1
|
Tian X, Wen Y, Zhang Z, Zhu J, Song X, Phan TT, Li J. Recent advances in smart hydrogels derived from polysaccharides and their applications for wound dressing and healing. Biomaterials 2025; 318:123134. [PMID: 39904188 DOI: 10.1016/j.biomaterials.2025.123134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/06/2025] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
Owing to their inherent biocompatibility and biodegradability, hydrogels derived from polysaccharides have emerged as promising candidates for wound management. However, the complex nature of wound healing often requires the development of smart hydrogels---intelligent materials capable of responding dynamically to specific physical or chemical stimuli. Over the past decade, an increasing number of stimuli-responsive polysaccharide-based hydrogels have been developed to treat various types of wounds. While a range of hydrogel types and their versatile functions for wound management have been discussed in the literature, there is still a need for a review of the crosslinking strategies used to create smart hydrogels from polysaccharides. This review provides a comprehensive overview of how stimuli-responsive hydrogels can be designed and made using five key polysaccharides: chitosan, hyaluronic acid, alginate, dextran, and cellulose. Various methods, such as chemical crosslinking, dynamic crosslinking, and physical crosslinking, which are used to form networks within these hydrogels, ultimately determine their ability to respond to stimuli, have been explored. This article further looks at different polysaccharide-based hydrogel wound dressings that can respond to factors such as reactive oxygen species, temperature, pH, glucose, light, and ultrasound in the wound environment and discusses how these responses can enhance wound healing. Finally, this review provides insights into how stimuli-responsive polysaccharide-based hydrogels can be developed further as advanced wound dressings in the future.
Collapse
Affiliation(s)
- Xuehao Tian
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore
| | - Yuting Wen
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, 215123, China; National University of Singapore (Chongqing) Research Institute, Yubei, Chongqing, 401120, China.
| | - Zhongxing Zhang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore
| | - Jingling Zhu
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore; NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, 117411, Singapore
| | - Xia Song
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore
| | - Toan Thang Phan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, 119228, Singapore; Cell Research Corporation Pte. Ltd., 048943, Singapore
| | - Jun Li
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, 215123, China; National University of Singapore (Chongqing) Research Institute, Yubei, Chongqing, 401120, China; NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, 117411, Singapore.
| |
Collapse
|
2
|
Kali G, Mayer AH, To D, Truszkowska M, Seybold A, Braun DE, Plangger R, Gallei M, Bernkop-Schnürch A. Polycaprolactone/α-cyclodextrin polyrotaxanes with cellular uptake enhancing properties. J Mater Chem B 2025; 13:3471-3482. [PMID: 39949304 PMCID: PMC11826306 DOI: 10.1039/d4tb02451f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/31/2025] [Indexed: 02/16/2025]
Abstract
Biodegradable poly(ε-caprolactone) (PCL) was rotaxanated with α-cyclodextrin (α-CD) and an α-CD/2-hydroxypropyl-α-CD (HP-α-CD) mixture. Stoppering was achieved using 2-mercaptosuccinic acid (MSA) via disulfide linkage. The structures of these polymeric supramolecular entities were confirmed by 1H NMR, with 75-80 wt% threaded CD, while the molar mass of the polyrotaxanes was around 18 kDa, determined by gel permeation chromatography. The aqueous solubility was as low as 20.2 ± 1.2 g L-1 for the α-CD-based polyrotaxane but considerably increased to 74.7 ± 6.0 g L-1 by the introduction of threaded HP-α-CD into the polymeric axis. Dethreading of the polyrotaxanes was triggered by the removal of the stopper molecules via disulfide-exchange reactions using glutathione. Additionally, the polyester axis proved to be fully degradable by lipase. Cellular uptake of these polyrotaxanes was investigated by flow cytometry and confocal microscopy. The results showed an almost up to 50-fold higher cellular uptake of polyrotaxanes than free CD. These disulfide end-stoppered polyrotaxanes of biodegradable PCL represent a promising tool for intracellular delivery of CDs and offer novel treatment possibilities for lysosomal storage dysfunctions.
Collapse
Affiliation(s)
- Gergely Kali
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Alexander H Mayer
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Dennis To
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Martyna Truszkowska
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Anna Seybold
- Department of Zoology, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Doris Elfriede Braun
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Raphael Plangger
- Center for Chemistry and Biomedicine, Department of Organic Chemistry, Institute of Chemistry, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Markus Gallei
- Polymer Chemistry, Saarland University, Campus C4 2, 66123 Saarbrücken, Germany
- Saarene, Saarland Center for Energy Materials and Sustainability, Campus C4 2, 66123 Saarbrücken, Germany
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
3
|
Li J, Yuan J, Sun G, Li W, Hao H, Zhou B. Bridging host-guest chemistry with molecule chemistry-covalent organic polyrotaxanes (COPRs): from synthesis to inactivation of bacterial pathogens. RSC Adv 2024; 14:30364-30377. [PMID: 39318465 PMCID: PMC11420781 DOI: 10.1039/d4ra05381h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024] Open
Abstract
As a thriving artificial material, covalent organic frameworks (COFs), boasting inherent structural designability and functional adaptability, and with compositions akin to biological macromolecules, have emerged as a rising star in the field of material science. However, the progression of COFs is significantly impeded by the arduous and intricate preparation procedures of novel building blocks, as well as the inefficient development process of new reactions. An efficient, uncomplicated, and versatile functionalization approach, which has the potential to not only facilitate customized preparation of COFs based on application demands but also enable precise performance control, has become a focal point of research. The formulation of multi-functional COFs through efficient and cost-effective methods poses a critical challenge for the practical application of COFs. This review aims to present the preparation of COFs by amalgamating rigid molecular chemistry with flexible supramolecular host-guest chemistry, adopting a "couple hardness with softness" strategy to meticulously construct intelligent covalent organic polyrotaxanes (COPRs) using conventional reactions. Herein, novel building blocks can be acquired by amalgamating existing macrocycle complexes with framework blocks. The amalgamation of supramolecular chemistry bolsters the capabilities to generate, sense, respond, and amplify distinctive signals, thereby expediting the advancement of multifaceted materials with sophisticated structures. Concurrently, the infusion of supramolecular force endows COPRs with exceptional performance, facilitating multi-mode collaborative antibacterial therapy. This comprehensive review not only promotes the efficient utilization of resources but also stimulates the rapid advancement of framework materials.
Collapse
Affiliation(s)
- Juan Li
- Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University Weifang 261041 Shandong PR China
- Weifang People's Hospital, Shandong Second Medical University Weifang 261000 Shandong PR China
| | - Jingsong Yuan
- School of Pharmacy, Shandong Second Medical University Weifang 261053 Shandong PR China
| | - Guoli Sun
- Weifang People's Hospital, Shandong Second Medical University Weifang 261000 Shandong PR China
| | - Wentao Li
- School of Basic Medicine, Shandong Second Medical University Weifang 261053 Shandong PR China
| | - Huihui Hao
- Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University Weifang 261041 Shandong PR China
| | - Baolong Zhou
- School of Pharmacy, Shandong Second Medical University Weifang 261053 Shandong PR China
| |
Collapse
|
4
|
Li Q, Yang Y, Yu SM, Wu Z, Xing J, Lin Q, Miao Y, Wang H, Zhang DW, Wang W, Li ZT, Xu YX. Bispillar[5]arene-Based Slide-Ring Polyrotaxanation Enables Enhanced Toughness, Recyclability, Impact, and Puncture Resistance of Polyisoprene Elastomers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48342-48351. [PMID: 39216006 DOI: 10.1021/acsami.4c10680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A series of slide-ring polyrotaxanes (SRPs) have been constructed by the solvent-free blending of a ditopic pillar[5]arene (DP5A) and polyisoprene (PIP) after thermal annealing. Solid-state 13C NMR experiments supported the fact that the pillar[5]arene rings of DP5A were threaded by PIP chains to afford physically interlocked networks. Tensile tests revealed that 1% of DP5A can improve the elongation at break from 50 to 239%, the tensile modulus from 2.1 to 3.9 MPa, and the toughness from 0.35 to 4.5 MJ/m3. Impact and puncture resistance experiments show that the DP5A-doped materials exhibit remarkable enhancement of protective and impalement-resistant performance. The samples can be also recycled repeatedly due to their physical crosslinking nature. The important stress delocalization effects have been attributed to the pulley effect of DP5A in the SRP materials, which represents a supramolecular approach for improving the performance of PIP elastomers.
