1
|
Grimm HC, Erlsbacher P, Medipally H, Malihan-Yap L, Sovic L, Zöhrer J, Kosourov SN, Allahverdiyeva Y, Paul CE, Kourist R. Towards high atom economy in whole-cell redox biocatalysis: up-scaling light-driven cyanobacterial ene-reductions in a flat panel photobioreactor. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2025; 27:2907-2920. [PMID: 39850125 PMCID: PMC11749524 DOI: 10.1039/d4gc05686h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/13/2025] [Indexed: 01/25/2025]
Abstract
Light-driven biotransformations in recombinant cyanobacteria benefit from the atom-efficient regeneration of reaction equivalents like NADPH from water and light by oxygenic photosynthesis. The self-shading of photosynthetic cells throughout the reaction volume, along with the need for extended light paths, limits adequate light supply and significantly restricts the potential for upscaling. Here, we present a flat panel photobioreactor (1 cm optical path length) as a scalable system to provide efficient illumination at high cell densities. The genes of five ene-reductases from different classes were expressed in Synechocystis sp. PCC 6803. The strains were characterised in the light-driven reduction of a set of prochiral substrates. With specific activities up to 150 U gCDW -1 under standard conditions in small-scale reactions, the recombinant strains harbouring the ene-reductases TsOYE C25G I67T and OYE3 showed the highest specific activities observed so far in photobiotransformations and were selected for the up-scale in the flat panel photobioreactor in 120 mL-scale. The strain producing OYE3 exhibited a specific activity as high as 56.1 U gCDW -1. The corresponding volumetric productivity of 1 g L-1 h-1 compares favourably to other photosynthesis-driven processes. This setup facilitated the conversion of 50 mM over approximately 8 hours to an isolated yield of 87%. The atom economy of 88% compares favourably to the use of the sacrificial co-substrates glucose and formic acid with 49% and 78%, respectively. Determination of the complete E-Factor of 203 including water reveals that the volumetric yield and water required for cultivation are crucial for the sustainability. In summary, our results point out key factors for the sustainability of light-driven whole-cell biotransformations, and provide a solid basis for future optimisation and up-scale campaigns of photosynthesis-driven bioproduction.
Collapse
Affiliation(s)
- Hanna C Grimm
- Institute for Molecular Biotechnology TU Graz Petersgasse 14/1 A-8010 Graz Austria
| | - Peter Erlsbacher
- Institute for Molecular Biotechnology TU Graz Petersgasse 14/1 A-8010 Graz Austria
| | - Hitesh Medipally
- Institute for Molecular Biotechnology TU Graz Petersgasse 14/1 A-8010 Graz Austria
| | - Lenny Malihan-Yap
- Institute for Molecular Biotechnology TU Graz Petersgasse 14/1 A-8010 Graz Austria
| | - Lucija Sovic
- Institute for Molecular Biotechnology TU Graz Petersgasse 14/1 A-8010 Graz Austria
| | - Johannes Zöhrer
- Institute for Molecular Biotechnology TU Graz Petersgasse 14/1 A-8010 Graz Austria
| | - Sergey N Kosourov
- Molecular Plant Biology, Department of Life Technologies, University of Turku 20014 Turku Finland
| | - Yagut Allahverdiyeva
- Molecular Plant Biology, Department of Life Technologies, University of Turku 20014 Turku Finland
| | - Caroline E Paul
- Department of Biotechnology, Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Robert Kourist
- Institute for Molecular Biotechnology TU Graz Petersgasse 14/1 A-8010 Graz Austria
- acib GmbH Krenngasse 37 8010 Graz Austria
| |
Collapse
|
2
|
Fan XY, Yu Y, Yao Y, Li WD, Tao FY, Wang N. Applications of Ene-Reductases in the Synthesis of Flavors and Fragrances. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18305-18320. [PMID: 38966982 PMCID: PMC11342376 DOI: 10.1021/acs.jafc.4c02897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Flavors and fragrances (F&F) are interesting organic compounds in chemistry. These compounds are widely used in the food, cosmetic, and medical industries. Enzymatic synthesis exhibits several advantages over natural extraction and chemical preparation, including a high yield, stable quality, mildness, and environmental friendliness. To date, many oxidoreductases and hydrolases have been used to biosynthesize F&F. Ene-reductases (ERs) are a class of biocatalysts that can catalyze the asymmetric reduction of α,β-unsaturated compounds and offer superior specificity and selectivity; therefore, ERs have been increasingly considered an ideal alternative to their chemical counterparts. This review summarizes the research progress on the use of ERs in F&F synthesis over the past 20 years, including the achievements of various scholars, the differences and similarities among the findings, and the discussions of future research trends related to ERs. We hope this review can inspire researchers to promote the development of biotechnology in the F&F industry.
Collapse
Affiliation(s)
- Xin-Yue Fan
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People’s
Republic of China
| | - Yuan Yu
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People’s
Republic of China
| | - Yao Yao
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People’s
Republic of China
| | - Wen-Dian Li
- Harmful
Components and Tar Reduction in Cigarette Key Laboratory of Sichuan
Province, China Tobacco Sichuan Industrial
Company, Limited, Chengdu, Sichuan 610066, People’s Republic of China
- Sichuan
Sanlian New Material Company, Limited, Chengdu, Sichuan 610041, People’s Republic
of China
| | - Fei-Yan Tao
- Harmful
Components and Tar Reduction in Cigarette Key Laboratory of Sichuan
Province, China Tobacco Sichuan Industrial
Company, Limited, Chengdu, Sichuan 610066, People’s Republic of China
- Sichuan
Sanlian New Material Company, Limited, Chengdu, Sichuan 610041, People’s Republic
of China
| | - Na Wang
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People’s
Republic of China
| |
Collapse
|
3
|
Cancellieri MC, Nobbio C, Gatti FG, Brenna E, Parmeggiani F. Applications of biocatalytic CC bond reductions in the synthesis of flavours and fragrances. J Biotechnol 2024; 390:13-27. [PMID: 38761886 DOI: 10.1016/j.jbiotec.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
Industrial biotechnology and biocatalysis can provide very effective synthetic tools to increase the sustainability of the production of fine chemicals, especially flavour and fragrance (F&F) ingredients, the market demand of which has been constantly increasing in the last years. One of the most important transformations in F&F chemistry is the reduction of CC bonds, typically carried out with metal-catalysed hydrogenations or hydride-based reagents. Its biocatalytic counterpart is a competitive alternative, showcasing a range of advantages such as excellent chemo-, regio- and stereoselectivity, ease of implementation, mild reaction conditions and modest environmental impact. In the present review, the application of biocatalysed alkene reductions (from microbial fermentations with wild-type strains to engineered isolated ene-reductase enzymes) to synthetic processes useful for the F&F industry will be described, highlighting not only the exquisite stereoselectivity achieved, but also the overall improvement when chirality is not involved. Multi-enzymatic cascades involving CC bioreductions are also examined, which allow much greater chemical complexity to be built in one-pot biocatalytic systems.
