery of New Phenylacetone Monooxygenase Variants for the Development of Substituted Indigoids through Biocatalysis. Int J Mol Sci 2022; 23:ijms232012544. [PMID: 36293414 PMCID: PMC9604523 DOI: 10.3390/ijms232012544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/15/2022] [Accepted: 10/16/2022] [Indexed: 11/16/2022] Open
Abstract
Indigoids are natural pigments obtained from plants by ancient cultures. Romans used them mainly as dyes, whereas Asian cultures applied these compounds as treatment agents for several diseases. In the modern era, the chemical industry has made it possible to identify and develop synthetic routes to obtain them from petroleum derivatives. However, these processes require high temperatures and pressures and large amounts of solvents, acids, and alkali agents. Thus, enzyme engineering and the development of bacteria as whole-cell biocatalysts emerges as a promising green alternative to avoid the use of these hazardous materials and consequently prevent toxic waste generation. In this research, we obtained two novel variants of phenylacetone monooxygenase (PAMO) by iterative saturation mutagenesis. Heterologous expression of these two enzymes, called PAMOHPCD and PAMOHPED, in E. coli was serendipitously found to produce indigoids. These interesting results encourage us to characterize the thermal stability and enzyme kinetics of these new variants and to evaluate indigo and indirubin production in a whole-cell system by HPLC. The highest yields were obtained with PAMOHPCD supplemented with L-tryptophan, producing ~3000 mg/L indigo and ~130.0 mg/L indirubin. Additionally, both enzymes could oxidize and produce several indigo derivatives from substituted indoles, with PAMOHPCD being able to produce the well-known Tyrian purple. Our results indicate that the PAMO variants described herein have potential application in the textile, pharmaceutics, and semiconductors industries, prompting the use of environmentally friendly strategies to obtain a diverse variety of indigoids.
Collapse
Affiliation(s)
- Nicolás Núñez-Navarro
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Javier Salazar Muñoz
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Center for Nanomedicine, Diagnostic & Drug Development (ND3), Universidad de Talca, Talca 3460000, Chile
| | - Francisco Castillo
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - César A. Ramírez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
| | - Ignacio Poblete-Castro
- Biosystems Engineering Laboratory, Department of Chemical and Bioprocess Engineering, Universidad de Santiago de Chile (USACH), Santiago 8350709, Chile
| | - Flavia C. Zacconi
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Center for Nanomedicine, Diagnostic & Drug Development (ND3), Universidad de Talca, Talca 3460000, Chile
- Correspondence: (F.C.Z.); (L.P.P.)
| | - Loreto P. Parra
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Correspondence: (F.C.Z.); (L.P.P.)
| |
Collapse
|
3
|
Phelan RM, Abrahamson MJ, Brown JTC, Zhang RK, Zwick CR. Development of Scalable Processes with Underutilized Biocatalyst Classes. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ryan M. Phelan
- Process Research and Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Michael J. Abrahamson
- Operations Science and Technology, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Jesse T. C. Brown
- Process Research and Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Ruijie K. Zhang
- Discovery Chemistry and Technology, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Christian R. Zwick
- Process Research and Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| |
Collapse
|
4
|
Liu F, Shou C, Geng Q, Zhao C, Xu J, Yu H. A Baeyer-Villiger monooxygenase from Cupriavidus basilensis catalyzes asymmetric synthesis of (R)-lansoprazole and other pharmaco-sulfoxides. Appl Microbiol Biotechnol 2021; 105:3169-3180. [PMID: 33779786 DOI: 10.1007/s00253-021-11230-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 12/25/2022]
Abstract
Biocatalytic synthesis of pharmaco-chiral sulfoxides has gained interest in recent years for its environmental friendliness. However, only a few natural biocatalysts can be used for the efficient synthesis of pharmaco-sulfoxides, including (R)-lansoprazole, a chiral proton pump inhibitor used to treat gastrointestinal diseases. In this study, the sequence of BoBVMO (Baeyer-Villiger monooxygenase from Bradyrhizobium oligotrophicum) was used as a probe to identify BVMOs via genomic mining for the highly efficient synthesis of (R)-lansoprazole and other pharmaco-sulfoxides. After virtual sequence filtering, target gene cloning, heterologous expression, and activity screening for lansoprazole sulfide (LPS) monooxygenation, seven new BVMOs were identified among more than 10,000 homologous BVMOs. According to the conserved sequence and phylogenetic tree analysis, these discovered enzymes belong to the family of type I BVMOs and the ethionamide monooxygenase subtype. Among them, CbBVMO, Baeyer-Villiger monooxygenase from Cupriavidus basilensis, showed the highest efficiency and excellent enantioselectivity for converting LPS into (R)-lansoprazole. Moreover, CbBVMO showed a wide substrate spectrum toward other bulky prazole-family sulfides. The results indicate that CbBVMO is a potential enzyme for extending the application of BVMOs in pharmaceutical industry. KEY POINTS: • CbBVMO is the most efficient biocatalyst for (R)-lansoprazole biosynthesis. • CbBVMO catalyzes the conversion of various bulky prazole sulfides. • CbBVMO is a promising enzyme for the biosynthesis of pharmaco-sulfoxides.
Collapse
Affiliation(s)
- Feng Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing and School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Chao Shou
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing and School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Qiang Geng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing and School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Chen Zhao
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing and School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jianhe Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing and School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Huilei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing and School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
5
|
Fournié M, Truan G. Multiplicity of carotene patterns derives from competition between phytoene desaturase diversification and biological environments. Sci Rep 2020; 10:21106. [PMID: 33273560 PMCID: PMC7713294 DOI: 10.1038/s41598-020-77876-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 11/11/2020] [Indexed: 11/18/2022] Open
Abstract
Phytoene desaturases catalyse from two to six desaturation reactions on phytoene, generating a large diversity of molecules that can then be cyclised and produce, depending on the organism, many different carotenoids. We constructed a phylogenetic tree of a subset of phytoene desaturases from the CrtI family for which functional data was available. We expressed in a bacterial system eight codon optimized CrtI enzymes from different clades. Analysis of the phytoene desaturation reactions on crude extracts showed that three CrtI enzymes can catalyse up to six desaturations, forming tetradehydrolycopene. Kinetic data generated using a subset of five purified enzymes demonstrate the existence of characteristic patterns of desaturated molecules associated with various CrtI clades. The kinetic data was also analysed using a classical Michaelis–Menten kinetic model, showing that variations in the reaction rates and binding constants could explain the various carotene patterns observed. Competition between lycopene cyclase and the phytoene desaturases modified the distribution between carotene intermediates when expressed in yeast in the context of the full β-carotene production pathway. Our results demonstrate that the desaturation patterns of carotene molecules in various biological environments cannot be fully inferred from phytoene desaturases classification but is governed both by evolutionary-linked variations in the desaturation rates and competition between desaturation and cyclisation steps.