Collapse
Affiliation(s)
- Qian Li
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Ying Yang
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Si-Min Yu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zhibo Wu
- Shaanxi Key Laboratory of Impact Dynamics and Its Engineering Application, School of Aeronautics, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Jiabin Xing
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Qihan Lin
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Yinggang Miao
- Shaanxi Key Laboratory of Impact Dynamics and Its Engineering Application, School of Aeronautics, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Hui Wang
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Dan-Wei Zhang
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Wei Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zhan-Ting Li
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Yun-Xiang Xu
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
5
|
Singh P, Mahar R. Cyclodextrin in drug delivery: Exploring scaffolds, properties, and cutting-edge applications. Int J Pharm 2024; 662:124485. [PMID: 39029633 DOI: 10.1016/j.ijpharm.2024.124485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Cyclodextrins (CDs) are unique cyclic compounds that can form inclusion complexes via host-guest complexation with a wide range of molecules, thereby altering their physicochemical properties. These molecules offer the formation of inclusion complexes without the formation of covalent bonds, making them suitable for a variety of applications in pharmaceutical and biomedical fields. Due to their supramolecular host-guest properties, CDs are being utilized in the fabrication of biomaterials, metal-organic frameworks, and nano-drug carriers. Additionally, CDs in combination with biomolecules are biocompatible and can deliver nano to macromolecules at the site of drug actions. However, the availability of free hydroxyl groups and a simple crosslinking process for supramolecular fabrication show immense opportunities for researchers in the field of tissue engineering and biomedical applications. In this review article, we have covered the historical development, various types of chemical frameworks, unique chemical and physical properties, and important applications of CDs in drug delivery and biomedical sciences.
Collapse
Affiliation(s)
- Parbeen Singh
- Department of Mechanical Engineering, University of Connecticut, Connecticut, United States.
| | - Rohit Mahar
- Department of Chemistry, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Garhwal, Uttarakhand, India.
| |
Collapse
|
6
|
Higashi T, Taharabaru T, Motoyama K. Synthesis of cyclodextrin-based polyrotaxanes and polycatenanes for supramolecular pharmaceutical sciences. Carbohydr Polym 2024; 337:122143. [PMID: 38710552 DOI: 10.1016/j.carbpol.2024.122143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024]
Abstract
Cyclodextrins (CDs) are essential in the pharmaceutical industry and have long been used as food and pharmaceutical additives. CD-based interlocked molecules, such as rotaxanes, polyrotaxanes, catenanes, and polycatenanes, have been synthesized and have attracted considerable attention in supramolecular chemistry. Among them, CD polyrotaxanes have been employed as slide-ring materials and biomaterials. CD polycatenanes are new materials; therefore, to date, no examples of applied research on CD polycatenanes have been reported. Consequently, we expect that applied research on CD polycatenanes will accelerate in the future. This review article summarizes the syntheses and structural analyses of CD polyrotaxanes and polycatenanes to facilitate their applications in the pharmaceutical industry. We believe that this review will promote further research on CD-based interlocked molecules.
Collapse
Affiliation(s)
- Taishi Higashi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Toru Taharabaru
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Keiichi Motoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| |
Collapse
|
7
|
Kundu S, Higashi K, Takamizawa M, Ueda K, Limwikrant W, Yamamoto K, Moribe K. Controlled Sublimation Rate of Guest Drug from Polymorphic Forms of a Cyclodextrin-Based Polypseudorotaxane Complex and Its Correlation with Molecular Dynamics as Probed by Solid-State NMR. Mol Pharm 2024; 21:1501-1514. [PMID: 38363209 DOI: 10.1021/acs.molpharmaceut.3c01148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Encapsulation of active pharmaceutical ingredients (APIs) in confined spaces has been extensively explored as it dramatically alters the molecular dynamics and physical properties of the API. Herein, we explored the effect of encapsulation on the molecular dynamics and physical stability of a guest drug, salicylic acid (SA), confined in the intermolecular spaces of γ-cyclodextrin (γ-CD) and poly(ethylene glycol) (PEG)-based polypseudorotaxane (PPRX) structure. The sublimation tendency of SA encapsulated in three polymorphic forms of the γ-CD/PEG-based PPRX complex, monoclinic columnar (MC), hexagonal columnar (HC), and tetragonal columnar (TC), was investigated. The SA sublimation rate was decreased by 3.0-6.6-fold and varied in the order of MC form > HC form > TC form complex. The 13C and 1H magic-angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) spectra and 13C spin-lattice relaxation time (T1) indicated that the encapsulated SA molecules existed as the monomeric form, and its molecular mobility increased in the order of MC form > HC form > TC form complex. In the complexes, a rapid chemical exchange between two dynamic states of SA (free and bound) was suggested, with varying adsorption/desorption rates accounting for its distinct molecular mobility. This adsorption/desorption process was influenced by proton exchange at the interaction site and interaction strength of SA in the complexes, as evidenced by 1H MAS spectra and temperature dependency of the 13C carbonyl chemical shift. A positive correlation between the molecular mobility of SA and its sublimation rate was established. Moreover, the molecular mobility of γ-CD and PEG in the complexes coincided with that of SA, which can be explained by fast guest-driven dynamics. This is the first report on the stability improvement of an API through complexation in polymorphic supramolecular host structures. The relationship between the molecular dynamics and physical properties of encapsulated API will aid in the rational design of drug delivery systems.
Collapse
Affiliation(s)
- Sudeshna Kundu
- Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | - Kenjirou Higashi
- Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | - Makoto Takamizawa
- Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | - Keisuke Ueda
- Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | - Waree Limwikrant
- Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
- Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri Ayudhya Road, Ratchatewi, Bangkok 10400, Thailand
| | - Keiji Yamamoto
- Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | - Kunikazu Moribe
- Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
8
|
Zhao Y, Zheng Z, Yu CY, Wei H. Engineered cyclodextrin-based supramolecular hydrogels for biomedical applications. J Mater Chem B 2023; 12:39-63. [PMID: 38078497 DOI: 10.1039/d3tb02101g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Cyclodextrin (CD)-based supramolecular hydrogels are polymer network systems with the ability to rapidly form reversible three-dimensional porous structures through multiple cross-linking methods, offering potential applications in drug delivery. Although CD-based supramolecular hydrogels have been increasingly used in a wide range of applications in recent years, a comprehensive description of their structure, mechanical property modulation, drug loading, delivery, and applications in biomedical fields from a cross-linking perspective is lacking. To provide a comprehensive overview of CD-based supramolecular hydrogels, this review systematically describes their design, regulation of mechanical properties, modes of drug loading and release, and their roles in various biomedical fields, particularly oncology, wound dressing, bone repair, and myocardial tissue engineering. Additionally, this review provides a rational discussion on the current challenges and prospects of CD-based supramolecular hydrogels, which can provide ideas for the rapid development of CD-based hydrogels and foster their translation from the laboratory to clinical medicine.