Collapse
Affiliation(s)
- Maria C Cancellieri
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Celeste Nobbio
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Francesco G Gatti
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Elisabetta Brenna
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy.
| | - Fabio Parmeggiani
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy.
| |
Collapse
|
4
|
Luckie BA, Kashyap M, Pearson AN, Chen Y, Liu Y, Valencia LE, Carrillo Romero A, Hudson GA, Tao XB, Wu B, Petzold CJ, Keasling JD. Development of Corynebacterium glutamicum as a monoterpene production platform. Metab Eng 2024; 81:110-122. [PMID: 38056688 DOI: 10.1016/j.ymben.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Monoterpenes are commonly known for their role in the flavors and fragrances industry and are also gaining attention for other uses like insect repellant and as potential renewable fuels for aviation. Corynebacterium glutamicum, a Generally Recognized as Safe microbe, has been a choice organism in industry for the annual million ton-scale bioproduction of amino acids for more than 50 years; however, efforts to produce monoterpenes in C. glutamicum have remained relatively limited. In this study, we report a further expansion of the C. glutamicum biosynthetic repertoire through the development and optimization of a mevalonate-based monoterpene platform. In the course of our plasmid design iterations, we increased flux through the mevalonate-based bypass pathway, measuring isoprenol production as a proxy for monoterpene precursor abundance and demonstrating the highest reported titers in C. glutamicum to date at 1504.6 mg/L. Our designs also evaluated the effects of backbone, promoter, and GPP synthase homolog origin on monoterpene product titers. Monoterpene production was further improved by disrupting competing pathways for isoprenoid precursor supply and by implementing a biphasic production system to prevent volatilization. With this platform, we achieved 321.1 mg/L of geranoids, 723.6 mg/L of 1,8-cineole, and 227.8 mg/L of linalool. Furthermore, we determined that C. glutamicum first oxidizes geraniol through an aldehyde intermediate before it is asymmetrically reduced to citronellol. Additionally, we demonstrate that the aldehyde reductase, AdhC, possesses additional substrate promiscuity for acyclic monoterpene aldehydes.
Collapse
Affiliation(s)
- Bridget A Luckie
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Meera Kashyap
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Allison N Pearson
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Yan Chen
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yuzhong Liu
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
| | - Luis E Valencia
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Joint Program in Bioengineering, University of California, Berkeley, San Francisco, CA, 94720, USA
| | - Alexander Carrillo Romero
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Graham A Hudson
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
| | - Xavier B Tao
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Bryan Wu
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Christopher J Petzold
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jay D Keasling
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA; Joint Program in Bioengineering, University of California, Berkeley, San Francisco, CA, 94720, USA; Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark; Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen, China.
| |
Collapse
|
5
|
Clements HD, Flynn AR, Nicholls BT, Grosheva D, Lefave SJ, Merriman MT, Hyster TK, Sigman MS. Using Data Science for Mechanistic Insights and Selectivity Predictions in a Non-Natural Biocatalytic Reaction. J Am Chem Soc 2023; 145:17656-17664. [PMID: 37530568 PMCID: PMC10602048 DOI: 10.1021/jacs.3c03639] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
The study of non-natural biocatalytic transformations relies heavily on empirical methods, such as directed evolution, for identifying improved variants. Although exceptionally effective, this approach provides limited insight into the molecular mechanisms behind the transformations and necessitates multiple protein engineering campaigns for new reactants. To address this limitation, we disclose a strategy to explore the biocatalytic reaction space and garner insight into the molecular mechanisms driving enzymatic transformations. Specifically, we explored the selectivity of an "ene"-reductase, GluER-T36A, to create a data-driven toolset that explores reaction space and rationalizes the observed and predicted selectivities of substrate/mutant combinations. The resultant statistical models related structural features of the enzyme and substrate to selectivity and were used to effectively predict selectivity in reactions with out-of-sample substrates and mutants. Our approach provided a deeper understanding of enantioinduction by GluER-T36A and holds the potential to enhance the virtual screening of enzyme mutants.
Collapse
Affiliation(s)
- Hanna D Clements
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Autumn R Flynn
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Bryce T Nicholls
- Department of Chemistry and Chemical Biology, Cornell University, 122 Baker Laboratory, Ithaca, New York 14853, United States
| | - Daria Grosheva
- Department of Chemistry and Chemical Biology, Cornell University, 122 Baker Laboratory, Ithaca, New York 14853, United States
| | - Sarah J Lefave
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Morgan T Merriman
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Todd K Hyster
- Department of Chemistry and Chemical Biology, Cornell University, 122 Baker Laboratory, Ithaca, New York 14853, United States
| | - Matthew S Sigman
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
6
|
Guo YY, Tian ZH, Han YC, Ma D, Shao T, Jiang Z. Hantzsch Ester as Efficient and Economical NAD(P)H Mimic for In Vitro Bioredox Reactions. Chemistry 2023; 29:e202301180. [PMID: 37263982 DOI: 10.1002/chem.202301180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/21/2023] [Accepted: 06/01/2023] [Indexed: 06/03/2023]
Abstract
Biocatalysis has emerged as a valuable and reliable tool for industrial and academic societies, particularly in fields related to bioredox reactions. The cost of cofactors, especially those needed to be replenished at stoichiometric amounts or more, is the chief economic concern for bioredox reactions. In this study, a readily accessible, inexpensive, and bench-stable Hantzsch ester is verified as the viable and efficient NAD(P)H mimic by four enzymatic redox transformations, including two non-heme diiron N-oxygenases and two flavin-dependent reductases. This finding provides the potential to significantly reduce the costs of NAD(P)H-relying bioredox reactions.
Collapse
Affiliation(s)
- Yuan-Yang Guo
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education NMPA Key Laboratory for Research and Evaluation of Innovative Drug Henan Key Laboratory of Organic Functional Molecule and Drug Innovation School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Ze-Hua Tian
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education NMPA Key Laboratory for Research and Evaluation of Innovative Drug Henan Key Laboratory of Organic Functional Molecule and Drug Innovation School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yu-Chen Han
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education NMPA Key Laboratory for Research and Evaluation of Innovative Drug Henan Key Laboratory of Organic Functional Molecule and Drug Innovation School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Dandan Ma
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education NMPA Key Laboratory for Research and Evaluation of Innovative Drug Henan Key Laboratory of Organic Functional Molecule and Drug Innovation School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Tianju Shao
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education NMPA Key Laboratory for Research and Evaluation of Innovative Drug Henan Key Laboratory of Organic Functional Molecule and Drug Innovation School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Zhiyong Jiang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education NMPA Key Laboratory for Research and Evaluation of Innovative Drug Henan Key Laboratory of Organic Functional Molecule and Drug Innovation School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
7
|
Knaus T, Corrado ML, Mutti FG. One-Pot Biocatalytic Synthesis of Primary, Secondary, and Tertiary Amines with Two Stereocenters from α,β-Unsaturated Ketones Using Alkyl-Ammonium Formate. ACS Catal 2022; 12:14459-14475. [PMID: 36504913 PMCID: PMC9724091 DOI: 10.1021/acscatal.2c03052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/20/2022] [Indexed: 11/11/2022]
Abstract
The efficient asymmetric catalytic synthesis of amines containing more than one stereogenic center is a current challenge. Here, we present a biocatalytic cascade that combines ene-reductases (EReds) with imine reductases/reductive aminases (IReds/RedAms) to enable the conversion of α,β-unsaturated ketones into primary, secondary, and tertiary amines containing two stereogenic centers in very high chemical purity (up to >99%), a diastereomeric ratio, and an enantiomeric ratio (up to >99.8:<0.2). Compared with previously reported strategies, our strategy could synthesize two, three, or even all four of the possible stereoisomers of the amine products while precluding the formation of side-products. Furthermore, ammonium or alkylammonium formate buffer could be used as the only additional reagent since it acted both as an amine donor and as a source of reducing equivalents. This was achieved through the implementation of an NADP-dependent formate dehydrogenase (FDH) for the in situ recycling of the NADPH coenzyme, thus leading to increased atom economy for this biocatalytic transformation. Finally, this dual-enzyme ERed/IRed cascade also exhibits a complementarity with the recently reported EneIRED enzymes for the synthesis of cyclic six-membered ring amines. The ERed/IRed method yielded trans-1,2 and cis-1,3 substituted cyclohexylamines in high optical purities, whereas the EneIRED method was reported to yield one cis-1,2 and one trans-1,3 enantiomer. As a proof of concept, when 3-methylcyclohex-2-en-1-one was converted into secondary and tertiary chiral amines with different amine donors, we could obtain all the four possible stereoisomer products. This result exemplifies the versatility of this method and its potential for future wider utilization in asymmetric synthesis by expanding the toolbox of currently available dehydrogenases via enzyme engineering and discovery.