Collapse
Affiliation(s)
- Mathieu Fournié
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.,Adisseo France S.A.S., 10 place du Général de Gaulle, 92160, Anthony, France.,Groupe Avril, 11 Rue de Monceau, 75378, Paris, Cedex 08, France
| | - Gilles Truan
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.
| |
Collapse
|
6
|
Schmidt S, Bornscheuer UT. Baeyer-Villiger monooxygenases: From protein engineering to biocatalytic applications. FLAVIN-DEPENDENT ENZYMES: MECHANISMS, STRUCTURES AND APPLICATIONS 2020; 47:231-281. [DOI: 10.1016/bs.enz.2020.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Fürst MJLJ, Gran-Scheuch A, Aalbers FS, Fraaije MW. Baeyer–Villiger Monooxygenases: Tunable Oxidative Biocatalysts. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03396] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Maximilian J. L. J. Fürst
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
| | - Alejandro Gran-Scheuch
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
- Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago 7820436, Chile
| | - Friso S. Aalbers
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
| | - Marco W. Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
| |
Collapse
|
8
|
Efficient Synthesis of Methyl 3-Acetoxypropionate by a Newly Identified Baeyer-Villiger Monooxygenase. Appl Environ Microbiol 2019; 85:AEM.00239-19. [PMID: 30926727 DOI: 10.1128/aem.00239-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/24/2019] [Indexed: 11/20/2022] Open
Abstract
Baeyer-Villiger monooxygenases (BVMOs) are an emerging class of promising biocatalysts for the oxidation of ketones to prepare corresponding esters or lactones. Although many BVMOs have been reported, the development of highly efficient enzymes for use in industrial applications is desirable. In this work, we identified a BVMO from Rhodococcus pyridinivorans (BVMORp) with a high affinity toward aliphatic methyl ketones (Km < 3.0 μM). The enzyme was highly soluble and relatively stable, with a half-life of 23 h at 30°C and pH 7.5. The most effective substrate discovered so far is 2-hexanone (k cat = 2.1 s-1; Km = 1.5 μM). Furthermore, BVMORp exhibited excellent regioselectivity toward most aliphatic ketones, preferentially forming typical (i.e., normal) products. Using the newly identified BVMORp as the catalyst, a high concentration (26.0 g/liter; 200 mM) of methyl levulinate was completely converted to methyl 3-acetoxypropionate after 4 h, with a space-time yield of 5.4 g liter-1 h-1 Thus, BVMORp is a promising biocatalyst for the synthesis of 3-hydroxypropionate from readily available biobased levulinate to replace the conventional fermentation.IMPORTANCE BVMOs are emerging as a green alternative to traditional oxidants in the BV oxidation of ketones. Although many BVMOs are discovered and used in organic synthesis, few are really applied in industry, especially in the case of aliphatic ketones. Herein, a highly soluble and relatively stable monooxygenase from Rhodococcus pyridinivorans (BVMORp) was identified with high activity and excellent regioselectivity toward most aliphatic ketones. BVMORp possesses unusually high substrate loading during the catalysis of the oxidation of biobased methyl levulinate to 3-hydroxypropionic acid derivatives. This study indicates that the synthesis of 3-hydroxypropionate from readily available biobased levulinate by BVMORp-catalyzed oxidation holds great promise to replace traditional fermentation.
Collapse
|
9
|
Akiyama H, Indananda C, Thamchaipenet A, Motojima A, Oikawa T, Komaki H, Hosoyama A, Kimura A, Oku N, Igarashi Y. Linfuranones B and C, Furanone-Containing Polyketides from a Plant-Associated Sphaerimonospora mesophila. JOURNAL OF NATURAL PRODUCTS 2018; 81:1561-1569. [PMID: 29939741 DOI: 10.1021/acs.jnatprod.8b00071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Two new furanone-containing polyketides, linfuranones B and C, were isolated from a plant-associated actinomycete of the genus Sphaerimonospora. Their structures were determined by NMR and MS spectroscopic analyses, and the absolute configurations were established by anisotropic methods and chemical degradation approaches. In silico analysis of biosynthetic genes suggested that linfuranone B is generated from linfuranone C by oxidative cleavage of the polyketide chain. Linfuranones B and C induced preadipocyte differentiation into matured adipocytes at 20-40 μM without showing cytotoxicity.
Collapse
Affiliation(s)
- Hirofumi Akiyama
- Biotechnology Research Center , Toyama Prefectural University , Imizu , Toyama 939-0398 , Japan
| | - Chantra Indananda
- Department of Biology, Faculty of Science , Burapha University , Chonburi 20131 , Thailand
| | - Arinthip Thamchaipenet
- Actinobacteria Research Unit, Department of Genetics, Faculty of Science , Kasetsart University , Bangkok 10900 , Thailand
| | - Atsuko Motojima
- Department of Nutritional Biochemistry, School of Nutrition and Dietetics , Kanagawa University of Human Services , Yokosuka , Kanagawa 238-8522 , Japan
| | - Tsutomu Oikawa
- Department of Nutritional Biochemistry, School of Nutrition and Dietetics , Kanagawa University of Human Services , Yokosuka , Kanagawa 238-8522 , Japan
| | - Hisayuki Komaki
- Biological Resource Center , National Institute of Technology and Evaluation (NBRC) , Kisarazu , Chiba 292-0818 , Japan
| | | | | | - Naoya Oku
- Biotechnology Research Center , Toyama Prefectural University , Imizu , Toyama 939-0398 , Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center , Toyama Prefectural University , Imizu , Toyama 939-0398 , Japan
| |
Collapse
|
10
|
Chánique AM, Parra LP. Protein Engineering for Nicotinamide Coenzyme Specificity in Oxidoreductases: Attempts and Challenges. Front Microbiol 2018; 9:194. [PMID: 29491854 PMCID: PMC5817062 DOI: 10.3389/fmicb.2018.00194] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/29/2018] [Indexed: 01/10/2023] Open
Abstract
Oxidoreductases are ubiquitous enzymes that catalyze an extensive range of chemical reactions with great specificity, efficiency, and selectivity. Most oxidoreductases are nicotinamide cofactor-dependent enzymes with a strong preference for NADP or NAD. Because these coenzymes differ in stability, bioavailability and costs, the enzyme preference for a specific coenzyme is an important issue for practical applications. Different approaches for the manipulation of coenzyme specificity have been reported, with different degrees of success. Here we present various attempts for the switching of nicotinamide coenzyme preference in oxidoreductases by protein engineering. This review covers 103 enzyme engineering studies from 82 articles and evaluates the accomplishments in terms of coenzyme specificity and catalytic efficiency compared to wild type enzymes of different classes. We analyzed different protein engineering strategies and related them with the degree of success in inverting the cofactor specificity. In general, catalytic activity is compromised when coenzyme specificity is reversed, however when switching from NAD to NADP, better results are obtained. In most of the cases, rational strategies were used, predominantly with loop exchange generating the best results. In general, the tendency of removing acidic residues and incorporating basic residues is the strategy of choice when trying to change specificity from NAD to NADP, and vice versa. Computational strategies and algorithms are also covered as helpful tools to guide protein engineering strategies. This mini review aims to give a general introduction to the topic, giving an overview of tools and information to work in protein engineering for the reversal of coenzyme specificity.