Collapse
Affiliation(s)
- Yuqi Zhao
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| | - Zhi Zheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| |
Collapse
|
9
|
Zhu WB, Wei TB, Hu HB, Li ZJ, Zhang YQ, Li YC, Zhang L, Zhang XW. Pillar[5]arene-based supramolecular pseudorotaxane polymer material for ultra-sensitive detection of Fe 3+ and F . RSC Adv 2023; 13:12270-12275. [PMID: 37091614 PMCID: PMC10113919 DOI: 10.1039/d3ra00997a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/10/2023] [Indexed: 04/25/2023] Open
Abstract
Recent advancements in ultra-sensitive detection, particularly the Aggregation Induced Emission (AIE) materials, have demonstrated a promising detection method due to their low cost, real-time detection, and simplicity of operation. Here, coumarin functionalized pillar[5]arene (P5C) and bis-bromohexyl pillar[5]arene (DP5) were successfully combined to create a linear AIE supramolecular pseudorotaxane polymer (PCDP-G). The use of PCDP-G as a supramolecular AIE polymer material for recyclable ultra-sensitive Fe3+ and F- detection is an interesting application of the materials. According to measurements, the low detection limits of PCDP-G for Fe3+ and F- are 4.16 × 10-10 M and 6.8 × 10-10 M, respectively. The PCDP-G is also a very effective logic gate and a material for luminous displays.
Collapse
Affiliation(s)
- Wen-Bo Zhu
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Chemistry and Chemical Engineering, Longdong University Qingyang Gansu 745000 P. R. China
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Hao-Bin Hu
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Chemistry and Chemical Engineering, Longdong University Qingyang Gansu 745000 P. R. China
| | - Zhi-Jun Li
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Chemistry and Chemical Engineering, Longdong University Qingyang Gansu 745000 P. R. China
| | - Yu-Quan Zhang
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Chemistry and Chemical Engineering, Longdong University Qingyang Gansu 745000 P. R. China
| | - Yan-Chun Li
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Chemistry and Chemical Engineering, Longdong University Qingyang Gansu 745000 P. R. China
| | - Liang Zhang
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Chemistry and Chemical Engineering, Longdong University Qingyang Gansu 745000 P. R. China
| | - Xiao-Wei Zhang
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Chemistry and Chemical Engineering, Longdong University Qingyang Gansu 745000 P. R. China
| |
Collapse
|
10
|
Cyclodextrin-Based Polymeric Drug Delivery Systems for Cancer Therapy. Polymers (Basel) 2023; 15:polym15061400. [PMID: 36987181 PMCID: PMC10052104 DOI: 10.3390/polym15061400] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Cyclodextrins (CDs) are one of the most extensively studied cyclic-oligosaccharides due to their low toxicity, good biodegradability and biocompatibility, facile chemical modification, and unique inclusion capacity. However, problems such as poor pharmacokinetics, plasma membrane disruption, hemolytic effects and a lack of target specificity still exist for their applications as drug carriers. Recently, polymers have been introduced into CDs to combine the advantages of both biomaterials for the superior delivery of anticancer agents in cancer treatment. In this review, we summarize four types of CD-based polymeric carriers for the delivery of chemotherapeutics or gene agents for cancer therapy. These CD-based polymers were classified based on their structural properties. Most of the CD-based polymers were amphiphilic with the introduction of hydrophobic/hydrophilic segments and were able to form nanoassemblies. Anticancer drugs could be included in the cavity of CDs, encapsulated in the nanoparticles or conjugated on the CD-based polymers. In addition, the unique structures of CDs enable the functionalization of targeting agents and stimuli-responsive materials to realize the targeting and precise release of anticancer agents. In summary, CD-based polymers are attractive carriers for anticancer agents.
Collapse
|
11
|
Chen L, Sheng X, Li G, Huang F. Mechanically interlocked polymers based on rotaxanes. Chem Soc Rev 2022; 51:7046-7065. [PMID: 35852571 DOI: 10.1039/d2cs00202g] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The nature of mechanically interlocked molecules (MIMs) has continued to encourage researchers to design and construct a variety of high-performance materials. Introducing mechanically interlocked structures into polymers has led to novel polymeric materials, called mechanically interlocked polymers (MIPs). Rotaxane-based MIPs are an important class, where the mechanically interlocked characteristic retains a high degree of structural freedom and mobility of their components, such as the rotation and sliding motions of rotaxane units. Therefore, these MIP materials are known to possess a unique set of properties, including mechanical robustness, adaptability and responsiveness, which endow them with potential applications in many emerging fields, such as protective materials, intelligent actuators, and mechanisorption. In this review, we outline the synthetic strategies, structure-property relationships, and application explorations of various polyrotaxanes, including linear polyrotaxanes, polyrotaxane networks, and rotaxane dendrimers.
Collapse
Affiliation(s)
- Liya Chen
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Xinru Sheng
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Guangfeng Li
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China. .,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, P. R. China.
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China. .,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, P. R. China. .,Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
12
|
Sani MZ, Bargahi A, Momenzadeh N, Dehghani P, Moghadam MV, Maleki SJ, Nabipour I, Shirkani A, Akhtari J, Hesamizadeh K, Heidari S, Omrani F, Akbarzadeh S, Mohammadi M. Genetically engineered fusion of allergen and viral-like particle induces a more effective allergen-specific immune response than a combination of them. Appl Microbiol Biotechnol 2020; 105:77-91. [PMID: 33215260 DOI: 10.1007/s00253-020-11012-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/31/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
Chimeric virus-like particles (VLPs) were developed as a candidate for allergen-specific immunotherapy. In this study, hepatitis B core antigen (HBcAg) that genetically fused to Chenopodium album polcalcin (Che a 3)-derived peptide was expressed in E. coli BL21, purified, and VLP formation was evaluated using native agarose gel electrophoresis (NAGE) and transmission electron microscopy (TEM). Chimeric HBc VLPs were characterized in terms of their reactivity to IgE, the induction of blocking IgG and allergen-specific IgE, basophil-activating capacity, and Th1-type immune responses. Results from IgE reactivity and basophil activation test showed that chimeric HBc VLPs lack IgE-binding capacity and basophil degranulation activity. Although chimeric HBc VLPs induced the highest level of efficient polcalcin-specific IgG antibody in comparison to those induced by recombinant Che a 3 (rChe a 3) mixed either with HBc VLPs or alum, they triggered the lowest level of polcalcin-specific IgE in mice following immunization. Furthermore, in comparison to the other antigens, chimeric HBc VLPs produced a polcalcin-specific Th1 cell response. Taken together, genetically fusion of allergen derivatives to HBc VLPs, in comparison to a mix of them, may be a more effective way to induce appropriate immune responses in allergen-specific immunotherapy. KEY POINTS: • The insertion of allergen-derived peptide into major insertion region (MIR) of hepatitis B virus core (HBc) antigen resulted in nanoparticles displaying allergen-derived peptide upon its expression in prokaryotic host. • The resultant VLPs (chimeric HBc VLPs) did not exhibit IgE reactivity with allergic patients' sera and were not able to degranulate basophils. • Chimeric HBc VLPs dramatically improved protective IgG antibody response compared with those induced by allergen mixed either with HBc VLPs or alum. • Chimeric HBc VLPs induced Th1 responses that were counterparts of Th2 responses (allergic). • Chimeric HBc VLPs increased IgG2a/ IgG1 ratio and the level of IFN-γ compared to those induced by allergen mixed with either HBc VLPs or alum. Graphical Abstract.