Collapse
Affiliation(s)
- Tanja Knaus
- Van’t Hoff Institute for Molecular
Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Maria L. Corrado
- Van’t Hoff Institute for Molecular
Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Francesco G. Mutti
- Van’t Hoff Institute for Molecular
Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
8
|
Immobilization of Ene Reductase in Polyvinyl Alcohol Hydrogel. Protein J 2022; 41:394-402. [PMID: 35715719 DOI: 10.1007/s10930-022-10059-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
Abstract
In this study, ene reductase (ER) was entrapped in polyvinyl alcohol hydrogel, adsorbed on montmorillonite and immobilized covalently on glutaraldehyde activated 3-aminopropyl-functionalized silica gel. Although protein recovery yields were at least 85% for adsorption and covalent immobilization, only the encapsulated ER showed activity. The activity of free and entrapped ER preparations was measured by following NADPH-dependent reduction of 2-cyclohexen-1-one. The both protein recovery and activity recovery yields were calculated as 100% when 1 mg protein was used for immobilization. The both free and entrapped ER preparations showed the same optimum pH and temperature as 7.0 and 30 °C, respectively. The entrapped ER showed 34.4-fold more thermal stability than that of the free ER at 30 °C. Michaelis-Menten constant and maximum velocity values were 0.25 mM and 1.2 U/mg protein, respectively for the free ER towards 2-cyclohexen-1-one. The corresponding values were 1.5 mM and 0.9 U/mg protein for the entrapped ER. The results of time-course reduction of 2-cyclohexen-1-one showed that the entrapped ER catalyzed the reaction as effectively as the free ER. The entrapped ER remained 85% of its initial activity after 10 reused cycles.
Collapse
|
9
|
Ribeaucourt D, Höfler GT, Yemloul M, Bissaro B, Lambert F, Berrin JG, Lafond M, Paul CE. Tunable Production of ( R)- or ( S)-Citronellal from Geraniol via a Bienzymatic Cascade Using a Copper Radical Alcohol Oxidase and Old Yellow Enzyme. ACS Catal 2022; 12:1111-1116. [PMID: 35096467 PMCID: PMC8787751 DOI: 10.1021/acscatal.1c05334] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/26/2021] [Indexed: 01/08/2023]
Abstract
Biocatalytic pathways for the synthesis of (-)-menthol, the most sold flavor worldwide, are highly sought-after. To access the key intermediate (R)-citronellal used in current major industrial production routes, we established a one-pot bienzymatic cascade from inexpensive geraniol, overcoming the problematic biocatalytic reduction of the mixture of (E/Z)-isomers in citral by harnessing a copper radical oxidase (CgrAlcOx) and an old yellow enzyme (OYE). The cascade using OYE2 delivered 95.1% conversion to (R)-citronellal with 95.9% ee, a 62 mg scale-up affording high yield and similar optical purity. An alternative OYE, GluER, gave (S)-citronellal from geraniol with 95.3% conversion and 99.2% ee.
Collapse
Affiliation(s)
- David Ribeaucourt
- INRAE, Aix Marseille Univ, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13013 Marseille, France
- V. Mane Fils, 620 route de Grasse, 06620 Le Bar sur Loup, France
| | - Georg T. Höfler
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Mehdi Yemloul
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13013 Marseille, France
| | - Bastien Bissaro
- INRAE, Aix Marseille Univ, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France
| | - Fanny Lambert
- V. Mane Fils, 620 route de Grasse, 06620 Le Bar sur Loup, France
| | - Jean-Guy Berrin
- INRAE, Aix Marseille Univ, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France
| | - Mickael Lafond
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13013 Marseille, France
| | - Caroline E. Paul
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
10
|
Jongkind EPJ, Fossey‐Jouenne A, Mayol O, Zaparucha A, Vergne‐Vaxelaire C, Paul CE. Synthesis of Chiral Amines via a Bi‐Enzymatic Cascade Using an Ene‐Reductase and Amine Dehydrogenase. ChemCatChem 2021. [DOI: 10.1002/cctc.202101576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ewald P. J. Jongkind
- Biocatalysis Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Aurélie Fossey‐Jouenne
- Génomique Métabolique Genoscope Institut François Jacob CEA CNRS Univ Evry Université Paris-Saclay 2 rue Gaston Crémieux 91057 Evry France
| | - Ombeline Mayol
- Génomique Métabolique Genoscope Institut François Jacob CEA CNRS Univ Evry Université Paris-Saclay 2 rue Gaston Crémieux 91057 Evry France
| | - Anne Zaparucha
- Génomique Métabolique Genoscope Institut François Jacob CEA CNRS Univ Evry Université Paris-Saclay 2 rue Gaston Crémieux 91057 Evry France
| | - Carine Vergne‐Vaxelaire
- Génomique Métabolique Genoscope Institut François Jacob CEA CNRS Univ Evry Université Paris-Saclay 2 rue Gaston Crémieux 91057 Evry France
| | - Caroline E. Paul
- Biocatalysis Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| |
Collapse
|
11
|
Sandoval BA, Clayman PD, Oblinsky DG, Oh S, Nakano Y, Bird M, Scholes GD, Hyster TK. Photoenzymatic Reductions Enabled by Direct Excitation of Flavin-Dependent “Ene”-Reductases. J Am Chem Soc 2020; 143:1735-1739. [DOI: 10.1021/jacs.0c11494] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Braddock A. Sandoval
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544 United States
| | - Phillip D. Clayman
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544 United States
| | - Daniel G. Oblinsky
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544 United States
| | - Seokjoon Oh
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Yuji Nakano
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544 United States
| | - Matthew Bird
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Gregory D. Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544 United States
| | - Todd K. Hyster
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544 United States
| |
Collapse
|
12
|
Sproß J, Yamashita Y, Gröger H. Learning about Enzyme Stability against Organic Cosolvents from Structural Insights by Ion Mobility Mass Spectrometry. Chembiochem 2020; 21:1968-1971. [PMID: 31994801 PMCID: PMC7496688 DOI: 10.1002/cbic.201900648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/25/2020] [Indexed: 11/11/2022]
Abstract
Ion mobility spectrometry (IMS) coupled with mass spectrometry (MS) enables the investigation of protein folding in solution. Herein, a proof-of-concept for obtaining structural information about the folding of a protein in dependency of the amount of an organic cosolvent in the aqueous medium by means of this IMS-MS method is presented. By analyzing the protein with native nano-electrospray ionization IMS-MS, the impact of acetonitrile as a representative organic cosolvent and/or pH values on the folding of an enzyme was successfully evaluated in a fast and straightforward fashion, as exemplified for an ene reductase from Gluconobacter oxydans. The IMS-MS results are in agreement with findings from the nicotinamide adenine dinucleotide phosphate (NADPH)-based spectrophotometric enzyme activity tests under analogous conditions, and thus, also rationalizing these "wet" analytical data. For this ene reductase, a higher tolerance against CH3 CN in the presence of a buffer was observed by both analytical methods. The results suggest that this IMS-MS methodology could be a useful complementary tool to existing methods in process optimization and fine-tuning of solvent conditions for biotransformations.