Collapse
Affiliation(s)
- Andrea M Chánique
- Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Loreto P Parra
- Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.,Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
11
|
Bordewick S, Beier A, Balke K, Bornscheuer UT. Baeyer-Villiger monooxygenases from Yarrowia lipolytica catalyze preferentially sulfoxidations. Enzyme Microb Technol 2018; 109:31-42. [DOI: 10.1016/j.enzmictec.2017.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/18/2017] [Accepted: 09/19/2017] [Indexed: 12/14/2022]
|
12
|
Balke K, Beier A, Bornscheuer UT. Hot spots for the protein engineering of Baeyer-Villiger monooxygenases. Biotechnol Adv 2018; 36:247-263. [DOI: 10.1016/j.biotechadv.2017.11.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 10/18/2022]
|
13
|
Lou D, Wang Y, Tan J, Zhu L, Ji S, Wang B. Functional contribution of coenzyme specificity-determining sites of 7α-hydroxysteroid dehydrogenase from Clostridium absonum. Comput Biol Chem 2017; 70:89-95. [PMID: 28826103 DOI: 10.1016/j.compbiolchem.2017.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 05/25/2017] [Accepted: 08/06/2017] [Indexed: 10/19/2022]
Abstract
Studies of the molecular determinants of coenzyme specificity help to reveal the structure-function relationship of enzymes, especially with regards to coenzyme specificity-determining sites (CSDSs) that usually mediate complex interactions. NADP(H)-dependent 7α-hydroxysteroid dehydrogenase from Clostridium absonum (CA 7α-HSDH), a member of the short-chain dehydrogenase/reductase superfamily (SDRs), possesses positively charged CSDSs that mainly contain T15, R16, R38, and R194, forming complicated polar interactions with the adenosine ribose C2 phosphate group of NADP(H). The R38 residue is crucial for coenzyme anchoring, but the influence of the other residues on coenzyme utilization is still not clear. Hence, we performed alanine scanning mutagenesis and molecular dynamic (MD) simulations. The results suggest that the natural CSDSs have the greatest NADP(H)-binding affinity, but not the best activity (kcat) toward NADP+. Compared with the wild type and other mutants, the mutant R194A showed the highest catalytic efficiency (kcat/Km), which was more than three-times that of the wild type. MD simulation and kinetics analysis suggested that the importance of the CSDSs of CA 7α-HSDH should be in accordance with the following order R38>T15>R16>R194, and S39 may have a supporting role in NADP(H) anchoring for mutants R16A/T194A and T15A/R16A/T194A.
Collapse
Affiliation(s)
- Deshuai Lou
- Postdoctoral Research Station of Biology, Chongqing University, Chongqing 400030, China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Yue Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological & Chemical engineering, Chongqing University of Education, Chongqing 400067, China.
| | - Liancai Zhu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Shunlin Ji
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
14
|
Balke K, Bäumgen M, Bornscheuer UT. Controlling the Regioselectivity of Baeyer-Villiger Monooxygenases by Mutation of Active-Site Residues. Chembiochem 2017; 18:1627-1638. [PMID: 28504873 DOI: 10.1002/cbic.201700223] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Indexed: 11/12/2022]
Abstract
Baeyer-Villiger monooxygenase (BVMO)-mediated regiodivergent conversions of asymmetric ketones can lead to the formation of "normal" or "abnormal" lactones. In a previous study, we were able to change the regioselectivity of a BVMO by mutation of the active-site residues to smaller amino acids, which thus created more space. In this study, we demonstrate that this method can also be used for other BVMO/substrate combinations. We investigated the regioselectivity of 2-oxo-Δ3 -4,5,5-trimethylcyclopentenylacetyl-CoA monooxygenase from Pseudomonas putida (OTEMO) for cis-bicyclo[3.2.0]hept-2-en-6-one (1) and trans-dihydrocarvone (2), and we were able to switch the regioselectivity of this enzyme for one of the substrate enantiomers. The OTEMO wild-type enzyme converted (-)-1 into an equal (50:50) mixture of the normal and abnormal products. The F255A/F443V variant produced 90 % of the normal product, whereas the W501V variant formed up to 98 % of the abnormal product. OTEMO F255A exclusively produced the normal lactone from (+)-2, whereas the wild-type enzyme was selective for the production of the abnormal product. The positions of these amino acids were equivalent to those mutated in the cyclohexanone monooxygenases from Arthrobacter sp. and Acinetobacter sp. (CHMOArthro and CHMOAcineto ) to switch their regioselectivity towards (+)-2, which suggests that there are hot spots in the active site of BVMOs that can be targeted with the aim to change the regioselectivity.
Collapse
Affiliation(s)
- Kathleen Balke
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Strasse 4, 17487, Greifswald, Germany
| | - Marcus Bäumgen
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Strasse 4, 17487, Greifswald, Germany
| | - Uwe T Bornscheuer
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Strasse 4, 17487, Greifswald, Germany
| |
Collapse
|
15
|
Huang L, Romero E, Ressmann AK, Rudroff F, Hollmann F, Fraaije MW, Kara S. Nicotinamide Adenine Dinucleotide-Dependent Redox-Neutral Convergent Cascade for Lactonizations with Type II Flavin-Containing Monooxygenase. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700401] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lei Huang
- Institute of Technical Biocatalysis; Hamburg University of Technology; Denickestr. 15 21073 Hamburg Germany
| | - Elvira Romero
- Molecular Enzymology Group; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Anna K. Ressmann
- Institute of Applied Synthetic Chemistry; TU Wien; Getreidemarkt 9/163-OC 1060 Vienna Austria
| | - Florian Rudroff
- Institute of Applied Synthetic Chemistry; TU Wien; Getreidemarkt 9/163-OC 1060 Vienna Austria
| | - Frank Hollmann
- Biocatalysis; Department of Biotechnology; Delft University of Technology; Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Marco W. Fraaije
- Molecular Enzymology Group; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Selin Kara
- Institute of Technical Biocatalysis; Hamburg University of Technology; Denickestr. 15 21073 Hamburg Germany
| |
Collapse
|
16
|
Li G, Fürst MJLJ, Mansouri HR, Ressmann AK, Ilie A, Rudroff F, Mihovilovic MD, Fraaije MW, Reetz MT. Manipulating the stereoselectivity of the thermostable Baeyer–Villiger monooxygenase TmCHMO by directed evolution. Org Biomol Chem 2017; 15:9824-9829. [DOI: 10.1039/c7ob02692g] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The thermostable Baeyer–Villiger monooxygenase TmCHMO and evolved mutants are viable catalysts in stereoselective reactions of structurally different ketones.