Collapse
Affiliation(s)
- Maryam Zamani Sani
- Department of Biochemistry, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Afshar Bargahi
- Department of Biochemistry, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Niloofar Momenzadeh
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Moallem Street, Bushehr, 7514633196, Iran
| | - Parva Dehghani
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Moallem Street, Bushehr, 7514633196, Iran
| | - Maryam Vakili Moghadam
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soheila June Maleki
- Southern Regional Research Center, Agricultural Research Service, US Department of Agriculture, New Orleans, LA, USA
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Moallem Street, Bushehr, 7514633196, Iran
| | - Afshin Shirkani
- Allergy and Clinical Immunology Department, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Javad Akhtari
- Toxoplasmosis Research Center, Department of Medical Nanotechnology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Khashayar Hesamizadeh
- Department of Virology, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Sahel Heidari
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Omrani
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Moallem Street, Bushehr, 7514633196, Iran
| | - Samad Akbarzadeh
- Department of Biochemistry, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohsen Mohammadi
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Moallem Street, Bushehr, 7514633196, Iran.
| |
Collapse
|
13
|
Rajendan AK, Arisaka Y, Yui N, Iseki S. Polyrotaxanes as emerging biomaterials for tissue engineering applications: a brief review. Inflamm Regen 2020; 40:27. [PMID: 33292785 PMCID: PMC7657355 DOI: 10.1186/s41232-020-00136-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023] Open
Abstract
The field of tissue engineering and regeneration constantly explores the possibility of utilizing various biomaterials' properties to achieve effective and uneventful tissue repairs. Polyrotaxanes (PRXs) are supramolecular assemblies, which possess interesting mechanical property at a molecular scale termed as molecular mobility. This molecular mobility could be utilized to stimulate various cellular mechanosignaling elements, thereby altering the cellular functions. Apart from this, the versatile nature of PRXs such as the ability to form complex with growth factors and peptides, numerous sites for chemical modifications, and processability into different forms makes them interesting candidates for applications towards tissue engineering. This literature briefly reviews the concepts of PRXs and molecular mobility, the versatile nature of PRXs, and its emerging utility towards certain tissue engineering applications.
Collapse
Affiliation(s)
- Arun Kumar Rajendan
- Section of Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Yoshinori Arisaka
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo, 101-0062, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo, 101-0062, Japan
| | - Sachiko Iseki
- Section of Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan.
| |
Collapse
|
14
|
Ghodke SB, Parkar JN, Deshpande AR, Dandekar PP, Jain RD. Structure–Activity Relationship of Polyester-Based Cationic Polyrotaxane Vector-Mediated In Vitro siRNA Delivery: Effect on Gene Silencing Efficiency. ACS APPLIED BIO MATERIALS 2020; 3:7500-7514. [DOI: 10.1021/acsabm.0c00717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sharwari B. Ghodke
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Junaid N. Parkar
- Department of Polymer & Surface Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Aparna R. Deshpande
- Department of Physics and Center for Energy Science, h cross, Indian Institute of Science Education Research, Pune 411008, India
| | - Prajakta P. Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Ratnesh D. Jain
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| |
Collapse
|
15
|
Ghodke S, Mahajan P, Gupta K, Ver Avadhani C, Dandekar P, Jain R. Biodegradable Polyester of Poly (Ethylene glycol)-sebacic Acid as a Backbone for β -Cyclodextrin-polyrotaxane: A Promising Gene Silencing Vector. Curr Gene Ther 2020; 19:274-287. [PMID: 31393245 DOI: 10.2174/1566523219666190808094225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Polyrotaxane, a macromolecular interlocked assembly, consisting of cyclodextrin has excellent inclusion capabilities and functionalization capacity, which makes it a versatile material as a vector for gene delivery applications. OBJECTIVE A biodegradable linear aliphatic polyester axle composed of Polyethylene Glycol (PEG) and Sebacic Acid (SA) was used to fabricate the β-Cyclodextrin (β-CD) based polyrotaxane as a cationic polymeric vector and evaluated for its potential gene silencing efficiency. METHODS The water-soluble aliphatic polyester was synthesized by the solvent esterification process and characterized using viscometry, GPC, FT-IR and 1H NMR spectroscopy. The synthesized polyester was further evaluated for its biodegradability and cellular cytotoxicity. Hence, this water-soluble polyester was used for the step-wise synthesis of polyrotaxane, via threading and blocking reactions. Threading of β-CD over PEG-SA polyester axle was conducted in water, followed by end-capping of polypseudorotaxane using 2,4,6-trinitrobenzenesulfonic acid to yield polyester-based polyrotaxane. For gene delivery application, cationic polyrotaxane (PRTx+) was synthesized and evaluated for its gene loading and gene silencing efficiency. RESULTS AND DISCUSSION The resulting novel macromolecular assembly was found to be safe for use in biomedical applications. Further, characterization by GPC and 1H NMR techniques revealed successful formation of PE-β-CD-PRTx with a threading efficiency of 16%. Additionally, the cellular cytotoxicity assay indicated biosafety of the synthesized polyrotaxane, exploring its potential for gene delivery and other biomedical applications. Further, the biological profile of PRTx+: siRNA complexes was evaluated by measuring their zeta potential and gene silencing efficiency, which were found to be comparable to Lipofectamine 3000, the commercial transfecting agent. CONCLUSION The combinatory effect of various factors such as biodegradability, favourable complexation ability, near zero zeta potentials, good cytotoxicity properties of poly (ethylene glycol)-sebacic acid based β-Cyclodextrin-polyrotaxane makes it a promising gene delivery vector for therapeutic applications.
Collapse
Affiliation(s)
- Sharwari Ghodke
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai-400019, India
| | - Prajakta Mahajan
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai-400019, India
| | - Kritika Gupta
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai-400019, India
| | - Chilukuri Ver Avadhani
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai-400019, India
| | - Ratnesh Jain
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai-400019, India
| |
Collapse
|
16
|
Qiu Y, Song B, Pezzato C, Shen D, Liu W, Zhang L, Feng Y, Guo QH, Cai K, Li W, Chen H, Nguyen MT, Shi Y, Cheng C, Astumian RD, Li X, Stoddart JF. A precise polyrotaxane synthesizer. Science 2020; 368:1247-1253. [PMID: 32527831 DOI: 10.1126/science.abb3962] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/05/2020] [Accepted: 04/27/2020] [Indexed: 01/22/2023]
Abstract
Mechanically interlocked molecules are likely candidates for the design and synthesis of artificial molecular machines. Although polyrotaxanes have already found niche applications in exotic materials with specialized mechanical properties, efficient synthetic protocols to produce them with precise numbers of rings encircling their polymer dumbbells are still lacking. We report the assembly line-like emergence of poly[n]rotaxanes with increasingly higher energies by harnessing artificial molecular pumps to deliver rings in pairs by cyclical redox-driven processes. This programmable strategy leads to the precise incorporation of two, four, six, eight, and 10 rings carrying 8+, 16+, 24+, 32+, and 40+ charges, respectively, onto hexacationic polymer dumbbells. This strategy depends precisely on the number of redox cycles applied chemically or electrochemically, in both stepwise and one-pot manners.