Collapse
Affiliation(s)
- Jens Sproß
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstrasse25, 33615, Bielefeld, Germany
| | - Yasunobu Yamashita
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstrasse25, 33615, Bielefeld, Germany
| | - Harald Gröger
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstrasse25, 33615, Bielefeld, Germany
| |
Collapse
|
13
|
dos Santos RAM, Reis AV, Pilau EJ, Porto C, Gonçalves JE, de Oliveira AJB, Gonçalves RAC. The headspace-GC/MS: Alternative methodology employed in the bioreduction of (4S)-(+)-carvone mediated by human skin fungus. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1743692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Rogério Aparecido Minini dos Santos
- Department of Pharmacy, University Center of Maringá – Unicesumar, Maringá, Brazil
- Department of Pharmacy, Graduate Program in Pharmaceutical Science, State University of Maringá – UEM, Maringá, Brazil
| | - Adriano Valim Reis
- Department of Pharmacy, Graduate Program in Pharmaceutical Science, State University of Maringá – UEM, Maringá, Brazil
| | | | - Carla Porto
- Program of Master in Science, Technology and Food Safety and Cesumar Institute of Science, Technology and Innovation – ICETI, Maringá, Brazil
| | - José Eduardo Gonçalves
- Program of Master in Science, Technology and Food Safety and Cesumar Institute of Science, Technology and Innovation – ICETI, Maringá, Brazil
- Program of Master in Clean Technology, University Center of Maringá – Unicesumar, Maringá, Brazil
| | - Arildo José Braz de Oliveira
- Department of Pharmacy, Graduate Program in Pharmaceutical Science, State University of Maringá – UEM, Maringá, Brazil
| | | |
Collapse
|
14
|
Matzel P, Wenske S, Merdivan S, Günther S, Höhne M. Synthesis of β‐Chiral Amines by Dynamic Kinetic Resolution of α‐Branched Aldehydes Applying Imine Reductases. ChemCatChem 2019. [DOI: 10.1002/cctc.201900806] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Philipp Matzel
- Institute of BiochemistryUniversity Greifswald Greifswald 17487 Germany
| | - Sebastian Wenske
- Institute of BiochemistryUniversity Greifswald Greifswald 17487 Germany
| | - Simon Merdivan
- Institut of PharmacyUniversity of Greifswald Greifswald 17489 Germany
| | - Sebastian Günther
- Institut of PharmacyUniversity of Greifswald Greifswald 17489 Germany
| | - Matthias Höhne
- Institute of BiochemistryUniversity Greifswald Greifswald 17487 Germany
| |
Collapse
|
15
|
Peters C, Frasson D, Sievers M, Buller R. Novel Old Yellow Enzyme Subclasses. Chembiochem 2019; 20:1569-1577. [DOI: 10.1002/cbic.201800770] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/12/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Christin Peters
- Competence Center for BiocatalysisInstitute of Chemistry and BiotechnologySchool of Life Sciences and Facility ManagementZurich University of Applied Sciences Einsiedlerstrasse 31 8820 Wädenswil Switzerland
| | - David Frasson
- Molecular BiologyInstitute of Chemistry and BiotechnologySchool of Life Sciences and Facility ManagementZurich University of Applied Sciences Einsiedlerstrasse 31 8820 Wädenswil Switzerland
| | - Martin Sievers
- Molecular BiologyInstitute of Chemistry and BiotechnologySchool of Life Sciences and Facility ManagementZurich University of Applied Sciences Einsiedlerstrasse 31 8820 Wädenswil Switzerland
| | - Rebecca Buller
- Competence Center for BiocatalysisInstitute of Chemistry and BiotechnologySchool of Life Sciences and Facility ManagementZurich University of Applied Sciences Einsiedlerstrasse 31 8820 Wädenswil Switzerland
| |
Collapse
|
16
|
Sproß J, Muck A, Gröger H. Detection and fragmentation of doubly charged peptide ions in MALDI-Q-TOF-MS by ion mobility spectrometry for improved protein identification. Anal Bioanal Chem 2019; 411:6275-6285. [PMID: 30868190 DOI: 10.1007/s00216-019-01578-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/22/2018] [Accepted: 01/04/2019] [Indexed: 01/17/2023]
Abstract
Today, bottom-up protein identification in MALDI-MS is based on employing singly charged peptide ions, which are predominantly formed in the ionization process. However, peptide mass fingerprinting (PMF) with subsequent tandem MS confirmation using these peptide ions is often hampered due to the lower quality of fragment ion mass spectra caused by the higher collision energy necessary for fragmenting singly protonated peptides. Accordingly, peptide ions of higher charge states would be of high interest for analytical purposes, but they are usually not detected in MALDI-MS experiments as they overlap with singly charged matrix clusters and peptide ions. However, when utilizing ion mobility spectrometry (IMS), doubly charged peptide ions can be actively used by separating them from the singly protonated peptides, visualized, and selectively targeted for tandem MS experiments. The generated peptide fragment ion spectra can be used for a more confident protein identification using PMF with tandem MS confirmation, as most doubly protonated peptide ions yield fragment ion mass spectra of higher quality compared to tandem mass spectra of the corresponding singly protonated precursor ions. Mascot protein scores can be increased by approximately 50% when using tandem mass spectra of doubly charged peptide ions, with ion scores up to six times higher compared with ion scores of tandem mass spectra from singly charged precursors.