Collapse
Affiliation(s)
- Guangyue Li
- Max-Planck-Institut für Kohlenforschung
- Mülheim an der Ruhr
- Germany
- Fachbereich Chemie
- Philipps-Universität
| | | | | | - Anna K. Ressmann
- Institute of Applied Synthetic Chemistry
- TU Wien
- 1060 Vienna
- Austria
| | - Adriana Ilie
- Max-Planck-Institut für Kohlenforschung
- Mülheim an der Ruhr
- Germany
- Fachbereich Chemie
- Philipps-Universität
| | - Florian Rudroff
- Institute of Applied Synthetic Chemistry
- TU Wien
- 1060 Vienna
- Austria
| | | | - Marco W. Fraaije
- Molecular Enzymology Group
- University of Groningen
- 9747 AG Groningen
- The Netherlands
| | - Manfred T. Reetz
- Max-Planck-Institut für Kohlenforschung
- Mülheim an der Ruhr
- Germany
- Fachbereich Chemie
- Philipps-Universität
| |
Collapse
|
17
|
Beier A, Bordewick S, Genz M, Schmidt S, van den Bergh T, Peters C, Joosten HJ, Bornscheuer UT. Switch in Cofactor Specificity of a Baeyer-Villiger Monooxygenase. Chembiochem 2016; 17:2312-2315. [PMID: 27735116 DOI: 10.1002/cbic.201600484] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Indexed: 11/05/2022]
Abstract
Baeyer-Villiger monooxygenases (BVMOs) catalyze the oxidation of ketones to esters or lactones by using molecular oxygen and a cofactor. Type I BVMOs display a strong preference for NADPH. However, for industrial purposes NADH is the preferred cofactor, as it is ten times cheaper and more stable. Thus, we created a variant of the cyclohexanone monooxygenase from Acinetobacter sp. NCIMB 9871 (CHMOAcineto ); this used NADH 4200-fold better than NADPH. By combining structure analysis, sequence alignment, and literature data, 21 residues in proximity of the cofactor were identified and targeted for mutagenesis. Two combinatorial variants bearing three or four mutations showed higher conversions of cyclohexanone with NADH (79 %) compared to NADPH (58 %) as well as specificity. The structural reasons for this switch in cofactor specificity of a type I BVMO are especially a hydrogen-bond network coordinating the two hydroxy groups of NADH through direct interactions and bridging water molecules.
Collapse
Affiliation(s)
- Andy Beier
- Institute of Biochemistry, Department of Biotechnology and Enzyme Catalysis, Greifswald University, Felix-Hausdorff-Strasse 4, 17487, Greifswald, Germany
| | - Sven Bordewick
- Institute of Biochemistry, Department of Biotechnology and Enzyme Catalysis, Greifswald University, Felix-Hausdorff-Strasse 4, 17487, Greifswald, Germany
| | - Maika Genz
- Institute of Biochemistry, Department of Biotechnology and Enzyme Catalysis, Greifswald University, Felix-Hausdorff-Strasse 4, 17487, Greifswald, Germany
| | - Sandy Schmidt
- Institute of Biochemistry, Department of Biotechnology and Enzyme Catalysis, Greifswald University, Felix-Hausdorff-Strasse 4, 17487, Greifswald, Germany
| | - Tom van den Bergh
- Bio-Prodict, Nieuwe Marktstraat 54E, 6511 AA, Nijmegen, The Netherlands
| | - Christin Peters
- Institute of Biochemistry, Department of Biotechnology and Enzyme Catalysis, Greifswald University, Felix-Hausdorff-Strasse 4, 17487, Greifswald, Germany
| | - Henk-Jan Joosten
- Bio-Prodict, Nieuwe Marktstraat 54E, 6511 AA, Nijmegen, The Netherlands
| | - Uwe T Bornscheuer
- Institute of Biochemistry, Department of Biotechnology and Enzyme Catalysis, Greifswald University, Felix-Hausdorff-Strasse 4, 17487, Greifswald, Germany
| |
Collapse
|
18
|
Krzek M, van Beek HL, Permentier HP, Bischoff R, Fraaije MW. Covalent immobilization of a flavoprotein monooxygenase via its flavin cofactor. Enzyme Microb Technol 2015; 82:138-143. [PMID: 26672460 DOI: 10.1016/j.enzmictec.2015.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 09/17/2015] [Accepted: 09/24/2015] [Indexed: 12/11/2022]
Abstract
A generic approach for flavoenzyme immobilization was developed in which the flavin cofactor is used for anchoring enzymes onto the carrier. It exploits the tight binding of flavin cofactors to their target apo proteins. The method was tested for phenylacetone monooxygenase (PAMO) which is a well-studied and industrially interesting biocatalyst. Also a fusion protein was tested: PAMO fused to phosphite dehydrogenase (PTDH-PAMO). The employed flavin cofactor derivative, N6-(6-carboxyhexyl)-FAD succinimidylester (FAD*), was covalently anchored to agarose beads and served for apo enzyme immobilization by their reconstitution into holo enzymes. The thus immobilized enzymes retained their activity and remained active after several rounds of catalysis. For both tested enzymes, the generated agarose beads contained 3 U per g of dry resin. Notably, FAD-immobilized PAMO was found to be more thermostable (40% activity after 1 h at 60 °C) when compared to PAMO in solution (no activity detected after 1 h at 60 °C). The FAD-decorated agarose material could be easily recycled allowing multiple rounds of immobilization. This method allows an efficient and selective immobilization of flavoproteins via the FAD flavin cofactor onto a recyclable carrier.
Collapse
Affiliation(s)
- Marzena Krzek
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands.
| | - Hugo L van Beek
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands.
| | - Hjalmar P Permentier
- University of Groningen, Department of Pharmacy, Analytical Biochemistry, Antonius-Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Rainer Bischoff
- University of Groningen, Department of Pharmacy, Analytical Biochemistry, Antonius-Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands.
| |
Collapse
|
19
|
Butinar L, Mohorčič M, Deyris V, Duquesne K, Iacazio G, Claeys-Bruno M, Friedrich J, Alphand V. Prevalence and specificity of Baeyer-Villiger monooxygenases in fungi. PHYTOCHEMISTRY 2015; 117:144-153. [PMID: 26083454 DOI: 10.1016/j.phytochem.2015.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 06/02/2015] [Accepted: 06/04/2015] [Indexed: 06/04/2023]
Abstract
Out of 107 fungal strains belonging to three phyla (Ascomycota, Basidiomycota and Zygomycota) and 46 genera, 86 exhibited Baeyer-Villiger monooxygenase (BVMO) activity against racemic bicyclo[3.2.0]heptenone. The strains were classified into three "profiles" based on regio- and enantioselectivity. Statistical analyses of our results, extended by literature data, showed that these profiles could be related to the taxonomic classification of the strains, and suggest that the BVMOs from the Zygomycota phylum may be different in their primary structures from established ones.