Collapse
Affiliation(s)
- Yunyan Qiu
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Bo Song
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.,Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Cristian Pezzato
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Dengke Shen
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Wenqi Liu
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Long Zhang
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Yuanning Feng
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Qing-Hui Guo
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Kang Cai
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Weixingyue Li
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Hongliang Chen
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Minh T Nguyen
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Yi Shi
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Chuyang Cheng
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - R Dean Astumian
- Department of Physics, University of Maine, Orono, ME 04469, USA.
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA.
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA. .,Institute for Molecular Design and Synthesis, Tianjin University, Tianjin 300072, P. R. China.,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
17
|
Arisaka Y, Yui N. Suspending Polyrotaxane Dissociation via Photo-Reversible Capping of Terminals. Macromol Rapid Commun 2019; 40:e1900323. [PMID: 31429992 DOI: 10.1002/marc.201900323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/07/2019] [Indexed: 12/23/2022]
Abstract
Reversible covalent bonds yield polymeric materials with functional characteristics such as self-healing, shape memory, stress relaxation, and stimuli-responsiveness. Here, photo-reversibly cappable polyrotaxanes are designed and the on-off controlled dissociation of their supramolecular architectures is demonstrated. The polyrotaxanes are synthesized by capping dithiobenzoates at both terminals of polyethylene glycol threaded through multiple α-cyclodextrins. Since dethreading of the α-cyclodextrins is prevented by the dithiobenzoate stoppers, the supramolecular dissociation is induced by their photo-cleavage. Subsequently, the cleaved dithiobenzoates spontaneously re-cap the polyrotaxane terminals in darkness. Thus, the supramolecular dissociation can be modulated by photo-reversible capping of the dithiobenzoate stoppers. These polyrotaxanes with dithiobenzoate stoppers are promising functional materials for photo-controlling physical properties and structures.
Collapse
Affiliation(s)
- Yoshinori Arisaka
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 12-3-10 Kanda-Surugadai, Chiyoda, Tokyo, 101-0062, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 12-3-10 Kanda-Surugadai, Chiyoda, Tokyo, 101-0062, Japan
| |
Collapse
|
18
|
Pruksawan S, Samitsu S, Yokoyama H, Naito M. Homogeneously Dispersed Polyrotaxane in Epoxy Adhesive and Its Improvement in the Fracture Toughness. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02450] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Sirawit Pruksawan
- Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047, Japan
- Program in Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tenodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Sadaki Samitsu
- Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Hideaki Yokoyama
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Toudaikasiwakyanpasu, Kashiwanoha, Kashiwa-shi, Chiba 277-8561, Japan
| | - Masanobu Naito
- Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047, Japan
- Program in Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1, Tenodai, Tsukuba, Ibaraki 305-8571, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Toudaikasiwakyanpasu, Kashiwanoha, Kashiwa-shi, Chiba 277-8561, Japan
| |
Collapse
|
19
|
Arisaka Y, Yui N. Polyrotaxane-based biointerfaces with dynamic biomaterial functions. J Mater Chem B 2019; 7:2123-2129. [PMID: 32073570 DOI: 10.1039/c9tb00256a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The molecular mobility of cyclic molecules (e.g.α-cyclodextrins) threaded along a linear polymer chain (e.g. poly(ethylene glycol)) in polyrotaxanes is a unique feature for biomaterials with dynamic functionality. Surfaces with molecular mobility can be obtained by introducing polyrotaxanes. The molecular mobility of polyrotaxane-based surfaces can be modulated by changing the number of threaded cyclic molecules and modifying their functional groups. Biological ligands modified with α-cyclodextrins exhibit increased multivalent interactions with their receptors due to the molecular mobility of the latter. Furthermore, polyrotaxane-based surfaces not only improve the initial response of cells via multivalent interactions, but also affect cytoskeleton formation and the inherent quality of cells, including differentiation. Such polyrotaxane surfaces can emerge as new biointerfaces that can adapt to the dynamic biological nature.
Collapse
Affiliation(s)
- Yoshinori Arisaka
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan.
| | | |
Collapse
|
20
|
Shukla A, Maiti P. Biodegradable Polymer-Based Nanohybrids for Controlled Drug Delivery and Implant Applications. MATERIALS HORIZONS: FROM NATURE TO NANOMATERIALS 2019:3-19. [DOI: 10.1007/978-981-32-9804-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
21
|
Mantooth SM, Munoz-Robles BG, Webber MJ. Dynamic Hydrogels from Host-Guest Supramolecular Interactions. Macromol Biosci 2018; 19:e1800281. [PMID: 30303631 DOI: 10.1002/mabi.201800281] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/19/2018] [Indexed: 01/17/2023]
Abstract
Hydrogel biomaterials are pervasive in biomedical use. Applications of these soft materials range from contact lenses to drug depots to scaffolds for transplanted cells. A subset of hydrogels is prepared from physical cross-linking mediated by host-guest interactions. Host macrocycles, the most recognizable supramolecular motif, facilitate complex formation with an array of guests by inclusion in their portal. Commonly, an appended macrocycle forms a complex with appended guests on another polymer chain. The formation of poly(pseudo)rotaxanes is also demonstrated, wherein macrocycles are threaded by a polymer chain to give rise to physical cross-linking by secondary non-covalent interactions or polymer jamming. Host-guest supramolecular hydrogels lend themselves to a variety of applications resulting from their dynamic properties that arise from non-covalent supramolecular interactions, as well as engineered responsiveness to external stimuli. These are thus an exciting new class of materials.
Collapse
Affiliation(s)
- Siena M Mantooth
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, 205 McCourtney Hall, Notre Dame, IN, 46556, USA
| | - Brizzia G Munoz-Robles
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, 205 McCourtney Hall, Notre Dame, IN, 46556, USA
| | - Matthew J Webber
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, 205 McCourtney Hall, Notre Dame, IN, 46556, USA
| |
Collapse
|
22
|
β-Cyclodextrin-containing pseudorotaxanes as building blocks for cross-linked polymers. J INCL PHENOM MACRO 2018. [DOI: 10.1007/s10847-018-0838-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
|
24
|
Segredo-Morales E, Martin-Pastor M, Salas A, Évora C, Concheiro A, Alvarez-Lorenzo C, Delgado A. Mobility of Water and Polymer Species and Rheological Properties of Supramolecular Polypseudorotaxane Gels Suitable for Bone Regeneration. Bioconjug Chem 2018; 29:503-516. [DOI: 10.1021/acs.bioconjchem.7b00823] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Elisabet Segredo-Morales
- Department of Chemical
Engineering and Pharmaceutical Technology, Institute of Biomedical
Technologies (ITB), Center for Biomedical Research of the Canary Islands
(CIBICAN), Universidad de La Laguna, 30200 La Laguna, Spain
| | | | - Ana Salas
- Departamente Bioquímica, Microbiología,
Biología Celular y Genética, Instituto Universitario
de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, 38207 La Laguna, Spain
| | - Carmen Évora
- Department of Chemical
Engineering and Pharmaceutical Technology, Institute of Biomedical
Technologies (ITB), Center for Biomedical Research of the Canary Islands
(CIBICAN), Universidad de La Laguna, 30200 La Laguna, Spain
| | | | | | - Araceli Delgado
- Department of Chemical
Engineering and Pharmaceutical Technology, Institute of Biomedical
Technologies (ITB), Center for Biomedical Research of the Canary Islands
(CIBICAN), Universidad de La Laguna, 30200 La Laguna, Spain
| |
Collapse
|
25
|
Ardeleanu R, Dascalu AI, Neamtu A, Peptanariu D, Uritu CM, Maier SS, Nicolescu A, Simionescu BC, Barboiu M, Pinteala M. Multivalent polyrotaxane vectors as adaptive cargo complexes for gene therapy. Polym Chem 2018. [DOI: 10.1039/c7py01256j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The philosophy to design and construct polyrotaxane carriers, as efficient gene delivery systems.