Collapse
Affiliation(s)
- Jens Sproß
- Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany.
| | | | - Harald Gröger
- Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany.
| |
Collapse
|
17
|
Biocatalytic hydrogen atom transfer: an invigorating approach to free-radical reactions. Curr Opin Chem Biol 2018; 49:16-24. [PMID: 30269010 DOI: 10.1016/j.cbpa.2018.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 09/02/2018] [Indexed: 10/28/2022]
Abstract
Initiating and terminating free-radical reactionis via hydrogen atom transfer (HAT) is an attractive means of avoiding substrate prefunctionalization. Small molecule catalysts and reagents, however, struggle to execute this fundamental step with useful levels of diastereoselectivity and enantioselectivity. In contrast, nature often carries out HAT with exquisite levels of selectivity for even electronically unactivated carbon-hydrogen bonds. By understanding how enzymes exploit and control this fundamental step, new strategies can be developed to address several long-standing challenges in free-radical reactions. This review will cover recent discoveries in biocatalysis that exploit a HAT mechanism to either initiate or terminate novel one-electron reactions.
Collapse
|
18
|
Zhang X, Liao S, Cao F, Zhao L, Pei J, Tang F. Cloning and characterization of enoate reductase with high β-ionone to dihydro-β-ionone bioconversion productivity. BMC Biotechnol 2018; 18:26. [PMID: 29743047 PMCID: PMC5944158 DOI: 10.1186/s12896-018-0438-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 04/23/2018] [Indexed: 11/28/2022] Open
Abstract
Background Dihydro-β-ionone is a principal aroma compound and has received considerable attention by flavor and fragrance industry. The traditional method of preparing dihydro-β-ionone has many drawbacks, which has restricted its industrial application. Therefore, it is necessary to find a biotechnological method to produce dihydro-β-ionone. Results In this study, the enoate reductase with high conversion efficiency of β-ionone to dihydro-β-ionone, DBR1, was obtained by screening four genetically engineered bacteria. The product, dihydro-β-ionone, was analyzed by GC and GC-MS. The highest dihydro-β-ionone production with 308.3 mg/L was detected in the recombinant strain expressing DBR1 which was later on expressed and purified. Its optimal temperature and pH were 45 °C and 6.5, respectively. The greatest activity of the purified enzyme was 356.39 U/mg using β-ionone as substrate. In the enzymatic conversion system, 1 mM of β-ionone was transformed into 91.08 mg/L of dihydro-β-ionone with 93.80% of molar conversion. Conclusion DBR1 had high selectivity to hydrogenated the 10,11-unsaturated double bond of β-ionone as well as high catalytic efficiency for the conversion of β-ionone to dihydro-β-ionone. It is the first report on the bioconversion of β-ionone to dihydro-β-ionone by using enoate reductase. Electronic supplementary material The online version of this article (10.1186/s12896-018-0438-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xuesong Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China.,College of Tea and Food Science and Technology, Jiangsu Polytechnic College of Agriculture and Forestry, Jurong, 212400, China
| | - Shiyong Liao
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China
| | - Fuliang Cao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China
| | - Linguo Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China. .,College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China.
| | - Jianjun Pei
- College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China.,Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, 159 Long Pan Road, Nanjing, 210037, China
| | - Feng Tang
- International centre for bamboo and rattan, 8 FuTong East Street, Beijing, 100714, China
| |
Collapse
|
19
|
Zheng L, Lin J, Zhang B, Kuang Y, Wei D. Identification of a yeast old yellow enzyme for highly enantioselective reduction of citral isomers to (R)-citronellal. BIORESOUR BIOPROCESS 2018. [DOI: 10.1186/s40643-018-0192-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
20
|
Sandoval BA, Meichan AJ, Hyster TK. Enantioselective Hydrogen Atom Transfer: Discovery of Catalytic Promiscuity in Flavin-Dependent 'Ene'-Reductases. J Am Chem Soc 2017; 139:11313-11316. [PMID: 28780870 DOI: 10.1021/jacs.7b05468] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Flavin has long been known to function as a single electron reductant in biological settings, but this reactivity has rarely been observed with flavoproteins used in organic synthesis. Here we describe the discovery of an enantioselective radical dehalogenation pathway for α-bromoesters using flavin-dependent 'ene'-reductases. Mechanistic experiments support the role of flavin hydroquinone as a single electron reductant, flavin semiquinone as the hydrogen atom source, and the enzyme as the source of chirality.
Collapse
Affiliation(s)
- Braddock A Sandoval
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| | - Andrew J Meichan
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| | - Todd K Hyster
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| |
Collapse
|
21
|
Waller J, Toogood HS, Karuppiah V, Rattray NJW, Mansell DJ, Leys D, Gardiner JM, Fryszkowska A, Ahmed ST, Bandichhor R, Reddy GP, Scrutton NS. Structural insights into the ene-reductase synthesis of profens. Org Biomol Chem 2017; 15:4440-4448. [PMID: 28485453 DOI: 10.1039/c7ob00163k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reduction of double bonds of α,β-unsaturated carboxylic acids and esters by ene-reductases remains challenging and it typically requires activation by a second electron-withdrawing moiety, such as a halide or second carboxylate group. We showed that profen precursors, 2-arylpropenoic acids and their esters, were efficiently reduced by Old Yellow Enzymes (OYEs). The XenA and GYE enzymes showed activity towards acids, while a wider range of enzymes were active towards the equivalent methyl esters. Comparative co-crystal structural analysis of profen-bound OYEs highlighted key interactions important in determining substrate binding in a catalytically active conformation. The general utility of ene reductases for the synthesis of (R)-profens was established and this work will now drive future mutagenesis studies to screen for the production of pharmaceutically-active (S)-profens.
Collapse
Affiliation(s)
- J Waller
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Chirality is a key factor in the safety and efficacy of many drug products and thus the production of single enantiomers of drug intermediates and drugs has become important and state of the art in the pharmaceutical industry. There has been an increasing awareness of the enormous potential of microorganisms and enzymes (biocatalysts) for the transformation of synthetic chemicals with high chemo-, regio- and enatioselectivities providing products in high yields and purity. In this article, biocatalytic processes are described for the synthesis of key chiral intermediates for development pharmaceuticals.
Collapse
Affiliation(s)
- Ramesh N Patel
- SLRP Associates, LLC, Consultation in Biocatalysis and Biotechnology, 572 Cabot Hill Road, Bridgewater, NJ 08807, USA.