Collapse
Affiliation(s)
- Lorena Butinar
- Laboratory of Biotechnology, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | - Martina Mohorčič
- Laboratory of Biotechnology, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | - Valérie Deyris
- Aix Marseille Université, Centrale Marseille, CNRS, Institut des Sciences Moléculaires de Marseille UMR7313, 13397 Marseille, France
| | - Katia Duquesne
- Aix Marseille Université, Centrale Marseille, CNRS, Institut des Sciences Moléculaires de Marseille UMR7313, 13397 Marseille, France
| | - Gilles Iacazio
- Aix Marseille Université, Centrale Marseille, CNRS, Institut des Sciences Moléculaires de Marseille UMR7313, 13397 Marseille, France
| | - Magalie Claeys-Bruno
- Aix Marseille Université, Laboratoire d'Instrumentation et de Sciences Analytiques EA 4672, 13397 Marseille, France
| | - Josepha Friedrich
- Laboratory of Biotechnology, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | - Véronique Alphand
- Aix Marseille Université, Centrale Marseille, CNRS, Institut des Sciences Moléculaires de Marseille UMR7313, 13397 Marseille, France.
| |
Collapse
|
20
|
Binda C, Robinson RM, Martin Del Campo JS, Keul ND, Rodriguez PJ, Robinson HH, Mattevi A, Sobrado P. An unprecedented NADPH domain conformation in lysine monooxygenase NbtG provides insights into uncoupling of oxygen consumption from substrate hydroxylation. J Biol Chem 2015; 290:12676-88. [PMID: 25802330 DOI: 10.1074/jbc.m114.629485] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Indexed: 01/01/2023] Open
Abstract
N-Hydroxylating monooxygenases are involved in the biosynthesis of iron-chelating hydroxamate-containing siderophores that play a role in microbial virulence. These flavoenzymes catalyze the NADPH- and oxygen-dependent hydroxylation of amines such as those found on the side chains of lysine and ornithine. In this work we report the biochemical and structural characterization of Nocardia farcinica Lys monooxygenase (NbtG), which has similar biochemical properties to mycobacterial homologs. NbtG is also active on d-Lys, although it binds l-Lys with a higher affinity. Differently from the ornithine monooxygenases PvdA, SidA, and KtzI, NbtG can use both NADH and NADPH and is highly uncoupled, producing more superoxide and hydrogen peroxide than hydroxylated Lys. The crystal structure of NbtG solved at 2.4 Å resolution revealed an unexpected protein conformation with a 30° rotation of the NAD(P)H domain with respect to the flavin adenine dinucleotide (FAD) domain that precludes binding of the nicotinamide cofactor. This "occluded" structure may explain the biochemical properties of NbtG, specifically with regard to the substantial uncoupling and limited stabilization of the C4a-hydroperoxyflavin intermediate. Biological implications of these findings are discussed.
Collapse
Affiliation(s)
- Claudia Binda
- From the Department of Biology and Biotechnology, University of Pavia, Pavia 27100, Italy
| | - Reeder M Robinson
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, and
| | | | - Nicholas D Keul
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, and
| | - Pedro J Rodriguez
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, and
| | - Howard H Robinson
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Andrea Mattevi
- From the Department of Biology and Biotechnology, University of Pavia, Pavia 27100, Italy,
| | - Pablo Sobrado
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, and
| |
Collapse
|
21
|
van Beek HL, Wijma HJ, Fromont L, Janssen DB, Fraaije MW. Stabilization of cyclohexanone monooxygenase by a computationally designed disulfide bond spanning only one residue. FEBS Open Bio 2014; 4:168-74. [PMID: 24649397 PMCID: PMC3953729 DOI: 10.1016/j.fob.2014.01.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 01/29/2014] [Accepted: 01/29/2014] [Indexed: 11/28/2022] Open
Abstract
Cyclohexanone monooxygenase was stabilized by an in silico designed disulfide bond. Stabilizing disulfide bonds were successfully designed based on a model structure. The half-life at 30 °C was increased 12-fold for the mutant enzyme. The apparent melting point was increased by 6 °C for the mutant enzyme. The most stabilizing disulfide bond spans only one residue.
Enzyme stability is an important parameter in biocatalytic applications, and there is a strong need for efficient methods to generate robust enzymes. We investigated whether stabilizing disulfide bonds can be computationally designed based on a model structure. In our approach, unlike in previous disulfide engineering studies, short bonds spanning only a few residues were included. We used cyclohexanone monooxygenase (CHMO), a Baeyer–Villiger monooxygenase (BVMO) from Acinetobacter sp. NCIMB9871 as the target enzyme. This enzyme has been the prototype BVMO for many biocatalytic studies even though it is notoriously labile. After creating a small library of mutant enzymes with introduced cysteine pairs and subsequent screening for improved thermostability, three stabilizing disulfide bonds were identified. The introduced disulfide bonds are all within 12 Å of each other, suggesting this particular region is critical for unfolding. This study shows that stabilizing disulfide bonds do not have to span many residues, as the most stabilizing disulfide bond, L323C–A325C, spans only one residue while it stabilizes the enzyme, as shown by a 6 °C increase in its apparent melting temperature.