Collapse
Affiliation(s)
- Rodinel Ardeleanu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers
- “Petru Poni” Institute of Macromolecular Chemistry
- 700487 Iasi
- Romania
| | - Andrei I. Dascalu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers
- “Petru Poni” Institute of Macromolecular Chemistry
- 700487 Iasi
- Romania
| | - Andrei Neamtu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers
- “Petru Poni” Institute of Macromolecular Chemistry
- 700487 Iasi
- Romania
- Regional Institute of Oncology (IRO)
| | - Dragos Peptanariu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers
- “Petru Poni” Institute of Macromolecular Chemistry
- 700487 Iasi
- Romania
| | - Cristina M. Uritu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers
- “Petru Poni” Institute of Macromolecular Chemistry
- 700487 Iasi
- Romania
| | - Stelian S. Maier
- Centre of Advanced Research in Bionanoconjugates and Biopolymers
- “Petru Poni” Institute of Macromolecular Chemistry
- 700487 Iasi
- Romania
- Department of Textile and Leather Chemical Engineering
| | - Alina Nicolescu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers
- “Petru Poni” Institute of Macromolecular Chemistry
- 700487 Iasi
- Romania
| | - Bogdan C. Simionescu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers
- “Petru Poni” Institute of Macromolecular Chemistry
- 700487 Iasi
- Romania
- Department of Natural and Synthetic Polymers
| | - Mihail Barboiu
- Adaptive Supramolecular Nanosystems Group
- Institut
- Européen des Membranes
- ENSCM/UMII/UMR-CNRS 5635
- 34095 Montpellier, Cedex 5
| | - Mariana Pinteala
- Centre of Advanced Research in Bionanoconjugates and Biopolymers
- “Petru Poni” Institute of Macromolecular Chemistry
- 700487 Iasi
- Romania
| |
Collapse
|
26
|
Crini G, Fourmentin S, Fenyvesi É, Torri G, Fourmentin M, Morin-Crini N. Fundamentals and Applications of Cyclodextrins. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2018. [DOI: 10.1007/978-3-319-76159-6_1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Garavand A, Dadkhah Tehrani A. New organic-inorganic hybrid material based on functional cellulose nanowhisker, polypseudorotaxane and Au nanorods. Carbohydr Polym 2016; 152:196-206. [DOI: 10.1016/j.carbpol.2016.07.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/07/2016] [Accepted: 07/10/2016] [Indexed: 10/21/2022]
|
28
|
Huang Z, Zhang H, Bai H, Bai Y, Wang S, Zhang X. Polypseudorotaxane Constructed from Cationic Polymer with Cucurbit[7]uril for Controlled Antibacterial Activity. ACS Macro Lett 2016; 5:1109-1113. [PMID: 35658190 DOI: 10.1021/acsmacrolett.6b00568] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This letter is aimed to develop a general strategy to fabricate polypseudorotaxanes with controlled antibacterial activity based on cationic polymers. As a proof of concept, the commercially available antibacterial cationic polymer, ε-poly-l-lysine hydrochloride, was chosen for the demonstration. Using host-guest chemistry, cucurbit[7]uril (CB[7]), a water-soluble macrocyclic host, was employed to bind with the positive charge and hydrophobic component on ε-poly-l-lysine hydrochlorides for antibacterial regulation. In this way, by tuning the ratio of CB[7] to the cationic polymer, the antibacterial polypseudorotaxane can be obtained, and the antibacterial efficiency can be well tuned from 5% to 100%. This line of research will enrich the field of cationic polymers and polypseudorotaxanes with important functions on precise control over antibacterial activity.
Collapse
Affiliation(s)
- Zehuan Huang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Hongyi Zhang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Haotian Bai
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Organic
Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Yunhao Bai
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Shu Wang
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Organic
Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Xi Zhang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
29
|
Lewis JEM, Winn J, Cera L, Goldup SM. Iterative Synthesis of Oligo[n]rotaxanes in Excellent Yield. J Am Chem Soc 2016; 138:16329-16336. [PMID: 27700073 DOI: 10.1021/jacs.6b08958] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We present an operationally simple iterative coupling strategy for the synthesis of oligomeric homo- and hetero[n]rotaxanes with precise control over the position of each macrocycle. The exceptional yield of the AT-CuAAC reaction, combined with optimized conditions that allow the rapid synthesis of the target oligomers, opens the door to the study of precision-engineered oligomeric interlocked molecules.
Collapse
Affiliation(s)
- James E M Lewis
- Chemistry, University of Southampton , Highfield, Southampton SO17 1BJ, U.K
| | - Joby Winn
- School of Biological Sciences, Queen Mary University of London , London E1 4NS, U.K
| | - Luca Cera
- School of Biological Sciences, Queen Mary University of London , London E1 4NS, U.K
| | - Stephen M Goldup
- Chemistry, University of Southampton , Highfield, Southampton SO17 1BJ, U.K
| |
Collapse
|
30
|
Seki T, Abe K, Egawa Y, Miki R, Juni K, Seki T. A Pseudopolyrotaxane for Glucose-Responsive Insulin Release: The Effect of Binding Ability and Spatial Arrangement of Phenylboronic Acid Group. Mol Pharm 2016; 13:3807-3815. [DOI: 10.1021/acs.molpharmaceut.6b00599] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Tomohiro Seki
- Faculty of Pharmaceutical
Sciences, Josai University, Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Keigo Abe
- Faculty of Pharmaceutical
Sciences, Josai University, Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Yuya Egawa
- Faculty of Pharmaceutical
Sciences, Josai University, Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Ryotaro Miki
- Faculty of Pharmaceutical
Sciences, Josai University, Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Kazuhiko Juni
- Faculty of Pharmaceutical
Sciences, Josai University, Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Toshinobu Seki
- Faculty of Pharmaceutical
Sciences, Josai University, Keyakidai, Sakado, Saitama 350-0295, Japan
| |
Collapse
|
31
|
Badwaik V, Mondjinou Y, Kulkarni A, Liu L, Demoret A, Thompson DH. Efficient pDNA Delivery Using Cationic 2-Hydroxypropyl-β-Cyclodextrin Pluronic-Based Polyrotaxanes. Macromol Biosci 2016; 16:63-73. [PMID: 26257319 PMCID: PMC4891183 DOI: 10.1002/mabi.201500220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/01/2015] [Indexed: 12/23/2022]
Abstract
A family of cationic Pluronic-based polyrotaxanes (PR(+)), threaded with 2-hydroxypropyl-β-cyclodextrin (HPCD), was synthesized for pDNA delivery into multiple cell lines. All PR(+) formed highly stable, positively charged pDNA complexes that were < 250 nm in diameter. The cellular uptake and pDNA transfection efficiencies of the PR(+):pDNA complexes was enhanced relative to the commercial transfection standards L2K and bPEI, while displaying similar or lower toxicity profiles. Charge density and threading efficiency of the PR(+) agent significantly influenced the colloidal stability and physical properties of the complexes, which impacted their intracellular transfection efficiencies. Taken together, our results suggest that HPCD: Pluronic PR(+) can be used as potent vectors for pDNA-based therapeutics.