| |
Collapse
|
23
|
Old Yellow Enzyme-Catalysed Asymmetric Hydrogenation: Linking Family Roots with Improved Catalysis. Catalysts 2017. [DOI: 10.3390/catal7050130] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
24
|
Sheng X, Yan M, Xu L, Wei M. Identification and characterization of a novel Old Yellow Enzyme from Bacillus subtilis str.168. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Kataoka M, Miyakawa T, Shimizu S, Tanokura M. Enzymes useful for chiral compound synthesis: structural biology, directed evolution, and protein engineering for industrial use. Appl Microbiol Biotechnol 2016; 100:5747-57. [DOI: 10.1007/s00253-016-7603-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/30/2016] [Accepted: 05/02/2016] [Indexed: 10/21/2022]
|
26
|
Biermann M, Gruß H, Hummel W, Gröger H. Guerbet Alcohols: From Processes under Harsh Conditions to Synthesis at Room Temperature under Ambient Pressure. ChemCatChem 2016. [DOI: 10.1002/cctc.201501241] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marc Biermann
- Faculty of Chemistry; Bielefeld University; Universitätsstrasse 25 33615 Bielefeld Germany
| | - Hendrik Gruß
- Faculty of Chemistry; Bielefeld University; Universitätsstrasse 25 33615 Bielefeld Germany
| | - Werner Hummel
- Faculty of Chemistry; Bielefeld University; Universitätsstrasse 25 33615 Bielefeld Germany
| | - Harald Gröger
- Faculty of Chemistry; Bielefeld University; Universitätsstrasse 25 33615 Bielefeld Germany
| |
Collapse
|
27
|
Sheppard MJ, Kunjapur AM, Prather KL. Modular and selective biosynthesis of gasoline-range alkanes. Metab Eng 2016; 33:28-40. [DOI: 10.1016/j.ymben.2015.10.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/27/2015] [Accepted: 10/27/2015] [Indexed: 12/16/2022]
|
28
|
Knaus T, Mutti FG, Humphreys LD, Turner NJ, Scrutton NS. Systematic methodology for the development of biocatalytic hydrogen-borrowing cascades: application to the synthesis of chiral α-substituted carboxylic acids from α-substituted α,β-unsaturated aldehydes. Org Biomol Chem 2015; 13:223-33. [PMID: 25372591 DOI: 10.1039/c4ob02282c] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ene-reductases (ERs) are flavin dependent enzymes that catalyze the asymmetric reduction of activated carbon-carbon double bonds. In particular, α,β-unsaturated carbonyl compounds (e.g. enals and enones) as well as nitroalkenes are rapidly reduced. Conversely, α,β-unsaturated esters are poorly accepted substrates whereas free carboxylic acids are not converted at all. The only exceptions are α,β-unsaturated diacids, diesters as well as esters bearing an electron-withdrawing group in α- or β-position. Here, we present an alternative approach that has a general applicability for directly obtaining diverse chiral α-substituted carboxylic acids. This approach combines two enzyme classes, namely ERs and aldehyde dehydrogenases (Ald-DHs), in a concurrent reductive-oxidative biocatalytic cascade. This strategy has several advantages as the starting material is an α-substituted α,β-unsaturated aldehyde, a class of compounds extremely reactive for the reduction of the alkene moiety. Furthermore no external hydride source from a sacrificial substrate (e.g. glucose, formate) is required since the hydride for the first reductive step is liberated in the second oxidative step. Such a process is defined as a hydrogen-borrowing cascade. This methodology has wide applicability as it was successfully applied to the synthesis of chiral substituted hydrocinnamic acids, aliphatic acids, heterocycles and even acetylated amino acids with elevated yield, chemo- and stereo-selectivity. A systematic methodology for optimizing the hydrogen-borrowing two-enzyme synthesis of α-chiral substituted carboxylic acids was developed. This systematic methodology has general applicability for the development of diverse hydrogen-borrowing processes that possess the highest atom efficiency and the lowest environmental impact.
Collapse
Affiliation(s)
- Tanja Knaus
- Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | | | | | | | | |
Collapse
|
29
|
Reß T, Hummel W, Hanlon SP, Iding H, Gröger H. The Organic-Synthetic Potential of Recombinant Ene Reductases: Substrate-Scope Evaluation and Process Optimization. ChemCatChem 2015. [DOI: 10.1002/cctc.201402903] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
Yin B, Deng J, Lim L, Yuan YA, Wei D. Structural insights into stereospecific reduction of α, β-unsaturated carbonyl substrates by old yellow enzyme from Gluconobacter oxydans. Biosci Biotechnol Biochem 2015; 79:410-21. [PMID: 25561169 DOI: 10.1080/09168451.2014.993355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
We report the crystal structure of old yellow enzyme (OYE) family protein Gox0502 (a.a 1-315) in free form at 3.3 Å. Detailed structural analysis revealed the key residues involved in stereospecific determination of Gox0502, such as Trp66 and Trp100. Structure-based computational analysis suggested the bulky side chains of these tryptophan residues may play important roles in product stereoselectivity. The introduction of Ile or Phe or Tyr mutation significantly reduced the product diastereoselectivity. We hypothesized that less bulky side chains at these critical residues could create additional free space to accommodate intermediates with different conformations. Notably, the introduction of Phe mutation at residue Trp100 increased catalytic activity compared to wild-type Gox0502 toward a set of substrates tested, which suggests that a less bulky Phe side chain at residue W100F may facilitate product release. Therefore, Gox0502 structure could provide useful information to generate desirable OYEs suitable for biotechnological applications in industry.
Collapse
Affiliation(s)
- Bo Yin
- a State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology , East China University of Science and Technology , Shanghai , China
| | | | | | | | | |
Collapse
|
31
|
Zhang H, Gao X, Ren J, Feng J, Zhang T, Wu Q, Zhu D. Enzymatic hydrogenation of diverse activated alkenes. Identification of two Bacillus old yellow enzymes with broad substrate profiles. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Jovanovic P, Jeremic S, Djokic L, Savic V, Radivojevic J, Maslak V, Ivkovic B, Vasiljevic B, Nikodinovic-Runic J. Chemoselective biocatalytic reduction of conjugated nitroalkenes: new application for an Escherichia coli BL21(DE3) expression strain. Enzyme Microb Technol 2014; 60:16-23. [PMID: 24835095 DOI: 10.1016/j.enzmictec.2014.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 02/26/2014] [Accepted: 03/20/2014] [Indexed: 11/29/2022]
Abstract
Chemoselective reduction of activated carbon-carbon double bond in conjugated nitroalkenes was achieved using Escherichia coli BL21(DE3) whole cells. Nine different substrates have been used furnishing the reduced products in moderate to good yields. 1-Nitro-4-phenyl-1,3-butadiene and (2-nitro-1-propenyl)benzene were successfully biotransformed with corresponding product yields of 54% and 45% respectively. Using this simple and environmentally friendly system 2-(2-nitropropyl)pyridine and 2-(2-nitropropyl)naphthalene were synthesized and characterized for the first time. High substrate conversion efficiency was coupled with low enantioselectivity, however 29% enantiomeric excess was detected in the case of 2-(2-nitropropyl)pyridine. It was shown that electronic properties of the aromatic ring, which affected polarity of the double bond, were not highly influential factors in the reduction process, but the presence of the nitro functionality was essential for the reaction to proceed. 1-Phenyl-4-nitro-1,3-butadiene could not be biotransformed by whole cells of Pseudomonas putida KT2440 or Bacillus subtilis 168 while it was successfully reduced by E. coli DH5α but with lower efficiency in comparison to E. coli BL21(DE3). Knockout mutant affected in nemA gene coding for N-ethylmaleimide reductase (BL21ΔnemA) could still catalyze bioreductions suggesting multiple active reductases within E. coli BL21(DE3) biocatalyst. The described biocatalytic reduction of substituted nitroalkenes provides an efficient route for the preparation of the corresponding nitroalkanes and introduces the new application of the strain traditionally utilized for recombinant protein expression.