Collapse
Affiliation(s)
- Hugo L van Beek
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hein J Wijma
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Lucie Fromont
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Dick B Janssen
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marco W Fraaije
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
22
|
Riebel A, Fink MJ, Mihovilovic MD, Fraaije MW. Type II Flavin-Containing Monooxygenases: A New Class of Biocatalysts that Harbors Baeyer-Villiger Monooxygenases with a Relaxed Coenzyme Specificity. ChemCatChem 2013. [DOI: 10.1002/cctc.201300550] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Jensen CN, Ali ST, Allen MJ, Grogan G. Mutations of an NAD(P)H-dependent flavoprotein monooxygenase that influence cofactor promiscuity and enantioselectivity. FEBS Open Bio 2013; 3:473-8. [PMID: 24251114 PMCID: PMC3829993 DOI: 10.1016/j.fob.2013.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 09/21/2013] [Accepted: 09/23/2013] [Indexed: 11/12/2022] Open
Abstract
The flavoprotein monooxygenase (FPMO) from Stenotrophomonas maltophilia (SMFMO, Uniprot: B2FLR2) catalyses the asymmetric oxidation of thioethers and is unusual amongst FPMOs in its ability to use the non-phosphorylated cofactor NADH, as well as NADPH, for the reduction of the FAD coenzyme. In order to explore the basis for cofactor promiscuity, structure-guided mutation of two residues in the cofactor binding site, Gln193 and His194, in SMFMO were performed in an attempt to imitate the cofactor binding site of the NADPH-dependent FMO from Methylophaga aminisulfidivorans sp. SK1 (mFMO), in which structurally homologous residues Arg234 and Thr235 bind the NADPH 2′-ribose phosphate. Mutation of His194 to threonine proved most significant, with a switch in specificity from NADH to NADPH [(kcat/Km NADH)/kcat/Km NADPH) from 1.5:1 to 1:3.5, mostly as a result of a reduced Km for NADPH of approximately sevenfold in the His194Thr mutant. The structure of the Gln193Arg/His194Thr mutant revealed no substantial changes in the backbone of the enzyme or orientation of side chains resulting from mutation. Mutation of Phe52, in the vicinity of FAD, and which in mFMO is an asparagine thought to be responsible for flavin hydroperoxide stabilisation, is, in SMFMO, a determinant of enantioselectivity in sulfoxidation. Mutation of Phe52 to valine resulted in a mutant that transformed para-tolyl methyl sulfide into the (S)-sulfoxide with 32% e.e., compared to 25% (R)- for the wild type. These results shed further light both on the cofactor specificity of FPMOs, and their determinants of enantioselectivity, with a view to informing engineering studies of FPMOs in the future. SMFMO was mutated to investigate cofactor specificity and enantioselectivity. The Gln193Arg/His194Thr mutant displayed a preference for NADPH, rather than NADH. The structure of the Gln193Arg/His194Thr mutant was determined. Active site mutants were assessed for enantioselectivity in sulfoxidation reactions. The Phe52Val mutant displayed inverted enantioselectivity.
Collapse
Affiliation(s)
- Chantel N Jensen
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | | | | | | |
Collapse
|
24
|
Steiner K, Schwab H. Recent advances in rational approaches for enzyme engineering. Comput Struct Biotechnol J 2012; 2:e201209010. [PMID: 24688651 PMCID: PMC3962183 DOI: 10.5936/csbj.201209010] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 10/16/2012] [Accepted: 10/18/2012] [Indexed: 11/29/2022] Open
Abstract
Enzymes are an attractive alternative in the asymmetric syntheses of chiral building blocks. To meet the requirements of industrial biotechnology and to introduce new functionalities, the enzymes need to be optimized by protein engineering. This article specifically reviews rational approaches for enzyme engineering and de novo enzyme design involving structure-based approaches developed in recent years for improvement of the enzymes’ performance, broadened substrate range, and creation of novel functionalities to obtain products with high added value for industrial applications.
Collapse
Affiliation(s)
- Kerstin Steiner
- ACIB GmbH, (Austrian Centre of Industrial Biotechnology), c/o TU Graz, 8010 Graz, Austria
| | - Helmut Schwab
- ACIB GmbH, (Austrian Centre of Industrial Biotechnology), c/o TU Graz, 8010 Graz, Austria ; Institute of Molecular Biotechnology, TU Graz, 8010 Graz, Austria
| |
Collapse
|
25
|
Zhang ZG, Parra LP, Reetz MT. Protein Engineering of Stereoselective Baeyer-Villiger Monooxygenases. Chemistry 2012; 18:10160-72. [DOI: 10.1002/chem.201202163] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
26
|
Balke K, Kadow M, Mallin H, Sass S, Bornscheuer UT. Discovery, application and protein engineering of Baeyer-Villiger monooxygenases for organic synthesis. Org Biomol Chem 2012; 10:6249-65. [PMID: 22733152 DOI: 10.1039/c2ob25704a] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Baeyer-Villiger monooxygenases (BVMOs) are useful enzymes for organic synthesis as they enable the direct and highly regio- and stereoselective oxidation of ketones to esters or lactones simply with molecular oxygen. This contribution covers novel concepts such as searching in protein sequence databases using distinct motifs to discover new Baeyer-Villiger monooxygenases as well as high-throughput assays to facilitate protein engineering in order to improve BVMOs with respect to substrate range, enantioselectivity, thermostability and other properties. Recent examples for the application of BVMOs in synthetic organic synthesis illustrate the broad potential of these biocatalysts. Furthermore, methods to facilitate the more efficient use of BVMOs in organic synthesis by applying e.g. improved cofactor regeneration, substrate feed and in situ product removal or immobilization are covered in this perspective.
Collapse
Affiliation(s)
- Kathleen Balke
- Institute of Biochemistry, Dept of Biotechnology & Enzyme Catalysis, Greifswald University, Felix-Hausdorff-Str. 4, 17487 Greifswald, Germany
| | | | | | | | | |
Collapse
|
27
|
Leisch H, Shi R, Grosse S, Morley K, Bergeron H, Cygler M, Iwaki H, Hasegawa Y, Lau PCK. Cloning, Baeyer-Villiger biooxidations, and structures of the camphor pathway 2-oxo-Δ(3)-4,5,5-trimethylcyclopentenylacetyl-coenzyme A monooxygenase of Pseudomonas putida ATCC 17453. Appl Environ Microbiol 2012; 78:2200-12. [PMID: 22267661 PMCID: PMC3302634 DOI: 10.1128/aem.07694-11] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 01/10/2012] [Indexed: 11/20/2022] Open
Abstract
A dimeric Baeyer-Villiger monooxygenase (BVMO) catalyzing the lactonization of 2-oxo-Δ(3)-4,5,5-trimethylcyclopentenylacetyl-coenzyme A (CoA), a key intermediate in the metabolism of camphor by Pseudomonas putida ATCC 17453, had been initially characterized in 1983 by Ougham and coworkers (H. J. Ougham, D. G. Taylor, and P. W. Trudgill, J. Bacteriol. 153:140-152, 1983). Here we cloned and overexpressed the 2-oxo-Δ(3)-4,5,5-trimethylcyclopentenylacetyl-CoA monooxygenase (OTEMO) in Escherichia coli and determined its three-dimensional structure with bound flavin adenine dinucleotide (FAD) at a 1.95-Å resolution as well as with bound FAD and NADP(+) at a 2.0-Å resolution. OTEMO represents the first homodimeric type 1 BVMO structure bound to FAD/NADP(+). A comparison of several crystal forms of OTEMO bound to FAD and NADP(+) revealed a conformational plasticity of several loop regions, some of which have been implicated in contributing to the substrate specificity profile of structurally related BVMOs. Substrate specificity studies confirmed that the 2-oxo-Δ(3)-4,5,5-trimethylcyclopentenylacetic acid coenzyme A ester is preferred over the free acid. However, the catalytic efficiency (k(cat)/K(m)) favors 2-n-hexyl cyclopentanone (4.3 × 10(5) M(-1) s(-1)) as a substrate, although its affinity (K(m) = 32 μM) was lower than that of the CoA-activated substrate (K(m) = 18 μM). In whole-cell biotransformation experiments, OTEMO showed a unique enantiocomplementarity to the action of the prototypical cyclohexanone monooxygenase (CHMO) and appeared to be particularly useful for the oxidation of 4-substituted cyclohexanones. Overall, this work extends our understanding of the molecular structure and mechanistic complexity of the type 1 family of BVMOs and expands the catalytic repertoire of one of its original members.