Collapse
Affiliation(s)
- Vivek Badwaik
- Department of Chemistry, Multi-Disciplinary Cancer Research Facility, Bindley Bioscience Center, 1203 W. State Street, West Lafayette, Indiana 47907, USA
| | - Yawo Mondjinou
- Department of Chemistry, Multi-Disciplinary Cancer Research Facility, Bindley Bioscience Center, 1203 W. State Street, West Lafayette, Indiana 47907, USA
| | - Aditya Kulkarni
- Department of Chemistry, Multi-Disciplinary Cancer Research Facility, Bindley Bioscience Center, 1203 W. State Street, West Lafayette, Indiana 47907, USA
| | - Linjia Liu
- Department of Chemistry, Multi-Disciplinary Cancer Research Facility, Bindley Bioscience Center, 1203 W. State Street, West Lafayette, Indiana 47907, USA
| | - Asher Demoret
- Department of Chemistry, Multi-Disciplinary Cancer Research Facility, Bindley Bioscience Center, 1203 W. State Street, West Lafayette, Indiana 47907, USA
| | - David H Thompson
- Department of Chemistry, Multi-Disciplinary Cancer Research Facility, Bindley Bioscience Center, 1203 W. State Street, West Lafayette, Indiana 47907, USA.
| |
Collapse
|
32
|
Higashi T, Tajima A, Ohshita N, Hirotsu T, Hashim IIA, Motoyama K, Koyama S, Iibuchi R, Mieda S, Handa K, Kimoto T, Arima H. Design and Evaluation of the Highly Concentrated Human IgG Formulation Using Cyclodextrin Polypseudorotaxane Hydrogels. AAPS PharmSciTech 2015; 16:1290-8. [PMID: 25776984 DOI: 10.1208/s12249-015-0309-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/06/2015] [Indexed: 01/17/2023] Open
Abstract
To achieve the potent therapeutic effects of human immunoglobulin G (IgG), highly concentrated formulations are required. However, the stabilization for highly concentrated human IgG is laborious work. In the present study, to investigate the potentials of polypseudorotaxane (PPRX) hydrogels consisting of polyethylene glycol (PEG) and α- or γ-cyclodextrin (α- or γ-CyD) as pharmaceutical materials for highly concentrated human IgG, we designed the PPRX hydrogels including human IgG and evaluated their pharmaceutical properties. The α- and γ-CyDs formed PPRX hydrogels with PEG (M.W. 20,000) even in the presence of highly concentrated human IgG (>100 mg/mL). According to the results of (1)H-NMR, powder X-ray diffraction, and Raman microscopy, the formation of human IgG/CyD PPRX hydrogels was based on physical cross-linking arising from their columnar structures. The release profiles of human IgG from the hydrogels were in accordance with the non-Fickian diffusion model. Importantly, the stabilities of human IgG included into the hydrogels against thermal and shaking stresses were markedly improved. These findings suggest that PEG/CyD PPRX hydrogels are useful to prepare the formulation for highly concentrated human IgG.
Collapse
|
33
|
Affiliation(s)
- Sundus Erbas-Cakmak
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - David A. Leigh
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Charlie T. McTernan
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Alina
L. Nussbaumer
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
34
|
Arima H, Hayashi Y, Higashi T, Motoyama K. Recent advances in cyclodextrin delivery techniques. Expert Opin Drug Deliv 2015; 12:1425-41. [DOI: 10.1517/17425247.2015.1026893] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
35
|
Shinohara K, Yamashita M, Uchida W, Okabe C, Oshima S, Sugino M, Egawa Y, Miki R, Hosoya O, Fujihara T, Ishimaru Y, Kishino T, Seki T, Juni K. Preparation of polypseudorotaxanes composed of cyclodextrin and polymers in microspheres. Chem Pharm Bull (Tokyo) 2015; 62:962-6. [PMID: 25273055 DOI: 10.1248/cpb.c14-00313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We prepared polypseudorotaxanes (PPRXs) composed of cyclodextrin (CyD) and polyethylene glycol (PEG) inside microspheres (MSs) by an emulsifying process using polypropylene glycol (PPG) that shows temperature-dependent hydrophilicity changes; PPG is hydrophobic at high temperatures but hydrophilic at low temperatures. An aqueous solution of CyD and PEG was dispersed as droplets in PPG at 60°C then cooled to 0°C to allow water of droplets to transfer into PPG. On removal of water in the droplets, CyD and PEG were left behind as a CyD/PEG PPRX inside the solid-state MSs. Examination of α-, β-, and γ-CyD revealed that α-CyD was suitable for the formation of PPRX containing PEG in this MS preparation procedure. Interestingly, a new PPRX composed of α-CyD and PPG was formed in the α-CyD MSs when they were prepared in the absence of PEG from the aqueous solution of α-CyD. This MS fabrication procedure can control the size and shape of PPRX particles, and will contribute to the production of new types of CyD inclusion complexes.
Collapse
Affiliation(s)
- Katsunori Shinohara
- Department of Pharmacy Services, Saitama Medical Center, Saitama Medical University
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Simões SMN, Rey-Rico A, Concheiro A, Alvarez-Lorenzo C. Supramolecular cyclodextrin-based drug nanocarriers. Chem Commun (Camb) 2015; 51:6275-6289. [PMID: 25679097 DOI: 10.1039/c4cc10388b] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Supramolecular systems formed by the binding of several cyclodextrins (CDs) to polymers or lipids, either via non-covalent or covalent links, open a wide range of possibilities for the delivery of active substances. CDs can perform as multifunctionalizable cores to which very diverse (macro)molecules and drugs can be conjugated. Grafting with amphiphilic molecules can lead to nanoassemblies exhibiting a variety of architectures. CDs can also polymerize with other CDs or can be used to functionalize preexisting polymers to form polymers/networks with enhanced capability to form inclusion complexes. Alternatively, CDs can be exploited as transient cross-linkers to form poly(pseudo)rotaxane-based networks or zipper-like assemblies. Combination of mutifunctionality and complexation ability of CDs has been shown to be useful to develop depot-like formulations and colloidal nanocarriers with improved performances regarding easiness of administration, protection of the encapsulated substances, control of the delivery rate, and cell interactions. The aim of this review is to provide an overall view of the diversity of designs of CD-based supramolecular nanosystems with a special focus on the advances materialized in the last five years, including clinical trials.
Collapse
|
37
|
Seki T, Abe K, Nakamura K, Egawa Y, Miki R, Juni K, Seki T. Sugar-responsive pseudopolyrotaxanes and their application in sugar-induced release of PEGylated insulin. J INCL PHENOM MACRO 2015. [DOI: 10.1007/s10847-015-0504-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Seki T, Namiki M, Egawa Y, Miki R, Juni K, Seki T. Sugar-Responsive Pseudopolyrotaxane Composed of Phenylboronic Acid-Modified Polyethylene Glycol and γ-Cyclodextrin. MATERIALS 2015; 8:1341-1349. [PMID: 28788004 PMCID: PMC5455434 DOI: 10.3390/ma8031341] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 03/09/2015] [Accepted: 03/16/2015] [Indexed: 11/21/2022]
Abstract
We have designed a sugar-responsive pseudopolyrotaxane (PPRX) by combining phenylboronic acid-modified polyethylene glycol (PBA–PEG) and γ-cyclodextrin. Phenylboronic acid (PBA) was used as a sugar-recognition motif in the PPRX because PBA reacts with a diol portion of the sugar molecule and forms a cyclic ester. When D-fructose or D-glucose was added to a suspension of PPRX, PPRX disintegrated, depending on the concentration of the sugars. Interestingly, catechol does not show a response although catechol has a high affinity for PBA. We analyzed the response mechanism of PPRX by considering equilibria.