Collapse
Affiliation(s)
- Predrag Jovanovic
- Department of Organic Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Sanja Jeremic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia
| | - Lidija Djokic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia
| | - Vladimir Savic
- Department of Organic Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Jelena Radivojevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia; Faculty of Chemistry, University of Belgrade, Studentski Trg 12-16, 11000 Belgrade, Serbia
| | - Veselin Maslak
- Faculty of Chemistry, University of Belgrade, Studentski Trg 12-16, 11000 Belgrade, Serbia
| | - Branka Ivkovic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Branka Vasiljevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia.
| |
Collapse
|
33
|
Yin B, Cui D, Zhang L, Jiang S, Machida S, Yuan YA, Wei D. Structural insights into substrate and coenzyme preference by SDR family protein Gox2253 from Gluconobater oxydans. Proteins 2014; 82:2925-35. [PMID: 24825769 DOI: 10.1002/prot.24603] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 04/26/2014] [Accepted: 04/29/2014] [Indexed: 11/07/2022]
Abstract
Gox2253 from Gluconobacter oxydans belongs to the short-chain dehydrogenases/reductases family, and catalyzes the reduction of heptanal, octanal, nonanal, and decanal with NADPH. To develop a robust working platform to engineer novel G. oxydans oxidoreductases with designed coenzyme preference, we adopted a structure based rational design strategy using computational predictions that considers the number of hydrogen bonds formed between enzyme and docked coenzyme. We report the crystal structure of Gox2253 at 2.6 Å resolution, ternary models of Gox2253 mutants in complex with NADH/short-chain aldehydes, and propose a structural mechanism of substrate selection. Molecular dynamics simulation shows that hydrogen bonds could form between 2'-hydroxyl group in the adenosine moiety of NADH and the side chain of Gox2253 mutant after arginine at position 42 is replaced with tyrosine or lysine. Consistent with the molecular dynamics prediction, Gox2253-R42Y/K mutants can use both NADH and NADPH as a coenzyme. Hence, the strategies here could provide a practical platform to engineer coenzyme selectivity for any given oxidoreductase and could serve as an additional consideration to engineer substrate-binding pockets.
Collapse
Affiliation(s)
- Bo Yin
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China; Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, 117543, Singapore
| | | | | | | | | | | | | |
Collapse
|
34
|
Asymmetric synthesis of duloxetine intermediate (S)-(-)-3-N-methylamino-1-(2-thienyl)-1-propanol using immobilized Saccharomyces cerevisiae in liquid-core sodium alginate/chitosan/sodium alginate microcapsules. Bioprocess Biosyst Eng 2014; 37:2243-50. [DOI: 10.1007/s00449-014-1202-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 04/19/2014] [Indexed: 10/25/2022]
|
35
|
Abstract
Reduction of C = C bonds by reductases, found in a variety of microorganisms (e.g. yeasts, bacteria, and lower fungi), animals, and plants has applications in the production of metabolites that include pharmacologically active drugs and other chemicals. Therefore, the reductase enzymes that mediate this transformation have become important therapeutic targets and biotechnological tools. These reductases are broad-spectrum, in that, they can act on isolation/conjugation C = C-bond compounds, α,β-unsaturated carbonyl compounds, carboxylic acids, acid derivatives, and nitro compounds. In addition, several mutations in the reductase gene have been identified, some associated with diseases. Several of these reductases have been cloned and/or purified, and studies to further characterize them and determine their structure in order to identify potential industrial biocatalysts are still in progress. In this study, crucial reductases for bioreduction of C = C bonds have been reviewed with emphasis on their principal substrates and effective inhibitors, their distribution, genetic polymorphisms, and implications in human disease and treatment.
Collapse
Affiliation(s)
- Minmin Huang
- Department of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou, Zhejiang , China and
| | | | | | | | | | | |
Collapse
|
36
|
Nestl BM, Hammer SC, Nebel BA, Hauer B. New generation of biocatalysts for organic synthesis. Angew Chem Int Ed Engl 2014; 53:3070-95. [PMID: 24520044 DOI: 10.1002/anie.201302195] [Citation(s) in RCA: 238] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Indexed: 02/04/2023]
Abstract
The use of enzymes as catalysts for the preparation of novel compounds has received steadily increasing attention over the past few years. High demands are placed on the identification of new biocatalysts for organic synthesis. The catalysis of more ambitious reactions reflects the high expectations of this field of research. Enzymes play an increasingly important role as biocatalysts in the synthesis of key intermediates for the pharmaceutical and chemical industry, and new enzymatic technologies and processes have been established. Enzymes are an important part of the spectrum of catalysts available for synthetic chemistry. The advantages and applications of the most recent and attractive biocatalysts--reductases, transaminases, ammonia lyases, epoxide hydrolases, and dehalogenases--will be discussed herein and exemplified by the syntheses of interesting compounds.
Collapse
Affiliation(s)
- Bettina M Nestl
- Technische Biochemie, Universität Stuttgart, Stuttgart (Germany)
| | | | | | | |
Collapse
|
37
|
|
38
|
Nestl BM, Hammer SC, Nebel BA, Hauer B. Biokatalysatoren für die organische Synthese - die neue Generation. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201302195] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
39
|
Ni Y, Yu HL, Lin GQ, Xu JH. An ene reductase from Clavispora lusitaniae for asymmetric reduction of activated alkenes. Enzyme Microb Technol 2014; 56:40-5. [PMID: 24564901 DOI: 10.1016/j.enzmictec.2013.12.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/09/2013] [Accepted: 12/30/2013] [Indexed: 01/15/2023]
Abstract
A putative ene reductase gene from Clavispora lusitaniae was heterologously overexpressed in Escherichia coli, and the encoded protein (ClER) was purified and characterized for its biocatalytic properties. This NADPH-dependent flavoprotein was identified with reduction activities toward a diverse range of activated alkenes including conjugated enones, enals, maleimide derivative and α,β-unsaturated carboxylic esters. The purified ClER exhibited a relatively high activity of 7.3 U mg(prot)⁻¹ for ketoisophorone while a remarkable catalytic efficiency (k(cat)/K(m)=810 s⁻¹ mM⁻¹) was obtained for 2-methyl-cinnamaldehyde due to the high affinity. A series of prochiral activated alkenes were stereoselectively reduced by ClER furnishing the corresponding saturated products in up to 99% ee. The practical applicability of ClER was further evaluated for the production of (R)-levodione, a valuable chiral compound, from ketoisophorone. Using the crude enzyme of ClER and glucose dehydrogenase (GDH), 500 mM of ketoisophorone was efficiently converted to (R)-levodione with excellent stereoselectivity (98% ee) within 1h. All these positive features demonstrate a high synthetic potential of ClER in the asymmetric reduction of activated alkenes.