Collapse
Affiliation(s)
- Hannes Leisch
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
| | - Rong Shi
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Stephan Grosse
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
| | - Krista Morley
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
| | - Hélène Bergeron
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
| | - Miroslaw Cygler
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Hiroaki Iwaki
- Department of Life Science and Biotechnology and ORDIST, Kansai University, Suita, Osaka, Japan
| | - Yoshie Hasegawa
- Department of Life Science and Biotechnology and ORDIST, Kansai University, Suita, Osaka, Japan
| | - Peter C. K. Lau
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
- Departments of Chemistry and Microbiology & Immunology, McGill University, Montreal, Quebec, Canada, and FRQNT Centre in Green Chemistry and Catalysis, Montreal, Quebec, Canada
| |
Collapse
|
28
|
Jensen CN, Cartwright J, Ward J, Hart S, Turkenburg JP, Ali ST, Allen MJ, Grogan G. A flavoprotein monooxygenase that catalyses a Baeyer-Villiger reaction and thioether oxidation using NADH as the nicotinamide cofactor. Chembiochem 2012; 13:872-8. [PMID: 22416037 DOI: 10.1002/cbic.201200006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Indexed: 11/10/2022]
Abstract
A gene from the marine bacterium Stenotrophomonas maltophilia encodes a 38.6 kDa FAD-containing flavoprotein (Uniprot B2FLR2) named S. maltophilia flavin-containing monooxygenase (SMFMO), which catalyses the oxidation of thioethers and also the regioselective Baeyer-Villiger oxidation of the model substrate bicyclo[3.2.0]hept-2-en-6-one. The enzyme was unusual in its ability to employ either NADH or NADPH as nicotinamide cofactor. The K(M) and k(cat) values for NADH were 23.7±9.1 μM and 0.029 s(-1) and 27.3±5.3 μM and 0.022 s(-1) for NADPH. However, k(cat) /K(M) value for the ketone substrate in the presence of 100 μM cofactor was 17 times greater for NADH than for NADPH. SMFMO catalysed the quantitative conversion of 5 mM ketone in the presence of substoichiometric concentrations of NADH with the formate dehydrogenase cofactor recycling system, to give the 2-oxa and 3-oxa lactone products of Baeyer-Villiger reaction in a ratio of 5:1, albeit with poor enantioselectivity. The conversion with NADPH was 15 %. SMFMO also catalysed the NADH-dependent transformation of prochiral aromatic thioethers, giving in the best case, 80 % ee for the transformation of p-chlorophenyl methyl sulfide to its R enantiomer. The structure of SMFMO reveals that the relaxation in cofactor specificity appears to be accomplished by the substitution of an arginine residue, responsible for recognition of the 2'-phosphate on the NADPH ribose in related NADPH-dependent FMOs, with a glutamine residue in SMFMO. SMFMO is thus representative of a separate class of single-component, flavoprotein monooxygenases that catalyse NADH-dependent oxidations from which possible sequences and strategies for developing NADH-dependent biocatalysts for asymmetric oxygenation reactions might be identified.
Collapse
Affiliation(s)
- Chantel N Jensen
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Willetts A, Joint I, Gilbert JA, Trimble W, Mühling M. Isolation and initial characterization of a novel type of Baeyer-Villiger monooxygenase activity from a marine microorganism. Microb Biotechnol 2012; 5:549-59. [PMID: 22414193 PMCID: PMC3815331 DOI: 10.1111/j.1751-7915.2012.00337.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A novel type of Baeyer–Villiger monooxygenase (BVMO) has been found in a marine strain of Stenotrophomonas maltophila strain PML168 that was isolated from a temperate intertidal zone. The enzyme is able to use NADH as the source of reducing power necessary to accept the atom of diatomic oxygen not incorporated into the oxyfunctionalized substrate. Growth studies have establish that the enzyme is inducible, appears to serve a catabolic role, and is specifically induced by one or more unidentified components of seawater as well as various anthropogenic xenobiotic compounds. A blast search of the primary sequence of the enzyme, recovered from the genomic sequence of the isolate, has placed this atypical BVMO in the context of the several hundred known members of the flavoprotein monooxygenase superfamily. A particular feature of this BVMO lies in its truncated C‐terminal domain, which results in a relatively small protein (357 amino acids; 38.4 kDa). In addition, metagenomic screening has been conducted on DNA recovered from an extensive range of marine environmental samples to gauge the relative abundance and distribution of similar enzymes within the global marine microbial community. Although low, abundance was detected in samples from many marine provinces, confirming the potential for biodiscovery in marine microorganisms.
Collapse
Affiliation(s)
- Andrew Willetts
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, UK.
| | | | | | | | | |
Collapse
|
30
|
de Gonzalo G, Rodríguez C, Rioz-Martínez A, Gotor V. Improvement of the biocatalytic properties of one phenylacetone monooxygenase mutant in hydrophilic organic solvents. Enzyme Microb Technol 2011; 50:43-9. [PMID: 22133439 DOI: 10.1016/j.enzmictec.2011.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 09/09/2011] [Accepted: 09/12/2011] [Indexed: 10/17/2022]
Abstract
The presence of different hydrophilic organic solvents or a water soluble polymer such as PEG 4000 led to an enhancement in the enzymatic activity of the M446G mutant of phenylacetone monooxygenase when it is employed in enantioselective sulfoxidations and Baeyer-Villiger reactions. By solvent engineering new substrates were found to be effectively converted by this Baeyer-Villiger monooxygenase. The use of 5% methanol together with the weak anion exchange resin Lewatit MP62 also allows the dynamic kinetic resolution of a set of racemic benzylketones. By this approach (S)-benzylesters could be obtained with high yields and optical purities.