Collapse
Affiliation(s)
- Tomohiro Seki
- Faculty of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado, Saitama 350-0295, Japan.
| | - Misato Namiki
- Faculty of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado, Saitama 350-0295, Japan.
| | - Yuya Egawa
- Faculty of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado, Saitama 350-0295, Japan.
| | - Ryotaro Miki
- Faculty of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado, Saitama 350-0295, Japan.
| | - Kazuhiko Juni
- Faculty of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado, Saitama 350-0295, Japan.
| | - Toshinobu Seki
- Faculty of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado, Saitama 350-0295, Japan.
| |
Collapse
|
39
|
Ji R, Cheng J, Song CC, Du FS, Liang DH, Li ZC. Acid-Sensitive Polypseudorotaxanes Based on Ortho Ester-Modified Cyclodextrin and Pluronic F-127. ACS Macro Lett 2015; 4:65-69. [PMID: 35596374 DOI: 10.1021/mz5007359] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We demonstrate a new type of acid-sensitive amphiphilic polypseudorotaxanes (PPRs) formed via inclusion complexation between Pluronic F127 and the hydrophobic β-cyclodextrin (CD) derivative in alcoholic solvents. The 6-OH ortho ester-substituted hydrophobic β-CD derivative (EMD-CD) was prepared by "click" reaction of β-CD with 2-ethylidene-4-methyl-1,3-dioxalane under mild conditions. The water-insoluble EMD-CD (host) is capable of forming PPRs with F127 (guest) in ethanol or methanol but not in water, which is confirmed by 1H NMR, wide-angle X-ray diffraction, small-angle X-ray scattering, and the time-dependent threading kinetics. Depending on the host/guest ratio, the PPRs self-assembled into sheet-like structure or vesicular nanoparticles with different sizes in water. These PPR assemblies were stable at pH 8.4 but quickly dissociated into biocompatible products in neutral or in acidic buffers due to the hydrolysis of the ortho ester groups. Good biocompatibility, ease of fabrication, and extremely pH-sensitive character make the PPRs promising carriers for anticancer drug delivery. Moreover, the present work provides an alternative method for the preparation of PPRs composed of water-insoluble CD derivatives.
Collapse
Affiliation(s)
- Ran Ji
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics
of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Jing Cheng
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics
of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Cheng-Cheng Song
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics
of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Fu-Sheng Du
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics
of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - De-Hai Liang
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics
of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Zi-Chen Li
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics
of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|
40
|
Liu S, Xie R, Cai J, Wang L, Shi X, Ren L, Wang Y. Crosslinking of collagen using a controlled molecular weight bio-crosslinker: β-cyclodextrin polyrotaxane multi-aldehydes. RSC Adv 2015. [DOI: 10.1039/c5ra07036h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel bio-crosslinker which can improve the properties of collagen effectively.
Collapse
Affiliation(s)
- Sa Liu
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| | - Renjian Xie
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| | - Jie Cai
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| | - Lin Wang
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| | - Xuetao Shi
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| | - Li Ren
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| | - Yingjun Wang
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| |
Collapse
|
41
|
Tan S, Nam E, Cui J, Xu C, Fu Q, Ren JM, Wong EHH, Ladewig K, Caruso F, Blencowe A, Qiao GG. Fabrication of ultra-thin polyrotaxane-based films via solid-state continuous assembly of polymers. Chem Commun (Camb) 2015; 51:2025-8. [DOI: 10.1039/c4cc08759c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Surface-confined ultra-thin polyrotaxane (PRX)-based films with tunable composition, surface topology and swelling characteristics were prepared by solid-state continuous assembly of polymers (ssCAP).
Collapse
|
42
|
Dandekar P, Jain R, Keil M, Loretz B, Koch M, Wenz G, Lehr CM. Enhanced uptake and siRNA-mediated knockdown of a biologically relevant gene using cyclodextrin polyrotaxane. J Mater Chem B 2015; 3:2590-2598. [DOI: 10.1039/c4tb01821d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cellular investigations confirm the ability of cyclodextrin polyrotaxane nanoplexes to deliver siRNA for down-regulating genes relevant to the pathogenesis of tuberculosis.
Collapse
Affiliation(s)
- P. Dandekar
- Department of Drug Delivery (DDEL)
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)
- Campus A4 1
- Saarland University
- Saarbrücken
| | - R. Jain
- Department of Drug Delivery (DDEL)
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)
- Campus A4 1
- Saarland University
- Saarbrücken
| | - M. Keil
- Organic Macromolecular Chemistry
- Campus C4 2
- Saarland University
- Saarbrücken
- Germany
| | - B. Loretz
- Department of Drug Delivery (DDEL)
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)
- Campus A4 1
- Saarland University
- Saarbrücken
| | - M. Koch
- Innovative Electron Microscopy
- INM-Leibniz Institute for New Materials
- Campus D2 2
- Saarland University
- Saarbrücken
| | - G. Wenz
- Organic Macromolecular Chemistry
- Campus C4 2
- Saarland University
- Saarbrücken
- Germany
| | - C.-M. Lehr
- Department of Drug Delivery (DDEL)
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)
- Campus A4 1
- Saarland University
- Saarbrücken
| |
Collapse
|
43
|
Affiliation(s)
- Grégorio Crini
- Faculté Sciences & Techniques, UMR Chrono-environnement 6249, Université de Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| |
Collapse
|
44
|
Fredy JW, Scelle J, Guenet A, Morel E, Adam de Beaumais S, Ménand M, Marvaud V, Bonnet CS, Tóth E, Sollogoub M, Vives G, Hasenknopf B. Cyclodextrin Polyrotaxanes as a Highly Modular Platform for the Development of Imaging Agents. Chemistry 2014; 20:10915-20. [DOI: 10.1002/chem.201403635] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Indexed: 12/25/2022]
|
45
|
Glutathione as the end capper for cyclodextrin/PEG polyrotaxanes. CHINESE JOURNAL OF POLYMER SCIENCE 2014. [DOI: 10.1007/s10118-014-1477-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
46
|
Polymeric molecular shuttles: Polypseudorotaxanes & polyrotaxanes based on viologen (paraquat) urethane backbones & bis(p-phenylene)-34-crown-10. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Tang Y, Yuan L, Liang G, Gu A. High performance low-k cyanate ester resins with a thermally stable cyclodextrin microsphere. RSC Adv 2014. [DOI: 10.1039/c4ra00750f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
48
|
van Dongen SFM, Cantekin S, Elemans JAAW, Rowan AE, Nolte RJM. Functional interlocked systems. Chem Soc Rev 2014; 43:99-122. [DOI: 10.1039/c3cs60178a] [Citation(s) in RCA: 245] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
49
|
Zhang YM, Wang Z, Chen Y, Chen HZ, Ding F, Liu Y. Molecular binding behavior of a bispyridinium-containing bis(β-cyclodextrin) and its corresponding [2]rotaxane towards bile salts. Org Biomol Chem 2014; 12:2559-67. [DOI: 10.1039/c3ob42103a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
50
|
Rizzo C, D'Anna F, Marullo S, Vitale P, Noto R. Two-Component Hydrogels Formed by Cyclodextrins and Dicationic Imidazolium Salts. European J Org Chem 2013. [DOI: 10.1002/ejoc.201301428] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|