Collapse
Affiliation(s)
- Yan Ni
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Guo-Qiang Lin
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
40
|
Winkler T, Gröger H, Hummel W. Enantioselective Rearrangement Coupled with Water Addition: Direct Synthesis of Enantiomerically Pure Saturated Carboxylic Acids from α,β-Unsaturated Aldehydes. ChemCatChem 2013. [DOI: 10.1002/cctc.201300764] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Pompeu YA, Sullivan B, Stewart JD. X-ray Crystallography Reveals How Subtle Changes Control the Orientation of Substrate Binding in an Alkene Reductase. ACS Catal 2013. [DOI: 10.1021/cs400622e] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuri A. Pompeu
- Department
of Chemistry, University of Florida, 126 Sisler Hall, Gainesville, Florida 32611, United States
| | - Bradford Sullivan
- Department
of Chemistry, University of Florida, 126 Sisler Hall, Gainesville, Florida 32611, United States
| | - Jon D. Stewart
- Department
of Chemistry, University of Florida, 126 Sisler Hall, Gainesville, Florida 32611, United States
| |
Collapse
|
42
|
Burda E, Reß T, Winkler T, Giese C, Kostrov X, Huber T, Hummel W, Gröger H. Highly Enantioselective Reduction of α-Methylated Nitroalkenes. Angew Chem Int Ed Engl 2013; 52:9323-6. [DOI: 10.1002/anie.201301814] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Indexed: 11/09/2022]
|
43
|
Burda E, Reß T, Winkler T, Giese C, Kostrov X, Huber T, Hummel W, Gröger H. Hochenantioselektive Reduktion von α‐methylierten Nitroalkenen. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201301814] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Edyta Burda
- Department Chemie und Pharmazie, Universität Erlangen‐Nürnberg, Henkestraße 42, 91054 Erlangen (Deutschland)
| | - Tina Reß
- Department Chemie und Pharmazie, Universität Erlangen‐Nürnberg, Henkestraße 42, 91054 Erlangen (Deutschland)
- Aktuelle Adresse: Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, 33615 Bielefeld (Deutschland)
| | - Till Winkler
- Institut für Molekulare Enzymtechnologie der Heinrich‐Heine‐Universität Düsseldorf, Forschungszentrum Jülich, Stetternicher Forst, 52426 Jülich (Deutschland)
| | - Carolin Giese
- Department Chemie und Pharmazie, Universität Erlangen‐Nürnberg, Henkestraße 42, 91054 Erlangen (Deutschland)
- Aktuelle Adresse: Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, 33615 Bielefeld (Deutschland)
| | - Xenia Kostrov
- Department Chemie und Pharmazie, Universität Erlangen‐Nürnberg, Henkestraße 42, 91054 Erlangen (Deutschland)
| | - Tobias Huber
- Department Chemie und Pharmazie, Universität Erlangen‐Nürnberg, Henkestraße 42, 91054 Erlangen (Deutschland)
| | - Werner Hummel
- Institut für Molekulare Enzymtechnologie der Heinrich‐Heine‐Universität Düsseldorf, Forschungszentrum Jülich, Stetternicher Forst, 52426 Jülich (Deutschland)
| | - Harald Gröger
- Department Chemie und Pharmazie, Universität Erlangen‐Nürnberg, Henkestraße 42, 91054 Erlangen (Deutschland)
- Aktuelle Adresse: Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, 33615 Bielefeld (Deutschland)
| |
Collapse
|
44
|
Paul CE, Gargiulo S, Opperman DJ, Lavandera I, Gotor-Fernández V, Gotor V, Taglieber A, Arends IWCE, Hollmann F. Mimicking nature: synthetic nicotinamide cofactors for C═C bioreduction using enoate reductases. Org Lett 2012; 15:180-3. [PMID: 23256747 DOI: 10.1021/ol303240a] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of synthetic nicotinamide cofactors were synthesized to replace natural nicotinamide cofactors and promote enoate reductase (ER) catalyzed reactions without compromising the activity or stereoselectivity of the bioreduction process. Conversions and enantioselectivities of >99% were obtained for C═C bioreductions, and the process was successfully upscaled. Furthermore, high chemoselectivity was observed when employing these nicotinamide cofactor mimics (mNADs) with crude extracts in ER-catalyzed reactions.
Collapse
Affiliation(s)
- Caroline E Paul
- Department of Biotechnology, Delft University of Technology, Julianalaan 136, 2628BL Delft, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Gao X, Ren J, Wu Q, Zhu D. Biochemical characterization and substrate profiling of a new NADH-dependent enoate reductase from Lactobacillus casei. Enzyme Microb Technol 2012; 51:26-34. [PMID: 22579387 DOI: 10.1016/j.enzmictec.2012.03.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 03/27/2012] [Accepted: 03/28/2012] [Indexed: 11/19/2022]
Abstract
Carbon-carbon double bond of α,β-unsaturated carbonyl compounds can be reduced by enoate reductase (ER), which is an important reaction in fine chemical synthesis. A putative enoate reductase gene from Lactobacillus casei str. Zhang was cloned into pET-21a+ and expressed in Escherichia coli BL21 (DE3) host cells. The encoded enzyme (LacER) was purified by ammonium sulfate precipitation and treatment in an acidic buffer. This enzyme was identified as a NADH-dependent enoate reductase, which had a K(m) of 0.034 ± 0.006 mM and k(cat) of (3.2 ± 0.2) × 10³ s⁻¹ toward NADH using 2-cyclohexen-1-one as the substrate. Its K(m) and k(cat) toward substrate 2-cyclohexen-1-one were 1.94 ± 0.04 mM and (8.4 ± 0.2) × 10³ s⁻¹, respectively. The enzyme showed a maximum activity at pH 8.0-9.0. The optimum temperature of the enzyme was 50-55°C, and LacER was relatively stable below 60 °C. The enzyme was active toward aliphatic alkenyl aldehyde, ketones and some cyclic anhydrides. Substituted groups of cyclic α,β-unsaturated ketones and its ring size have positive or negative effects on activity. (R)-(-)-Carvone was reduced to (2R,5R)-dihydrocarvone with 99% conversion and 98% (diasteromeric excess: de) stereoselectivity, indicating a high synthetic potential of LacER in asymmetric synthesis.
Collapse
Affiliation(s)
- Xiuzhen Gao
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, Tianjin 300308, China
| | | | | | | |
Collapse
|
47
|
Winkler CK, Tasnádi G, Clay D, Hall M, Faber K. Asymmetric bioreduction of activated alkenes to industrially relevant optically active compounds. J Biotechnol 2012; 162:381-9. [PMID: 22498437 PMCID: PMC3521962 DOI: 10.1016/j.jbiotec.2012.03.023] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 03/23/2012] [Accepted: 03/28/2012] [Indexed: 12/01/2022]
Abstract
Ene-reductases from the ‘Old Yellow Enzyme’ family of flavoproteins catalyze the asymmetric reduction of various α,β-unsaturated compounds at the expense of a nicotinamide cofactor. They have been applied to the synthesis of valuable enantiopure products, including chiral building blocks with broad industrial applications, terpenoids, amino acid derivatives and fragrances. The combination of these highly stereoselective biocatalysts with a cofactor recycling system has allowed the development of cost-effective methods for the generation of optically active molecules, which is strengthened by the availability of stereo-complementary enzyme homologues.
Collapse
Affiliation(s)
- Christoph K Winkler
- Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | | | | | | | | |
Collapse
|
48
|
Kraußer M, Winkler T, Richter N, Dommer S, Fingerhut A, Hummel W, Gröger H. Combination of CC Bond Formation by Wittig Reaction and Enzymatic CC Bond Reduction in a One-Pot Process in Water. ChemCatChem 2011. [DOI: 10.1002/cctc.201000391] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|