Collapse
Affiliation(s)
- Gonzalo de Gonzalo
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, c/Julián Clavería 8, 33006 Oviedo, Spain.
| | | | | | | |
Collapse
|
31
|
Dudek HM, de Gonzalo G, Torres Pazmiño DE, Stępniak P, Wyrwicz LS, Rychlewski L, Fraaije MW. Mapping the substrate binding site of phenylacetone monooxygenase from Thermobifida fusca by mutational analysis. Appl Environ Microbiol 2011; 77:5730-8. [PMID: 21724896 PMCID: PMC3165276 DOI: 10.1128/aem.00687-11] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Accepted: 06/18/2011] [Indexed: 11/20/2022] Open
Abstract
Baeyer-Villiger monooxygenases catalyze oxidations that are of interest for biocatalytic applications. Among these enzymes, phenylacetone monooxygenase (PAMO) from Thermobifida fusca is the only protein showing remarkable stability. While related enzymes often present a broad substrate scope, PAMO accepts only a limited number of substrates. Due to the absence of a substrate in the elucidated crystal structure of PAMO, the substrate binding site of this protein has not yet been defined. In this study, a structural model of cyclopentanone monooxygenase, which acts on a broad range of compounds, has been prepared and compared with the structure of PAMO. This revealed 15 amino acid positions in the active site of PAMO that may account for its relatively narrow substrate specificity. We designed and analyzed 30 single and multiple mutants in order to verify the role of these positions. Extensive substrate screening revealed several mutants that displayed increased activity and altered regio- or enantioselectivity in Baeyer-Villiger reactions and sulfoxidations. Further substrate profiling resulted in the identification of mutants with improved catalytic properties toward synthetically attractive compounds. Moreover, the thermostability of the mutants was not compromised in comparison to that of the wild-type enzyme. Our data demonstrate that the positions identified within the active site of PAMO, namely, V54, I67, Q152, and A435, contribute to the substrate specificity of this enzyme. These findings will aid in more dedicated and effective redesign of PAMO and related monooxygenases toward an expanded substrate scope.
Collapse
Affiliation(s)
- Hanna M. Dudek
- Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Gonzalo de Gonzalo
- Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Daniel E. Torres Pazmiño
- Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Piotr Stępniak
- Bioinfobank Institute, Limanowskiego 24A, 60-744 Poznań, Poland
| | - Lucjan S. Wyrwicz
- Bioinfobank Institute, Limanowskiego 24A, 60-744 Poznań, Poland
- Laboratory of Bioinformatics and Systems Biology, M. Skłodowska-Curie Cancer Centre and Institute of Oncology, WK Roentgena 5, 02-781 Warsaw, Poland
| | | | - Marco W. Fraaije
- Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
32
|
Morina K, Schulte M, Hubrich F, Dörner K, Steimle S, Stolpe S, Friedrich T. Engineering the respiratory complex I to energy-converting NADPH:ubiquinone oxidoreductase. J Biol Chem 2011; 286:34627-34. [PMID: 21832062 DOI: 10.1074/jbc.m111.274571] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The respiratory complex I couples the electron transfer from NADH to ubiquinone with a translocation of protons across the membrane. Its nucleotide-binding site is made up of a unique Rossmann fold to accommodate the binding of the substrate NADH and of the primary electron acceptor flavin mononucleotide. Binding of NADH includes interactions of the hydroxyl groups of the adenosine ribose with a conserved glutamic acid residue. Structural analysis revealed that due to steric hindrance and electrostatic repulsion, this residue most likely prevents the binding of NADPH, which is a poor substrate of the complex. We produced several variants with mutations at this position exhibiting up to 200-fold enhanced catalytic efficiency with NADPH. The reaction of the variants with NAD(P)H is coupled with proton translocation in an inhibitor-sensitive manner. Thus, we have created an energy-converting NADPH:ubiquinone oxidoreductase, an activity so far not found in nature. Remarkably, the oxidation of NAD(P)H by the variants leads to an enhanced production of reactive oxygen species.
Collapse
Affiliation(s)
- Klaudia Morina
- Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität, 79104 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Orru R, Dudek HM, Martinoli C, Torres Pazmiño DE, Royant A, Weik M, Fraaije MW, Mattevi A. Snapshots of enzymatic Baeyer-Villiger catalysis: oxygen activation and intermediate stabilization. J Biol Chem 2011; 286:29284-29291. [PMID: 21697090 DOI: 10.1074/jbc.m111.255075] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Baeyer-Villiger monooxygenases catalyze the oxidation of carbonylic substrates to ester or lactone products using NADPH as electron donor and molecular oxygen as oxidative reactant. Using protein engineering, kinetics, microspectrophotometry, crystallography, and intermediate analogs, we have captured several snapshots along the catalytic cycle which highlight key features in enzyme catalysis. After acting as electron donor, the enzyme-bound NADP(H) forms an H-bond with the flavin cofactor. This interaction is critical for stabilizing the oxygen-activating flavin-peroxide intermediate that results from the reaction of the reduced cofactor with oxygen. An essential active-site arginine acts as anchoring element for proper binding of the ketone substrate. Its positively charged guanidinium group can enhance the propensity of the substrate to undergo a nucleophilic attack by the flavin-peroxide intermediate. Furthermore, the arginine side chain, together with the NADP(+) ribose group, forms the niche that hosts the negatively charged Criegee intermediate that is generated upon reaction of the substrate with the flavin-peroxide. The fascinating ability of Baeyer-Villiger monooxygenases to catalyze a complex multistep catalytic reaction originates from concerted action of this Arg-NADP(H) pair and the flavin subsequently to promote flavin reduction, oxygen activation, tetrahedral intermediate formation, and product synthesis and release. The emerging picture is that these enzymes are mainly oxygen-activating and "Criegee-stabilizing" catalysts that act on any chemically suitable substrate that can diffuse into the active site, emphasizing their potential value as toolboxes for biocatalytic applications.
Collapse
Affiliation(s)
- Roberto Orru
- Department of Genetics and Microbiology, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy
| | - Hanna M Dudek
- Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Christian Martinoli
- Department of Genetics and Microbiology, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy
| | - Daniel E Torres Pazmiño
- Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Antoine Royant
- Institut de Biologie Structurale Jean-Pierre Ebel, CNRS Commissariat à l'Energie Atomique Université Joseph Fourier, 41 rue Jules Horowitz, 38027 Grenoble Cedex, France, and; European Synchrotron Radiation Facility, 6 rue Jules Horowitz, 38043 Grenoble Cedex, France
| | - Martin Weik
- Institut de Biologie Structurale Jean-Pierre Ebel, CNRS Commissariat à l'Energie Atomique Université Joseph Fourier, 41 rue Jules Horowitz, 38027 Grenoble Cedex, France, and; European Synchrotron Radiation Facility, 6 rue Jules Horowitz, 38043 Grenoble Cedex, France
| | - Marco W Fraaije
- Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands,.
| | - Andrea Mattevi
- Department of Genetics and Microbiology, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy,.
| |
Collapse
|
34
|
Leisch H, Morley K, Lau PCK. Baeyer−Villiger Monooxygenases: More Than Just Green Chemistry. Chem Rev 2011; 111:4165-222. [DOI: 10.1021/cr1003437] [Citation(s) in RCA: 317] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Hannes Leisch
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Krista Morley
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Peter C. K. Lau
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
- Department of Microbiology and Immunology, McGill University, 3775 University Street, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|